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x

P R E F A C E

PHILOSOPHY AND GOALS

The purpose of the fourth edition of this book is to provide a basis for understanding 

the characteristics, operation, and limitations of semiconductor devices. In order to 

gain this understanding, it is essential to have a thorough knowledge of the physics 

of the semiconductor material. The goal of this book is to bring together quantum 

mechanics, the quantum theory of solids, semiconductor material physics, and semi-

conductor device physics. All of these components are vital to the understanding of 

both the operation of present-day devices and any future development in the fi eld.

 The amount of physics presented in this text is greater than what is covered 

in many introductory semiconductor device books. Although this coverage is more 

extensive, the author has found that once the basic introductory and material physics 

have been thoroughly covered, the physics of the semiconductor device follows quite 

naturally and can be covered fairly quickly and effi ciently. The emphasis on the 

underlying physics will also be a benefi t in understanding and perhaps in developing 

new semiconductor devices.

 Since the objective of this text is to provide an introduction to the theory of 

semiconductor devices, there is a great deal of advanced theory that is not consid-

ered. In addition, fabrication processes are not described in detail. There are a few 

references and general discussions about processing techniques such as diffusion 

and ion implantation, but only where the results of this processing have direct im-

pact on device characteristics.

PREREQUISITES

This text is intended for junior and senior undergraduates majoring in electrical en-

gineering. The prerequisites for understanding the material are college mathematics, 

up to and including differential equations, basic college physics, and an introduction 

to electromagnetics. An introduction to modern physics would be helpful, but is not 

required. Also, a prior completion of an introductory course in electronic circuits is 

helpful, but not essential.

ORGANIZATION

The text is divided into three parts—Part I covers the introductory quantum physics 

and then moves on to the semiconductor material physics; Part II presents the physics 

of the fundamental semiconductor devices; and Part III deals with specialized semi-

conductor devices including optical, microwave, and power devices.

 Part I consists of Chapters 1 through 6. Chapter 1 presents an introduction to the 

crystal structure of solids leading to the ideal single-crystal semiconductor material. 
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 Preface xi

Chapters 2 and 3 introduce quantum mechanics and the quantum theory of solids, 

which together provide the necessary basic physics. Chapters 4 through 6 cover the 

semiconductor material physics. Chapter 4 considers the physics of the semiconduc-

tor in thermal equilibrium, Chapter 5 treats the transport phenomena of the charge 

carriers in a semiconductor, and the nonequilibrium excess carrier characteristics are 

developed in Chapter 6. Understanding the behavior of excess carriers in a semicon-

ductor is vital to the goal of understanding the device physics.

 Part II consists of Chapters 7 through 13. Chapter 7 treats the electrostatics of 

the basic pn junction and Chapter 8 covers the current–voltage, including the dc 

and small-signal, characteristics of the pn junction diode. Metal–semiconductor 

junctions, both rectifying and ohmic, and semiconductor heterojunctions are con-

sidered in Chapter 9. The basic physics of the metal–oxide–semiconductor fi eld-

effect transistor (MOSFET) is developed in Chapters 10 with additional concepts 

presented in Chapter 11. Chapter 12 develops the theory of the bipolar transistor 

and Chapter 13 covers the junction fi eld-effect transistor (JFET). Once the physics 

of the pn junction is developed, the chapters dealing with the three basic transistors 

may be covered in any order—these chapters are written so as not to depend on one 

another.

 Part III consists of Chapters 14 and 15. Chapter 14 considers optical devices, 

such as the solar cell and light emitting diode. Finally, semiconductor microwave 

devices and semiconductor power devices are presented in Chapter 15.

 Eight appendices are included at the end of the book. Appendix A contains 

a selected list of symbols. Notation may sometimes become confusing, so this 

appendix may aid in keeping track of all the symbols. Appendix B contains the 

system of units, conversion factors, and general constants used throughout the text. 

Appendix H lists answers to selected problems. Most students will fi nd this appen-

dix helpful.

USE OF THE BOOK

The text is intended for a one-semester course at the junior or senior level. As with 

most textbooks, there is more material than can be conveniently covered in one 

 semester; this allows each instructor some fl exibility in designing the course to his 

or her own specifi c needs. Two possible orders of presentation are discussed later in 

a separate section in this preface. However, the text is not an encyclopedia. Sections 

in each chapter that can be skipped without loss of continuity are identifi ed by an as-

terisk in both the table of contents and in the chapter itself. These sections, although 

important to the development of semiconductor device physics, can be postponed to 

a later time.

 The material in the text has been used extensively in a course that is required 

for junior-level electrical engineering students at the University of New Mexico. 

Slightly less than half of the semester is devoted to the fi rst six chapters; the remain-

der of the semester is devoted to the pn junction, the metal–oxide– semiconductor 

fi eld-effect transistor, and the bipolar transistor. A few other special topics may be 

briefl y considered near the end of the semester.
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xii Preface

 As mentioned, although the MOS transistor is discussed prior to the bipolar 

transistor or junction fi eld-effect transistor, each chapter dealing with the basic types 

of transistors is written to stand alone. Any one of the transistor types may be cov-

ered fi rst.

NOTES TO THE READER

This book introduces the physics of semiconductor materials and devices. Although 

many electrical engineering students are more comfortable building electronic cir-

cuits or writing computer programs than studying the underlying principles of semi-

conductor devices, the material presented here is vital to an understanding of the 

 limitations of electronic devices, such as the microprocessor.

 Mathematics is used extensively throughout the book. This may at times seem 

tedious, but the end result is an understanding that will not otherwise occur. Al-

though some of the mathematical models used to describe physical processes may 

seem  abstract, they have withstood the test of time in their ability to describe and 

predict these physical processes.

 The reader is encouraged to continually refer to the preview sections at the be-

ginning of each chapter so that the objective of the chapter and the purpose of each 

topic can be kept in mind. This constant review is especially important in the fi rst six 

chapters, dealing with the basic physics.

 The reader must keep in mind that, although some sections may be skipped without 

loss of continuity, many instructors will choose to cover these topics. The fact that sec-

tions are marked with an asterisk does not minimize the importance of these subjects.

 It is also important that the reader keep in mind that there may be questions still 

unanswered at the end of a course. Although the author dislikes the phrase, “it can be 

shown that . . . ,” there are some concepts used here that rely on derivations beyond 

the scope of the text. This book is intended as an introduction to the subject. Those 

questions remaining unanswered at the end of the course, the reader is encouraged to 

keep “in a desk drawer.” Then, during the next course in this area of concentration, 

the reader can take out these questions and search for the answers.

ORDER OF PRESENTATION

Each instructor has a personal preference for the order in which the course material is 

presented. Listed below are two possible scenarios. The fi rst case, called the MOSFET 

approach, covers the MOS transistor before the bipolar transistor. It may be noted that 

the MOSFET in Chapters 10 and 11 may be covered before the pn junction diode.

 The second method of presentation listed, called the bipolar approach, is the 

classical approach. Covering the bipolar transistor immediately after discussing 

the pn junction diode is the traditional order of presentation. However, because the 

MOSFET is left until the end of the semester, time constraints may shortchange the 

amount of class time devoted to this important topic.

 Unfortunately, because of time constraints, every topic in each chapter cannot 

be covered in a one-semester course. The remaining topics must be left for a second-

semester course or for further study by the reader.
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MOSFET approach

Chapter 1 Crystal structure

Chapters 2, 3 Selected topics from quantum
  mechanics and theory of solids

Chapter 4 Semiconductor physics

Chapter 5 Transport phenomena

Chapter 6 Selected topics from nonequilibrium
  characteristics

Chapter 7 The pn junction

Chapters 10, 11 The MOS transistor

Chapter 8 The pn junction diode

Chapter 9 A brief discussion of the Schottky diode

Chapter 12 The bipolar transistor

 Other selected topics

Bipolar approach

Chapter 1 Crystal structure

Chapters 2, 3 Selected topics from quantum
  mechanics and theory of solids

Chapter 4 Semiconductor physics

Chapter 5 Transport phenomena

Chapter 6 Selected topics from nonequilibrium
  characteristics

Chapters 7, 8 The pn junction and pn junction diode

Chapter 9 A brief discussion of the Schottky diode

Chapter 12 The bipolar transistor

Chapters 10, 11 The MOS transistor

 Other selected topics

NEW TO THE FOURTH EDITION

Order of Presentation: The two chapters dealing with MOSFETs were 

moved ahead of the chapter on bipolar transistors. This change emphasizes the 

importance of the MOS transistor.

Semiconductor Microwave Devices: A short section was added in Chapter 15 

covering three specialized semiconductor microwave devices.

New Appendix: A new Appendix F has been added dealing with effective 

mass concepts. Two effective masses are used in various calculations in the 

text. This appendix develops the theory behind each effective mass and dis-

cusses when to use each effective mass in a particular calculation.

Preview Sections: Each chapter begins with a brief introduction, which then 

leads to a preview section given in bullet form. Each preview item presents a 

particular objective for the chapter.

Exercise Problems: Over 100 new Exercise Problems have been added. An 

 Exercise Problem now follows each example. The exercise is very similar to 

the worked example so that readers can immediately test their understanding of 

the material just covered. Answers are given to each exercise problem.
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xiv Preface

Test Your Understanding: Approximately 40 percent new Test Your Under-

standing problems are included at the end of many of the major sections of the 

chapter. These exercise problems are, in general, more comprehensive than 

those presented at the end of each example. These problems will also reinforce 

readers’ grasp of the material before they move on to the next section.

End-of-Chapter Problems: There are 330 new end-of-chapter problems, which 

means that approximately 48 percent of the problems are new to this edition.

RETAINED FEATURES OF THE TEXT

■ Mathematical Rigor:  The mathematical rigor necessary to more clearly under-

stand the basic semiconductor material and device physics has been maintained.

■ Examples:  An extensive number of worked examples are used throughout 

the text to reinforce the theoretical concepts being developed. These examples 

contain all the details of the analysis or design, so the reader does not have to 

fi ll in missing steps.

■ Summary section:  A summary section, in bullet form, follows the text of 

each chapter. This section summarizes the overall results derived in the chapter 

and reviews the basic concepts developed.

■ Glossary of important terms:  A glossary of important terms follows the Sum-

mary section of each chapter. This section defi nes and summarizes the most 

important terms discussed in the chapter.

■ Checkpoint:  A checkpoint section follows the Glossary section. This section 

states the goals that should have been met and the abilities the reader should 

have gained. The Checkpoints will help assess progress before moving on to 

the next chapter.

■ Review questions:  A list of review questions is included at the end of each 

chapter. These questions serve as a self-test to help the reader determine how 

well the concepts developed in the chapter have been mastered.

■ End-of-chapter problems:  A large number of problems are given at the end of 

each chapter, organized according to the subject of each section in the chapter.

■ Summary and Review Problems:  A few problems, in a Summary and  Review 

section, are open-ended design problems and are given at the end of most chapters.

■ Reading list:  A reading list fi nishes up each chapter. The references, which are 

at an advanced level compared with that of this text, are indicated by an asterisk.

■ Answers to selected problems:  Answers to selected problems are given in the 

last appendix. Knowing the answer to a problem is an aid and a reinforcement 

in problem solving.
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ONLINE RESOURCES

A website to accompany this text is available at www.mhhe.com/neamen. The site 

 includes the solutions manual as well as an image library for instructors. Instructors can 

also obtain access to C.O.S.M.O.S. for the fourth edition. C.O.S.M.O.S. is a Complete 

Online Solutions Manual Organization System instructors can use to create exams and 

assignments, create custom content, and edit supplied problems and solutions. 
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xvi Preface

McGRAW-HILL CREATE™

Craft your teaching resources to match the way you teach! With McGraw-Hill 

 Create™, www.mcgrawhillcreate.com, you can easily rearrange chapters, combine 

material from other content sources, and quickly upload content you have written 

like your course syllabus or teaching notes. Find the content you need in Create 

by searching through thousands of leading McGraw-Hill textbooks. Arrange your 

book to fi t your teaching style. Create even allows you to personalize your book’s 

appearance by selecting the cover and adding your name, school, and course infor-

mation. Order a Create book and you’ll receive a complimentary print review copy 

in 3–5 business days or a complimentary electronic review copy (eComp) via email 

in minutes. Go to www.mcgrawhillcreate.com today and register to experience how 

McGraw-Hill Create™ empowers you to teach your students your way.

  MCGRAW-HILL HIGHER EDUCATION AND 
BLACKBOARD HAVE TEAMED UP. 

Blackboard, the Web-based course-management system, has partnered with 

 McGraw-Hill to better allow students and faculty to use online materials and ac-

tivities to complement face-to-face teaching. Blackboard features exciting social 

learning and teaching tools that foster more logical, visually impactful and active 

learning opportunities for students. You’ll transform your closed-door classrooms 

into communities where students remain connected to their educational experience 

24 hours a day.

 This partnership allows you and your students access to McGraw-Hill’s 

 Create™ right from within your Blackboard course—all with one single sign-on. 

McGraw-Hill and Blackboard can now offer you easy access to industry leading 

technology and content, whether your campus hosts it, or we do. Be sure to ask your 

local McGraw-Hill representative for details.

ELECTRONIC TEXTBOOK OPTIONS

E-textbooks are an innovative way for students to save money and create a greener 

environment at the same time. An e-book can save students about half the cost of a 

traditional textbook and offers unique features like a powerful search engine, high-

lighting, and the ability to share notes with classmates using e-books. 

 McGraw-Hill offers this text as an e-book. To talk about the e-book options, con-

tact your McGraw-Hill sales rep or visit the site www.coursesmart.com to learn more.
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xvii

P R O L O G U E

Semiconductors and the
Integrated Circuit

P R E V I E W

W
e often hear that we are living in the information age. Large amounts of 

information can be obtained via the Internet, for example, and can be 

obtained very quickly over long distances via satellite communications 

systems. The information technologies are based upon digital and analog electronic 

systems, with the transistor and integrated circuit (IC) being the foundation of these re-

markable capabilities. Wireless communication systems, including printers, faxes, lap-

top computers, ipods, and of course the cell phones are big users of today’s IC products. 

The cell phone is not just a telephone any longer, but includes e-mail services and video 

cameras, for example. Today, a relatively small laptop computer has more computing 

capability than the equipment used to send a man to the moon a few decades ago. The 

semiconductor electronics fi eld continues to be a fast-changing one, with thousands of 

technical papers published and many new electronic devices developed each year. ■

HISTORY
The semiconductor device has a fairly long history, although the greatest explo-

sion of IC technology has occured during the last two or three decades.1 The metal– 

 semiconductor contact dates back to the early work of Braun in 1874, who discovered 

the asymmetric nature of electrical conduction between metal contacts and semicon-

ductors, such as copper, iron, and lead sulfi de. These devices were used as detectors 

in early experiments on radio. In 1906, Pickard took out a patent for a point contact 

1This brief introduction is intended to give a fl avor of the history of the semiconductor device and 

 integrated circuit. Thousands of engineers and scientists have made signifi cant contributions to the 

 development of semiconductor electronics—the few events and names mentioned here are not meant 

to imply that these are the only signifi cant events or people involved in the semiconductor history.
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detector using silicon and, in 1907, Pierce published rectifi cation characteristics of 

diodes made by sputtering metals onto a variety of semiconductors.

 By 1935, selenium rectifi ers and silicon point contact diodes were available 

for use as radio detectors. A signifi cant advance in our understanding of the metal– 

semiconductor contact was aided by developments in semiconductor physics. In 

1942, Bethe developed the thermionic-emission theory, according to which the cur-

rent is determined by the process of emission of electrons into the metal rather than 

by drift or diffusion. With the development of radar, the need for better and more 

reliable detector diodes and mixers increased. Methods of achieving high-purity sili-

con and germanium were developed during this time and germanium diodes became 

a key component in radar systems during the Second World War.

 Another big breakthrough came in December 1947 when the fi rst transistor was 

constructed and tested at Bell Telephone Laboratories by William Shockley, John 

Bardeen, and Walter Brattain. This fi rst transistor was a point contact device and used 

polycrystalline germanium. The transistor effect was soon demonstrated in silicon as 

well. A signifi cant improvement occurred at the end of 1949 when single-crystal 

 material was used rather than the polycrystalline material. The single crystal yields 

uniform and improved properties throughout the whole semiconductor material.

 The next signifi cant step in the development of the transistor was the use of 

the diffusion process to form the necessary junctions. This process allowed better 

control of the transistor characteristics and yielded higher-frequency devices. The 

diffused mesa transistor was commercially available in germanium in 1957 and in 

silicon in 1958. The diffusion process also allowed many transistors to be fabricated 

on a single silicon slice, so the cost of these devices decreased.

THE INTEGRATED CIRCUIT (IC)
The transistor led to a revolution in electronics since it is smaller and more reliable 

than vacuum tubes used previously. The circuits at that time were discrete in that 

each element had to be individually connected by wires to form the circuit. The in-

tegrated circuit has led to a new revolution in electronics that was not possible with 

discrete devices. Integration means that complex circuits, consisting of millions of 

devices, can be fabricated on a single chip of semiconductor material.

 The fi rst IC was fabricated in February of 1959 by Jack Kilby of Texas Instru-

ments. In July 1959, a planar version of the IC was independently developed by 

Robert Noyce of Fairchild. The fi rst integrated circuits incorporated bipolar transis-

tors. Practical MOS transistors were then developed in the mid-1960s and 1970s. 

The MOS technologies, especially CMOS, have become a major focus for IC design 

and development. Silicon is the main semiconductor material, while gallium arse-

nide and other compound semiconductor materials are used for optical devices and 

for special applications requiring very high frequency devices.

 Since the fi rst IC, very sophisticated and complex circuits have been designed 

and fabricated. A single silicon chip may be on the order of 1 square centimeter and 

some ICs may have more than a hundred terminals. An IC can contain the arithmetic, 

logic, and memory functions on a single chip—the primary example of this type of IC 
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xx Prolouge

is the microprocessor. Integration means that circuits can be miniaturized for use in 

satellites and laptop computers where size, weight, and power are critical parameters.

 An important advantage of ICs is the result of devices being fabricated very 

close to each other. The time delay of signals between devices is short so that high-

frequency and high-speed circuits are now possible with ICs that were not practical 

with discrete circuits. In high-speed computers, for example, the logic and memory 

circuits can be placed very close to each other to minimize time delays. In addition, 

parasitic capacitance and inductance between devices are reduced which also pro-

vides improvement in the speed of the system.

 Intense research on silicon processing and increased automation in design and 

manufacturing have led to lower costs, higher fabrication yields, and greater reliabil-

ity of integrated circuits.

FABRICATION
The integrated circuit is a direct result of the development of various processing tech-

niques needed to fabricate the transistor and interconnect lines on the single chip. The 

total collection of these processes for making an IC is called a technology. The following 

few paragraphs provide an introduction to a few of these processes. This introduction is 

intended to provide the reader with some of the basic terminology used in processing.

Thermal Oxidation  A major reason for the success of silicon ICs is the fact that 

an excellent native oxide, SiO2, can be formed on the surface of silicon. This oxide is 

used as a gate insulator in the MOSFET and is also used as an insulator, known as the 

fi eld oxide, between devices. Metal interconnect lines that connect various devices 

can be placed on top of the fi eld oxide. Most other semiconductors do not form native 

oxides that are of suffi cient quality to be used in device fabrication.

 Silicon will oxidize at room temperature in air forming a thin native oxide of ap-

proximately 25 Å thick. However, most oxidations are done at elevated temperatures 

since the basic process requires that oxygen diffuse through the existing oxide to 

the silicon surface where a reaction can occur. A schematic of the oxidation process 

is shown in Figure 0.1. Oxygen diffuses across a stagnant gas layer directly adjacent 

SiO2 Silicon

Diffusion

of O2

Gas

Diffusion of O2

through existing

oxide to silicon surface

Stagnant

gas layer

Figure 0.1 | Schematic of the oxidation 

process.
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to the oxide surface and then diffuses through the existing oxide layer to the silicon 

surface where the reaction between O2 and Si forms SiO2. Because of this reaction, 

silicon is actually consumed from the surface of the silicon. The amount of silicon 

consumed is approximately 44 percent of the thickness of the fi nal oxide.

Photomasks and Photolithography  The actual circuitry on each chip is created 

through the use of photomasks and photolithography. The photomask is a physical 

representation of a device or a portion of a device. Opaque regions on the mask are 

made of an ultraviolet-light-absorbing material. A photosensitive layer, called pho-

toresist, is fi rst spread over the surface of the semiconductor. The photoresist is an 

organic polymer that undergoes chemical change when exposed to ultraviolet light. 

The photoresist is exposed to ultraviolet light through the photomask as indicated in 

Figure 0.2. The photoresist is then developed in a chemical solution. The developer 

is used to remove the unwanted portions of the photoresist and generate the appropri-

ate patterns on the silicon. The photomasks and photolithography process is  critical 

in that it determines how small the devices can be made. Instead of using  ultraviolet 

light, electrons and x-rays can also be used to expose the photoresist.

Etching  After the photoresist pattern is formed, the remaining photoresist can be 

used as a mask, so that the material not covered by the photoresist can be etched. Plasma 

etching is now the standard process used in IC fabrication. Typically, an etch gas such 

as chlorofl uorocarbons is injected into a low-pressure chamber. A plasma is created by 

applying a radio-frequency voltage between cathode and anode terminals. The silicon 

wafer is placed on the cathode. Positively charged ions in the plasma are accelerated to-

ward the cathode and bombard the wafer normal to the surface. The  actual chemical and 

physical reaction at the surface is complex, but the net result is that silicon can be etched 

anisotropically in very selected regions of the wafer. If photoresist is applied on the 

surface of silicon dioxide, then the silicon dioxide can also be etched in a similar way.

Diffusion  A thermal process that is used extensively in IC fabrication is diffusion. 

Diffusion is the process by which specifi c types of “impurity” atoms can be intro-

duced into the silicon material. This doping process changes the conductivity type 

of the silicon so that pn junctions can be formed. (The pn junction is a basic build-

ing block of semiconductor devices.) Silicon wafers are oxidized to form a layer of 

UV source

GlassPhotomask

Silicon

Photoresist

UV-absorbing

material

Figure 0.2 | Schematic showing the use of a photomask.
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silicon dioxide, and windows are opened in the oxide in selected areas using photo-

lithography and etching as just described.

 The wafers are then placed in a high-temperature furnace (about 1100�C) and dopant 

atoms such as boron or phosphorus are introduced. The dopant atoms gradually diffuse 

or move into the silicon due to a density gradient. Since the diffusion process requires 

a gradient in the concentration of atoms, the fi nal concentration of diffused atoms is 

nonlinear, as shown in Figure 0.3. When the wafer is removed from the furnace and the 

wafer temperature returns to room temperature, the diffusion coeffi cient of the dopant 

atoms is essentially zero so that the dopant atoms are then fi xed in the silicon material.

Ion Implantation  A fabrication process that is an alternative to high-temperature 

diffusion is ion implantation. A beam of dopant ions is accelerated to a high energy 

and is directed at the surface of a semiconductor. As the ions enter the silicon, they 

collide with silicon atoms and lose energy and fi nally come to rest at some depth 

within the crystal. Since the collision process is statistical in nature, there is a dis-

tribution in the depth of penetration of the dopant ions. Figure 0.4 shows such an 

example of the implantation of boron into silicon at a particular energy.

 Two advantages of the ion implantation process compared to diffusion are 

(1) the ion implantation process is a low-temperature process and (2) very well 
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Figure 0.3 | Final concentration of diffused 

impurities into the surface of a semiconductor.
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Figure 0.4 | Final concentration of 

ion-implanted boron into silicon.
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defi ned  doping layers can be achieved. Photoresist layers or layers of oxide can be 

used to block the penetration of dopant atoms so that ion implantation can occur in 

very selected regions of the silicon.

 One disadvantage of ion implantation is that the silicon crystal is damaged by the 

penetrating dopant atoms because of collisions between the incident dopant atoms 

and the host silicon atoms. However, most of the damage can be removed by thermal 

annealing the silicon at an elevated temperature. The thermal annealing temperature, 

however, is normally much less that the diffusion process temperature.

Metallization, Bonding, and Packaging  After the semiconductor devices have been 

fabricated by the processing steps discussed, they need to be connected to each other to 

form the circuit. Metal fi lms are generally deposited by a vapor deposition technique, 

and the actual interconnect lines are formed using photolithography and etching. In 

general, a protective layer of silicon nitride is fi nally deposited over the entire chip.

 The individual integrated circuit chips are separated by scribing and breaking the 

wafer. The integrated circuit chip is then mounted in a package. Lead bonders are fi -

nally used to attach gold or aluminum wires between the chip and package terminals.

Summary: Simplifi ed Fabrication of a pn Junction  Figure 0.5 shows the basic 

steps in forming a pn junction. These steps involve some of the processing described 

in the previous paragraphs.

n type

1. Start with

    n-type substrate

3. Expose photoresist

    through photomask

6. Ion implant or

    diffuse boron

    into silicon

3. Apply photoresist

    over SiO2

n

n

n pp

SiO2

PR

2. Oxidize surface

n

SiO2

Photomask
UV light

4. Remove exposed

    photoresist

n
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5. Etch exposed SiO2

n
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7. Remove PR and

    sputter Al on

    surface 

n

Apply Al

8. Apply PR, photomask,

    and etch to form Al

    contacts over p regions

Al contacts

n

Ion implant

or diffuse p regions

pp

Figure 0.5 | The basic steps in forming a pn junction.
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1
The Crystal Structure of Solids 

    T   his text deals with the electrical properties and characteristics of semiconduc-

tor materials and devices. The electrical properties of solids are therefore of 

primary interest. The semiconductor is in general a single-crystal material. The 

electrical properties of a single-crystal material are determined not only by the chemi-

cal composition but also by the arrangement of atoms in the solid; this being true, a 

brief study of the crystal structure of solids is warranted. The formation, or growth, 

of the single-crystal material is an important part of semiconductor technology. A 

short discussion of several growth techniques is included in this chapter to provide the 

reader with some of the terminology that describes semiconductor device structures. ■   

   1.0 | PREVIEW 
  In this chapter, we will: 

   ■    Describe three classifi cations of solids—amorphous, polycrystalline, and single 

crystal.  

   ■    Discuss the concept of a unit cell.  

   ■    Describe three simple crystal structures and determine the volume and surface 

density of atoms in each structure.  

   ■    Describe the diamond crystal structure.  

   ■    Briefl y discuss several methods of forming single-crystal semiconductor 

 materials.       

   1.1 | SEMICONDUCTOR MATERIALS 
  Semiconductors are a group of materials having conductivities between those of met-

als and insulators. Two general classifi cations of semiconductors are the elemental 

 semiconductor materials, found in group IV of the periodic table, and the compound 

semiconductor materials, most of which are formed from special combinations of 

group III and group V elements. Table 1.1 shows a portion of the periodic table in 

  C H A P T E R 
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2 CHAPTER 1   The Crystal Structure of Solids

which the more common semiconductors are found and Table 1.2 lists a few of the 

semiconductor materials. (Semiconductors can also be formed from combinations of 

group II and group VI elements, but in general these will not be considered in this text.)       

  The elemental materials, those that are composed of single species of atoms, are 

silicon and germanium. Silicon is by far the most common semiconductor used in 

integrated circuits and will be emphasized to a great extent. 

  The two-element, or  binary,  compounds such as gallium arsenide or gallium 

phosphide are formed by combining one group III and one group V element. Gal-

lium arsenide is one of the more common of the compound semiconductors. Its good 

optical properties make it useful in optical devices. GaAs is also used in specialized 

applications in which, for example, high speed is required. 

  We can also form a three-element, or  ternary,  compound semiconductor. An 

example is   AlxGa1�xAs,   in which the subscript  x  indicates the fraction of the lower 

atomic number element component. More complex semiconductors can also be 

formed that provide fl exibility when choosing material properties.   

   1.2 | TYPES OF SOLIDS 
  Amorphous, polycrystalline, and single crystals are the three general types of sol-

ids. Each type is characterized by the size of an ordered region within the material. 

An ordered region is a spatial volume in which atoms or molecules have a regular 

geometric arrangement or periodicity. Amorphous materials have order only within 

a few atomic or molecular dimensions, while polycrystalline materials have a high 

degree of order over many atomic or molecular dimensions. These ordered regions, 

or single-crystal regions, vary in size and orientation with respect to one another. The 

single-crystal regions are called grains and are separated from one another by grain 

boundaries. Single-crystal materials, ideally, have a high degree of order, or regular 

geometric periodicity, throughout the entire volume of the material. The advantage 

of a single-crystal material is that, in general, its electrical properties are superior 

 Table 1.1 | A portion of the periodic table 

 III  IV  V 

 5  
 B 

  Boron 

 6  
 C 

  Carbon 

 13  
 Al 

  Aluminum 

 14  
 Si 

  Silicon 

 15  
 P 

  Phosphorus 

 31  
 Ga 

  Gallium 

 32  
 Ge 

  Germanium 

 33  
 As 

  Arsenic 

 49  
 In 

  Indium 

 51  
 Sb 

  Antimony 

 Table 1.2 |  A list of some semiconductor 

materials 

   Elemental semiconductors 

   Si  Silicon 

   Ge  Germanium 

   Compound semiconductors 

   AlP  Aluminum phosphide 

   AlAs  Aluminum arsenide 

   GaP  Gallium phosphide 

   GaAs  Gallium arsenide 

   InP  Indium phosphide 
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 1.3   Space Lattices 3

to those of a nonsingle-crystal material, since grain boundaries tend to degrade the 

electrical characteristics. Two-dimensional representations of amorphous, polycrys-

talline, and single-crystal materials are shown in Figure 1.1.    

   1.3 | SPACE LATTICES 
  Our primary emphasis in this text will be on the single-crystal material with its regu-

lar geometric periodicity in the atomic arrangement. A representative unit, or a group 

of atoms, is repeated at regular intervals in each of the three dimensions to form the 

single crystal. The periodic arrangement of atoms in the crystal is called the  lattice.  

   1.3.1 Primitive and Unit Cell 

 We can represent a particular atomic array by a dot that is called a  lattice point.  
 Figure 1.2 shows an infi nite two-dimensional array of lattice points. The simplest 

means of repeating an atomic array is by translation. Each lattice point in Figure 1.2 

can be translated a distance  a  1  in one direction and a distance  b  1  in a second nonco-

linear direction to generate the two-dimensional lattice. A third noncolinear transla-

tion will produce the three-dimensional lattice. The translation directions need not 

be perpendicular.  

  Since the three-dimensional lattice is a periodic repetition of a group of atoms, 

we do not need to consider the entire lattice, but only a fundamental unit that is being 

repeated. A  unit cell  is a small volume of the crystal that can be used to reproduce the 

entire crystal. A unit cell is not a unique entity. Figure 1.3 shows several possible unit 

cells in a two-dimensional lattice.  

  The unit cell A can be translated in directions  a  2  and  b  2 , the unit cell B can 

be translated in directions  a  3  and  b  3 , and the entire two-dimensional lattice can be 

constructed by the translations of either of these unit cells. The unit cells C and D 

in Figure 1.3 can also be used to construct the entire lattice by using the appropriate 

translations. This discussion of two-dimensional unit cells can easily be extended to 

three dimensions to describe a real single-crystal material. 

  Figure 1.1 |  Schematics of three general types of crystals: (a) amorphous, (b) polycrystalline, 

(c) single.   

(a) (b) (c)
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4 CHAPTER 1   The Crystal Structure of Solids

  A  primitive cell  is the smallest unit cell that can be repeated to form the lattice. 

In many cases, it is more convenient to use a unit cell that is not a primitive cell. Unit 

cells may be chosen that have orthogonal sides, for example, whereas the sides of a 

primitive cell may be nonorthogonal. 

  A generalized three-dimensional unit cell is shown in Figure 1.4. The relation-

ship between this cell and the lattice is characterized by three vectors    
_
 a ,  

_

 b , and  
_
 c   , 

which need not be perpendicular and which may or may not be equal in length. Every 

equivalent lattice point in the three-dimensional crystal can be found using the vector     

  
_
 r  � p 

_
 a  � q 

_
 b  � s 

_
 c  (1.1)

 where  p ,  q , and  s  are integers. Since the location of the origin is arbitrary, we will let 

 p ,  q , and  s  be positive integers for simplicity. The magnitudes of the vectors      
_
 a ,  
_

 b , and  
_
 c  are the lattice constants of the unit cell.   

   1.3.2 Basic Crystal Structures 

 Before we discuss the semiconductor crystal, let us consider three crystal structures 

and determine some of the basic characteristics of these crystals. Figure 1.5 shows 

the simple cubic, body-centered cubic, and face-centered cubic structures. For these 

simple structures, we may choose unit cells such that the general vectors    
_
 a ,  

_

 b , and  
_
 c    

a1

b1

  Figure 1.2 |  Two-dimensional 

representation of a single-crystal lattice.   

  Figure 1.3 |  Two-dimensional representation of a single-crystal 

lattice showing various possible unit cells.   

b2

b4

b1

b3
a2

a4

a1

a3

A

B

D

C

  Figure 1.4 |  A generalized 

primitive unit cell.   

c

b

a
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 1.3   Space Lattices 5

are perpendicular to each other and the lengths are equal. The lattice constant of each 

unit cell in Figure 1.5 is designated as “ a .” The  simple cubic  (sc) structure has an 

atom located at each corner; the  body-centered cubic  (bcc) structure has an additional 

atom at the center of the cube; and the  face-centered cubic  (fcc) structure has addi-

tional atoms on each face plane.  

  By knowing the crystal structure of a material and its lattice dimensions, we can 

determine several characteristics of the crystal. For example, we can determine the 

volume density of atoms.  

  Figure 1.5 |  Three lattice types: (a) simple cubic, (b) body-centered cubic, (c) face-centered cubic.   

(a) (b) (c)

a

a

a

a

a

a

a

a

a

Objective: Find the volume density of atoms in a crystal. 

  Consider a single-crystal material that is a body-centered cubic, as shown in Figure 1.5b, 

with a lattice constant   a � 5 Å � 5 � 10�8   cm. A corner atom is shared by eight unit cells that 

meet at each corner so that each corner atom effectively contributes one-eighth of its volume 

to each unit cell. The eight corner atoms then contribute an equivalent of one atom to the unit 

cell. If we add the body-centered atom to the corner atoms, each unit cell contains an equiva-

lent of two atoms. 

   ■ Solution 
 The number of atoms per unit cell is        1 __ 

8
   � 8 � 1 � 2   

The volume density of atoms is then found as

      Volume Density �   
# atoms per unit cell

  _________________  
volume of unit cell   

  

So

      Volume Density �   2 __ 
a3

   �   2 __________ 
(5 � 1 0 �8 )3

   � 1.6 � 1022 atoms/cm3     

■ EXERCISE PROBLEM
 Ex 1.1   The lattice constant of a face-centered cubic lattice is 4.25 Å. Determine the 

(a) effective number of atoms per unit cell and (b) volume density of atoms. 

[Ans. (a) 4; (b) 5.21 � 10
 22

  cm 
�3

 ]

         EXAMPLE 1.1 
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6 CHAPTER 1   The Crystal Structure of Solids

        1.3.3 Crystal Planes and Miller Indices 

 Since real crystals are not infi nitely large, they eventually terminate at a surface. 

Semiconductor devices are fabricated at or near a surface, so the surface proper-

ties may infl uence the device characteristics. We would like to be able to describe 

these surfaces in terms of the lattice. Surfaces, or planes through the crystal, can be 

 described by fi rst considering the intercepts of the plane along the    
_
 a ,  

_

 b , and  
_
 c    axes 

used to describe the lattice.   

EXAMPLE 1.2       Objective:  Describe the plane shown in Figure 1.6. (The lattice points in Figure 1.6 are 

shown along the   
_
 a   ,   
_

 b   , and   
_
 c    axes only.) 

   ■ Solution 
 From Equation (1.1), the intercepts of the plane correspond to  p  � 3,  q  � 2, and  s  � 1. Now 

write the reciprocals of the intercepts, which gives     

 (   1 __ 
3
  ,   1 __ 

2
  ,   1 __ 

1
   ) 

 Multiply by the lowest common denominator, which in this case is 6, to obtain (2, 3, 6). The 

plane in Figure 1.6 is then referred to as the (236) plane. The integers are referred to as the 

Miller indices. We will refer to a general plane as the ( hkl ) plane.   

   ■ Comment 
 We can show that the same three Miller indices are obtained for any plane that is parallel to the 

one shown in Figure 1.6. Any parallel plane is entirely equivalent to any other.  

 ■ EXERCISE PROBLEM 
  Ex 1.2  Describe the lattice plane shown in Figure 1.7. 

[Ans. (211) plane]

  

  Figure 1.6 |  A representative crystal-

lattice plane.   

1c

2b

3a
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 1.3   Space Lattices 7

  Figure 1.7 |  Figure for 

Exercise Problem Ex 1.2.   

2c

2b

a

   Three planes that are commonly considered in a cubic crystal are shown in Fig-

ure 1.8. The plane in Figure 1.8a is parallel to the   
_

 b    and   
_
 c    axes so the intercepts are 

given as p � 1, q � �, and s � �. Taking the reciprocal, we obtain the Miller indi-

ces as (1, 0, 0), so the plane shown in Figure 1.8a is referred to as the (100) plane. 

Again, any plane parallel to the one shown in Figure 1.8a and separated by an inte-

gral number of lattice constants is equivalent and is referred to as the (100) plane. 

One advantage to taking the reciprocal of the intercepts to obtain the Miller indices 

is that the use of infi nity is avoided when describing a plane that is parallel to an axis. 

If we were to describe a plane passing through the origin of our system, we would 

obtain infi nity as one or more of the Miller indices after taking the reciprocal of the 

intercepts. However, the location of the origin of our system is entirely arbitrary and 

so, by translating the origin to another equivalent lattice point, we can avoid the use 

of infi nity in the set of Miller indices.  

  For the simple cubic structure, the body-centered cubic, and the face- centered 

cubic, there is a high degree of symmetry. The axes can be rotated by 90° in each 

  Figure 1.8 |  Three lattice planes: (a) (100) plane, (b) (110) plane, (c) (111) plane.   

a – a – a –

c–

b
–

(a) (b)

c–

b
–

(c)

c–

b
–
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8 CHAPTER 1   The Crystal Structure of Solids

of the three dimensions and each lattice point can again be described by Equa-

tion (1.1) as     

  
_
 r  � p 

_
 a  � q 

_
 b  � s 

_
 c  (1.1)

 Each face plane of the cubic structure shown in Figure 1.8a is entirely equivalent. 

These planes are grouped together and are referred to as the {100} set of planes. 

  We may also consider the planes shown in Figures 1.8b and 1.8c. The intercepts 

of the plane shown in Figure 1.8b are p � 1, q � 1, and s � �. The Miller indices 

are found by taking the reciprocal of these intercepts and, as a result, this plane is 

referred to as the (110) plane. In a similar way, the plane shown in Figure 1.8c is 

referred to as the (111) plane. 

  One characteristic of a crystal that can be determined is the distance between 

nearest equivalent parallel planes. Another characteristic is the surface concentration 

of atoms, number per square centimeter (#/cm 2 ), that are cut by a particular plane. 

Again, a single-crystal semiconductor is not infi nitely large and must terminate at 

some surface. The surface density of atoms may be important, for example, in 

 determining how another material, such as an insulator, will “fi t” on the surface of a 

semiconductor material. 

EXAMPLE 1.3     Objective:  Calculate the surface density of atoms on a particular plane in a crystal. 

  Consider the body-centered cubic structure and the (110) plane shown in Figure 1.9a. 

 Assume the atoms can be represented as hard spheres with the closest atoms touching each 

other. Assume the lattice constant is    a 
1
  � 5 Å  . Figure 1.9b shows how the atoms are cut by the 

(110) plane.  

  The atom at each corner is shared by four similar equivalent lattice planes, so each corner 

atom effectively contributes one-fourth of its area to this lattice plane as indicated in the fi gure. 

The four corner atoms then effectively contribute one atom to this lattice plane. The atom in 

the center is completely enclosed in the lattice plane. There is no other equivalent plane that 

  Figure 1.9 |  (a) The (110) plane in a body-centered cubic and (b) the atoms cut by the (110) 

plane in a body-centered cubic.   

a1

a1

a1

(a)

c–

b
–

(b)

a1

a1 2

a –
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 1.3   Space Lattices 9

     1.3.4 Directions in Crystals 

 In addition to describing crystal planes in a lattice, we may want to describe a partic-

ular direction in the crystal. The direction can be expressed as a set of three integers 

that are the components of a vector in that direction. For example, the body diago-

nal in a simple cubic lattice is composed of vector components 1, 1, 1. The body 

diagonal is then described as the [111] direction. The brackets are used to designate 

direction as distinct from the parentheses used for the crystal planes. The three basic 

directions and the associated crystal planes for the simple cubic structure are shown 

in Figure 1.10. Note that in the simple cubic lattices, the [ hkl ] direction is perpen-

dicular to the ( hkl ) plane. This perpendicularity may not be true in noncubic lattices.        

cuts the center atom and the corner atoms, so the entire center atom is included in the number 

of atoms in the crystal plane. The lattice plane in Figure 1.9b, then, contains two atoms. 

   ■ Solution 
 The number of atoms per lattice plane is         

 1
 __ 

  4
      �   4   �   1   �   2    

The surface density of atoms is then found as

       Surface Density   �     
# of atoms per lattice plane

   _______________________  
area of lattice plane

      

So

           Surface Density   �      2  _________ 
   (    a  1    )    (    a  1     �

__

 2      )     
   �      2       ____________  

(   5   �     1 0     −   8      )    2     �
__

 2              
  

�     5.66 � 1014 atoms/cm   2           

   ■ Comment 
 The surface density of atoms is a function of the particular crystal plane in the lattice and 

generally varies from one crystal plane to another.  

■ EXERCISE PROBLEM
 Ex 1.3   The lattice constant of a face-centered-cubic structure is 4.25 Å. Calculate the surface 

density of atoms for a (a) (100) plane and (b) (110) plane.

[Ans. (a) 1.11 � 10  
15

  cm 
�2

 ; (b) 7.83 � 10 
14 

 cm 
�2

 ] 

TYU 1.1    The volume density of atoms for a simple cubic lattice is 4 � 10   22  cm �3 . Assume 

that the atoms are hard spheres with each atom touching its nearest neighbor. Deter-

mine the lattice constant and the radius of the atom. 

(Ans.  a  � 2.92 Å,  r  � 1.46 Å)

  

TYU 1.2    Consider a simple cubic structure with a lattice constant of  a  � 4.65 Å. Determine 

the surface density of atoms in the (a) (100) plane, (b) (110) plane, and (c) (111) 

plane. 

[Ans. (a) 4.62 � 10  
14

  cm 
�2

 ; (b) 3.27 � 10  
14

  cm 
�2

 ; (c) 2.67 � 10 
14

  cm 
�2 

 ]

  

TYU 1.3    (a) Determine the distance between nearest (100) planes in a simple cubic lattice 

with a lattice constant of  a  � 4.83 Å. (b) Repeat part (a) for the (110) plane.

[Ans. (a) 4.83 Å; (b) 3.42 Å]

    

 TEST YOUR UNDERSTANDING  

nea29583_ch01_001-024.indd   9nea29583_ch01_001-024.indd   9 12/11/10   9:46 AM12/11/10   9:46 AM



10 CHAPTER 1   The Crystal Structure of Solids

   1.4 |  THE DIAMOND STRUCTURE 
  As already stated, silicon is the most common semiconductor material. Silicon is 

referred to as a group IV element and has a diamond crystal structure. Germanium 

is also a group IV element and has the same diamond structure. A unit cell of the 

diamond structure, shown in Figure 1.11, is more complicated than the simple cubic 

structures that we have considered up to this point.  

  We may begin to understand the diamond lattice by considering the tetrahedral 

structure shown in Figure 1.12. This structure is basically a body-centered cubic 

with four of the corner atoms missing. Every atom in the tetrahedral structure has 

four nearest neighbors and it is this structure that is the basic building block of the 

diamond lattice.  

a–

c–

b
–

(a) (b) (c)

[100]

a–

c–

b
–

[110]

[111]

a–

c–

b
–

  Figure 1.10 |  Three lattice directions and planes: (a) (100) plane and [100] direction, (b) (110) plane and [110] 

direction, (c) (111) plane and [111] direction.   

  Figure 1.11 |  The diamond structure.   

a

  Figure 1.12 |  The tetrahedral 

structure of closest neighbors 

in the diamond lattice.   

a/2
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 1.4   The Diamond Structure 11

  There are several ways to visualize the diamond structure. One way to gain 

a further understanding of the diamond lattice is by considering Figure 1.13. Fig-

ure 1.13a shows two body-centered cubic, or tetrahedral, structures diagonally adja-

cent to each other. The open circles represent atoms in the lattice that are generated 

when the structure is translated to the right or left, one lattice constant,  a.  Figure 

1.13b represents the top half of the diamond structure. The top half again consists of 

two tetrahedral structures joined diagonally, but which are at 90° with respect to the 

bottom-half diagonal. An important characteristic of the diamond lattice is that any 

atom within the diamond structure will have four nearest neighboring atoms. We will 

note this characteristic again in our discussion of atomic bonding in the next section.  

  The diamond structure refers to the particular lattice in which all atoms are of 

the same species, such as silicon or germanium. The zincblende (sphalerite) structure 

differs from the diamond structure only in that there are two different types of atoms 

in the lattice. Compound semiconductors, such as gallium arsenide, have the zinc-

blende structure shown in Figure 1.14. The important feature of both the diamond 

and the zincblende structures is that the atoms are joined together to form a tetrahe-

dron. Figure 1.15 shows the basic tetrahedral structure of GaAs in which each Ga 

atom has four nearest As neighbors and each As atom has four nearest Ga neighbors. 

This fi gure also begins to show the interpenetration of two sublattices that can be 

used to generate the diamond or zincblende lattice.      

  Figure 1.13 |  Portions of the diamond lattice: (a) bottom half and (b) top half.   

(a)

a

a

(b)

 TYU 1.4   Consider the diamond unit cell shown in Figure 1.11. Determine the (a) number 

of corner atoms, (b) number of face-centered atoms, and (c) number of atoms to-

tally enclosed in the unit cell. 

[Ans. (a) 8; (b) 6; (c) 4]

 

 TYU 1.5   The lattice constant of silicon is 5.43 Å. Calculate the volume density of silicon 

atoms. 

(Ans. 5 � 10  
22 

 cm 
�3

 )

TEST YOUR UNDERSTANDING
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12 CHAPTER 1   The Crystal Structure of Solids

   1.5 | ATOMIC BONDING 
  We have been considering various single-crystal structures. The question arises as to 

why one particular crystal structure is favored over another for a particular assembly 

of atoms. A fundamental law of nature is that the total energy of a system in thermal 

equilibrium tends to reach a minimum value. The interaction that occurs between 

atoms to form a solid and to reach the minimum total energy depends on the type 

of atom or atoms involved. The type of bond, or interaction, between atoms, then, 

depends on the particular atom or atoms in the crystal. If there is not a strong bond 

between atoms, they will not “stick together” to create a solid. 

  The interaction between atoms can be described by quantum mechanics. 

 Although an introduction to quantum mechanics is presented in the next chapter, the 

quantum-mechanical description of the atomic bonding interaction is still beyond 

the scope of this text. We can nevertheless obtain a qualitative understanding of 

how various atoms interact by considering the valence, or outermost, electrons of an 

atom. 

  The atoms at the two extremes of the periodic table (excepting the inert ele-

ments) tend to lose or gain valence electrons, thus forming ions. These ions then 

essentially have complete outer energy shells. The elements in group I of the pe-

riodic table tend to lose their one electron and become positively charged, while 

the elements in group VII tend to gain an electron and become negatively charged. 

These oppositely charged ions then experience a coulomb attraction and form a bond 

referred to as an  ionic bond.  If the ions were to get too close, a repulsive force would 

become dominant, so an equilibrium distance results between these two ions. In a 

crystal, negatively charged ions tend to be surrounded by positively charged ions 

and positively charged ions tend to be surrounded by negatively charged ions, so a 

periodic array of the atoms is formed to create the lattice. A classic example of ionic 

bonding is sodium chloride. 

  Figure 1.14 |  The zincblende (sphalerite) lattice of GaAs.   

a

As

Ga

  Figure 1.15 |  The tetrahedral 

structure of closest neighbors in the 

zincblende lattice.   
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 1.5   Atomic Bonding 13

  The interaction of atoms tends to form closed valence shells such as we see 

in ionic bonding. Another atomic bond that tends to achieve closed-valence energy 

shells is  covalent bonding,  an example of which is found in the hydrogen molecule. A 

hydrogen atom has one electron and needs one more electron to complete the lowest 

energy shell. A schematic of two noninteracting hydrogen atoms, and the hydrogen 

molecule with the covalent bonding, is shown in Figure 1.16. Covalent bonding re-

sults in electrons being shared between atoms, so that in effect the valence energy 

shell of each atom is full.  

  Atoms in group IV of the periodic table, such as silicon and germanium, also 

tend to form covalent bonds. Each of these elements has four valence electrons and 

needs four more electrons to complete the valence energy shell. If a silicon atom, 

for example, has four nearest neighbors, with each neighbor atom contributing one 

valence electron to be shared, then the center atom will in effect have eight electrons 

in its outer shell. Figure 1.17a schematically shows fi ve noninteracting silicon atoms 

with the four valence electrons around each atom. A two-dimensional representation 

of the covalent bonding in silicon is shown in Figure 1.17b. The center atom has 

eight shared valence electrons.  

  A signifi cant difference between the covalent bonding of hydrogen and of sili-

con is that, when the hydrogen molecule is formed, it has no additional electrons to 

form additional covalent bonds, while the outer silicon atoms always have valence 

electrons available for additional covalent bonding. The silicon array may then be 

formed into an infi nite crystal, with each silicon atom having four nearest neighbors 

and eight shared electrons. The four nearest neighbors in silicon forming the covalent 

bond correspond to the tetrahedral structure and the diamond lattice, which were 

shown in Figures 1.12 and 1.11 respectively. Atomic bonding and crystal structure 

are obviously directly related. 

  The third major atomic bonding scheme is referred to as  metallic bonding . Group 

I elements have one valence electron. If two sodium atoms (Z � 11), for example, are 

brought into close proximity, the valence electrons interact in a way similar to that in 

covalent bonding. When a third sodium atom is brought into close proximity with the 

  Figure 1.16 |  Representation 

of (a) hydrogen valence 

electrons and (b) covalent 

bonding in a hydrogen 

molecule.   

H H

(a)

H H

(b)

  Figure 1.17 |  Representation of (a) silicon valence 

electrons and (b) covalent bonding in the silicon 

crystal.   

Si

Si

Si

Si

Si

(a)

Si Si

Si

Si

Si

(b)
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14 CHAPTER 1   The Crystal Structure of Solids

fi rst two, the valence electrons can also interact and continue to form a bond. Solid 

sodium has a body-centered cubic structure, so each atom has eight nearest neigh-

bors with each atom sharing many valence electrons. We may think of the positive 

metallic ions as being surrounded by a sea of negative electrons, the solid being held 

together by the electrostatic forces. This description gives a qualitative picture of the 

metallic bond. 

  A fourth type of atomic bond, called the  Van der Waals  bond, is the weakest of 

the chemical bonds. A hydrogen fl uoride (HF) molecule, for example, is formed by 

an ionic bond. The effective center of the positive charge of the molecule is not the 

same as the effective center of the negative charge. This nonsymmetry in the charge 

distribution results in a small electric dipole that can interact with the dipoles of other 

HF molecules. With these weak interactions, solids formed by the Van der Waals 

bonds have a relatively low melting temperature—in fact, most of these materials are 

in gaseous form at room temperature.   

     *   1.6 |  IMPERFECTIONS AND IMPURITIES 
IN SOLIDS 

  Up to this point, we have been considering an ideal single-crystal structure. In a real 

crystal, the lattice is not perfect, but contains imperfections or defects; that is, the 

perfect geometric periodicity is disrupted in some manner. Imperfections tend to 

alter the electrical properties of a material and, in some cases, electrical parameters 

can be dominated by these defects or impurities. 

   1.6.1 Imperfections in Solids 

 One type of imperfection that all crystals have in common is atomic thermal vibra-

tion. A perfect single crystal contains atoms at particular lattice sites, the atoms sepa-

rated from each other by a distance we have assumed to be constant. The atoms in a 

crystal, however, have a certain thermal energy, which is a function of temperature. 

The thermal energy causes the atoms to vibrate in a random manner about an equilib-

rium lattice point. This random thermal motion causes the distance between atoms to 

randomly fl uctuate, slightly disrupting the perfect geometric arrangement of atoms. 

This imperfection, called  lattice vibrations,  affects some electrical parameters, as we 

will see later in our discussion of semiconductor material characteristics. 

  Another type of defect is called a  point defect.  There are several of this type that 

we need to consider. Again, in an ideal single-crystal lattice, the atoms are arranged 

in a perfect periodic arrangement. However, in a real crystal, an atom may be missing 

from a particular lattice site. This defect is referred to as a  vacancy;  it is schemati-

cally shown in Figure 1.18a. In another situation, an atom may be located between 

lattice sites. This defect is referred to as an  interstitial  and is schematically shown in 

Figure 1.18b. In the case of vacancy and interstitial defects, not only is the perfect 

 *Indicates sections that will aid in the total summation of understanding of semiconductor devices, but 

may be skipped the fi rst time through the text without loss of continuity. 
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 1.6   Imperfections and Impurities in Solids 15

geometric arrangement of atoms broken but also the ideal chemical bonding between 

atoms is disrupted, which tends to change the electrical properties of the material. 

A vacancy and interstitial may be in close enough proximity to exhibit an interac-

tion between the two point defects. This vacancy–interstitial defect, also known as a 

 Frenkel defect,  produces different effects than the simple vacancy or interstitial.  

  The point defects involve single atoms or single-atom locations. In forming 

 single-crystal materials, more complex defects may occur. A line defect, for example, 

occurs when an entire row of atoms is missing from its normal lattice site. This de-

fect is referred to as a  line dislocation  and is shown in Figure 1.19. As with a point 

defect, a line dislocation disrupts both the normal geometric periodicity of the lattice 

and the ideal atomic bonds in the crystal. This dislocation can also alter the electrical 

properties of the material, usually in a more unpredictable manner than the simple 

point defects.  

  Other complex dislocations can also occur in a crystal lattice. However, this 

introductory discussion is intended only to present a few of the basic types of defect, 

and to show that a real crystal is not necessarily a perfect lattice structure. The effect 

of these imperfections on the electrical properties of a semiconductor will be consid-

ered in later chapters.  

  Figure 1.18 |  Two-dimensional representation of a single-crystal lattice showing (a) a vacancy defect 

and (b) an interstitial defect.   

Vacancy

(a)

Interstitial

(b)

  Figure 1.19 |  A two-

dimensional representation of 

a line dislocation.   
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16 CHAPTER 1   The Crystal Structure of Solids

   1.6.2 Impurities in Solids 

 Foreign atoms, or impurity atoms, may be present in a crystal lattice. Impurity atoms 

may be located at normal lattice sites, in which case they are called  substitutional  
impurities. Impurity atoms may also be located between normal sites, in which case 

they are called  interstitial  impurities. Both these impurities are lattice defects and 

are schematically shown in Figure 1.20. Some impurities, such as oxygen in silicon, 

tend to be essentially inert; however, other impurities, such as gold or phosphorus in 

silicon, can drastically alter the electrical properties of the material.  

  In Chapter 4 we will see that, by adding controlled amounts of particular impu-

rity atoms, the electrical characteristics of a semiconductor material can be favorably 

altered. The technique of adding impurity atoms to a semiconductor material in order 

to change its conductivity is called  doping.  There are two general methods of doping: 

impurity diffusion and ion implantation. 

  The actual diffusion process depends to some extent on the material but, in gen-

eral, impurity diffusion occurs when a semiconductor crystal is placed in a high-

temperature    (�1000ºC)  gaseous atmosphere containing the desired impurity atom. 

At this high temperature, many of the crystal atoms can randomly move in and out 

of their single-crystal lattice sites. Vacancies may be created by this random motion 

so that impurity atoms can move through the lattice by hopping from one vacancy 

to another. Impurity diffusion is the process by which impurity particles move from 

a region of high concentration near the surface to a region of lower concentration 

within the crystal. When the temperature decreases, the impurity atoms become per-

manently frozen into the substitutional lattice sites. Diffusion of various impurities 

into selected regions of a semiconductor allows us to fabricate complex electronic 

circuits in a single semiconductor crystal. 

  Ion implantation generally takes place at a lower temperature than diffusion. 

A beam of impurity ions is accelerated to kinetic energies in the range of 50 keV 

or greater and then directed to the surface of the semiconductor. The high-energy 

impurity ions enter the crystal and come to rest at some average depth from the 

surface. One advantage of ion implantation is that controlled numbers of impurity 

atoms can be introduced into specifi c regions of the crystal. A disadvantage of this 

technique is that the incident impurity atoms collide with the crystal atoms, causing 

  Figure 1.20 |  Two-dimensional representation of a single-crystal lattice showing (a) a substitutional impurity 

and (b) an intersitital impurity.   
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 1.7   Growth of Semiconductor Materials 17

lattice-displacement damage. However, most of the lattice damage can be removed 

by thermal annealing, in which the temperature of the crystal is raised for a short 

time. Thermal annealing is a required step after implantation.    

     *   1.7 |  GROWTH OF SEMICONDUCTOR MATERIALS 
  The success in fabricating very large scale integrated (VLSI) circuits is a result, to a 

large extent, of the development of and improvement in the formation or growth of 

pure single-crystal semiconductor materials. Semiconductors are some of the purest 

materials. Silicon, for example, has concentrations of most impurities of less than 

1 part in 10 10  atoms. The high purity requirement means that extreme care is neces-

sary in the growth and the treatment of the material at each step of the fabrication 

process. The mechanics and kinetics of crystal growth are extremely complex and 

will be described in only very general terms in this text. However, a general knowl-

edge of the growth techniques and terminology is valuable. 

   1.7.1 Growth from a Melt 

 A common technique for growing single-crystal materials is called the  Czochralski 
method.  In this technique, a small piece of single-crystal material, known as a  seed,  
is brought into contact with the surface of the same material in liquid phase, and then 

slowly pulled from the melt. As the seed is slowly pulled, solidifi cation occurs along 

the plane between the solid–liquid interface. Usually the crystal is also rotated slowly 

as it is being pulled, to provide a slight stirring action to the melt, resulting in a more 

uniform temperature. Controlled amounts of specifi c impurity atoms, such as boron 

or phosphorus, may be added to the melt so that the grown semiconductor crystal is 

intentionally doped with the impurity atom. Figure 1.21a shows a schematic of the 

Czochralski growth process and a silicon ingot or boule grown by this process.  

  Some impurities may be present in the ingot that are undesirable. Zone refi ning 

is a common technique for purifying material. A high-temperature coil, or r-f induc-

tion coil, is slowly passed along the length of the boule. The temperature induced by 

the coil is high enough so that a thin layer of liquid is formed. At the solid–liquid 

interface, there is a distribution of impurities between the two phases. The parameter 

that describes this distribution is called the  segregation coeffi cient:  the ratio of the 

concentration of impurities in the solid to the concentration in the liquid. If the segre-

gation coeffi cient is 0.1, for example, the concentration of impurities in the liquid is 

a factor of 10 greater than that in the solid. As the liquid zone moves through the ma-

terial, the impurities are driven along with the liquid. After several passes of the r-f 

coil, most impurities are at the end of the bar, which can then be cut off. The moving 

molten zone, or the zone-refi ning technique, can result in considerable purifi cation. 

  After the semiconductor is grown, the boule is mechanically trimmed to the 

proper diameter and a fl at is ground over the entire length of the boule to denote 

 *Indicates sections that will aid in the total summation of understanding of semiconductor devices, but 

may be skipped the fi rst time through the text without loss of continuity. 
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18 CHAPTER 1   The Crystal Structure of Solids

  Figure 1.21 |  (a) Model of a crystal puller and (b) photograph of a silicon wafer with an 

array of integrated circuits. The circuits are tested on the wafer then sawed apart into chips 

that are mounted into packages. (Photo courtesy of Intel Corporation.)   
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 1.7   Growth of Semiconductor Materials 19

the crystal orientation. The fl at is perpendicular to the [110] direction or indicates 

the (110) plane. (See Figure 1.21b.) This then allows the individual chips to be fab-

ricated along given crystal planes so that the chips can be sawed apart more easily. 

The boule is then sliced into wafers. The wafer must be thick enough to mechani-

cally support itself. A mechanical two-sided lapping operation produces a fl at wafer 

of uniform thickness. Since the lapping procedure can leave a surface damaged and 

contaminated by the mechanical operation, the surface must be removed by chemical 

etching. The fi nal step is polishing. This provides a smooth surface on which devices 

may be fabricated or further growth processes may be carried out. This fi nal semi-

conductor wafer is called the substrate material.  

   1.7.2 Epitaxial Growth 

 A common and versatile growth technique that is used extensively in device and in-

tegrated circuit fabrication is epitaxial growth.  Epitaxial growth  is a process whereby 

a thin, single-crystal layer of material is grown on the surface of a single-crystal sub-

strate. In the epitaxial process, the single-crystal substrate acts as the seed, although 

the process takes place far below the melting temperature. When an epitaxial layer 

is grown on a substrate of the same material, the process is termed  homoepitaxy.  
Growing silicon on a silicon substrate is one example of a homoepitaxy process. At 

present, a great deal of work is being done with  heteroepitaxy.  In a heteroepitaxy pro-

cess, although the substrate and epitaxial materials are not the same, the two crystal 

structures should be very similar if single-crystal growth is to be obtained and if a 

large number of defects are to be avoided at the epitaxial–substrate interface. Grow-

ing epitaxial layers of the ternary alloy AlGaAs on a GaAs substrate is one example 

of a heteroepitaxy process. 

  One epitaxial growth technique that has been used extensively is called  chemi-
cal vapor-phase deposition  (CVD). Silicon epitaxial layers, for example, are grown on 

silicon substrates by the controlled deposition of silicon atoms onto the surface from a 

chemical vapor containing silicon. In one method, silicon tetrachloride reacts with hy-

drogen at the surface of a heated substrate. The silicon atoms are released in the reaction 

and can be deposited onto the substrate, while the other chemical reactant, HCl, is in 

gaseous form and is swept out of the reactor. A sharp demarcation between the impurity 

doping in the substrate and in the epitaxial layer can be achieved using the CVD process. 

This technique allows great fl exibility in the fabrication of semiconductor devices. 

   Liquid-phase epitaxy  is another epitaxial growth technique. A compound of the 

semiconductor with another element may have a melting temperature lower than that 

of the semiconductor itself. The semiconductor substrate is held in the liquid com-

pound and, since the temperature of the melt is lower than the melting temperature of 

the substrate, the substrate does not melt. As the solution is slowly cooled, a single-

crystal semiconductor layer grows on the seed crystal. This technique, which occurs 

at a lower temperature than the Czochralski method, is useful in growing group III–V 

compound semiconductors. 

  A versatile technique for growing epitaxial layers is the  molecular beam epitaxy  

(MBE) process. A substrate is held in vacuum at a temperature normally in the range 
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20 CHAPTER 1   The Crystal Structure of Solids

of 400 to 800�C, a relatively low temperature compared with many semiconductor-

processing steps. Semiconductor and dopant atoms are then evaporated onto the 

surface of the substrate. In this technique, the doping can be precisely controlled 

resulting in very complex doping profi les. Complex ternary compounds, such as 

 AlGaAs, can be grown on substrates, such as GaAs, where abrupt changes in the 

crystal composition are desired. Many layers of various types of epitaxial composi-

tions can be grown on a substrate in this manner. These structures are extremely 

benefi cial in optical devices such as laser diodes.      

  1.8 | SUMMARY  
   ■    A few of the most common semiconductor materials were listed. Silicon is the most 

common semiconductor material and appears in column IV of the periodic table.  

   ■    The properties of semiconductors and other materials are determined to a large extent 

by the single-crystal lattice structure. The unit cell is a small volume of the crystal that 

is used to reproduce the entire crystal. Three basic unit cells are the simple cubic, body-

centered cubic, and face-centered cubic.  

   ■    Silicon has the diamond crystal structure. Atoms are formed in a tetrahedral confi gura-

tion with four nearest neighbor atoms. The binary semiconductors have a zincblende 

lattice that is basically the same as the diamond lattice.  

   ■    Miller indices are used to describe planes in a crystal lattice. These planes may be used 

to describe the surface of a semiconductor material. The Miller indices are also used to 

describe directions in a crystal.  

   ■    Imperfections do exist in semiconductor materials. A few of these imperfections are 

vacancies, substitutional impurities, and interstitial impurities. Small amounts of con-

trolled substitutional impurities can favorably alter semiconductor properties as we will 

see in later chapters.  

   ■    A brief description of semiconductor growth methods was given. Bulk growth, such 

as the Czochralski method, produces the starting semiconductor material or substrate. 

Epitaxial growth can be used to control the surface properties of a semiconductor. Most 

semiconductor devices are fabricated in the epitaxial layer.    

  GLOSSARY OF IMPORTANT TERMS  
   binary semiconductor    A two-element compound semiconductor, such as gallium arsenide 

(GaAs).  

   covalent bonding    The bonding between atoms in which valence electrons are shared.  

   diamond lattice    The atomic crystal structure of silicon, for example, in which each atom 

has four nearest neighbors in a tetrahedral confi guration.  

   doping    The process of adding specifi c types of atoms to a semiconductor to favorably alter 

the electrical characteristics.  

   elemental semiconductor    A semiconductor composed of a single species of atom, such as 

silicon or germanium.  

   epitaxial layer    A thin, single-crystal layer of material formed on the surface of a substrate.  

   ion implantation    One particular process of doping a semiconductor.  

   lattice    The periodic arrangement of atoms in a crystal.  
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   Miller indices    The set of integers used to describe a crystal plane.  

   primitive cell    The smallest unit cell that can be repeated to form a lattice.  

   substrate    A semiconductor wafer or other material used as the starting material for further 

semiconductor processing, such as epitaxial growth or diffusion.  

   ternary semiconductor    A three-element compound semiconductor, such as aluminum gal-

lium arsenide (AlGaAs).  

   unit cell    A small volume of a crystal that can be used to reproduce the entire crystal.  

   zincblende lattice    A lattice structure identical to the diamond lattice except that there are 

two types of atoms instead of one.       

  CHECKPOINT 
 After studying this chapter, the reader should have the ability to: 

 ■ List the most common elemental semiconductor material. 

 ■ Describe the concept of a unit cell. 

 ■ Determine the volume density of atoms for various lattice structures. 

 ■ Determine the Miller indices of a crystal-lattice plane. 

 ■ Sketch a lattice plane given the Miller indices. 

 ■ Determine the surface density of atoms on a given crystal-lattice plane. 

 ■ Describe the tetrahedral confi guration of silicon atoms. 

 ■ Understand and describe various defects in a single-crystal lattice.  

  REVIEW QUESTIONS  

  1.   List two elemental semiconductor materials and two compound semiconductor materials.  

  2.   Sketch three lattice structures: ( a ) simple cubic, ( b ) body-centered cubic, and 

( c ) face-centered cubic.  

  3.   Describe the procedure for fi nding the volume density of atoms in a crystal.  

  4.   Describe the procedure for obtaining the Miller indices that describe a plane in a crystal.  

  5.   Describe the procedure for fi nding the surface density of atoms on a particular lattice 

plane.  

  6.   Describe why a unit cell, that is not a primitive unit cell, might be preferable to a primi-

tive unit cell.  

  7.   Describe covalent bonding in silicon.  

  8.   What is meant by a substitutional impurity in a crystal? What is meant by an interstitial 

impurity?     

  PROBLEMS 

   Section 1.3 Space Lattices  

1.1   Determine the number of atoms per unit cell in a ( a ) face-centered cubic, ( b ) body-

centered cubic, and ( c ) diamond lattice.  

1.2   Assume that each atom is a hard sphere with the surface of each atom in contact with 

the surface of its nearest neighbor. Determine the percentage of total unit cell volume 
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22 CHAPTER 1   The Crystal Structure of Solids

that is occupied in ( a ) a simple cubic lattice, ( b ) a face-centered cubic lattice, ( c ) a 

body-centered cubic lattice, and ( d ) a diamond lattice.  

1.3   If the lattice constant of silicon is 5.43 Å, calculate ( a ) the distance from the center of 

one silicon atom to the center of its nearest neighbor, ( b ) the number density of silicon 

atoms (#/cm 3 ), and ( c ) the mass density (g/cm 3 ) of silicon.  

1.4   ( a ) The lattice constant of GaAs is 5.65 Å. Determine the number of Ga atoms and 

As atoms per cm 3 . ( b ) Determine the volume density of germanium atoms in a germa-

nium semiconductor. The lattice constant of germanium is 5.65 Å.  

1.5   The lattice constant of GaAs is a � 5.65 Å. Calculate (a) the distance between the 

centers of the nearest Ga and As atoms, and (b) the distance between the centers of the 

nearest As atoms.  

1.6   Calculate the angle between any pair of bonds in the tetrahedral structure.  

1.7   Assume the radius of an atom, which can be represented as a hard sphere, is  r  � 1.95 Å. 

The atom is placed in a ( a ) simple cubic, ( b ) fcc, ( c ) bcc, and (d) diamond lattice. As-

suming that nearest atoms are touching each other, what is the lattice constant of each 

lattice?  

1.8   A crystal is composed of two elements, A and B. The basic crystal structure is a face-

centered cubic with element A at each of the corners and element B in the center of 

each face. The effective radius of element A is  r A   � 1.035 Å. Assume that the ele-

ments are hard spheres with the surface of each A-type atom in contact with the sur-

face of its nearest A-type neighbor. Calculate ( a ) the maximum radius of the B-type 

element that will fi t into this structure, ( b ) the lattice constant, and ( c ) the volume 

density (#/cm 3 ) of both the A-type atoms and the B-type atoms.  

1.9   ( a ) A crystal with a simple cubic lattice structure is composed of atoms with an ef-

fective radius of  r  � 2.25 Å and has an atomic weight of 12.5. Determine the mass 

density assuming the atoms are hard spheres and nearest neighbors are touching each 

other. ( b ) Repeat part (a) for a body-centered cubic structure.  

1.10   A material, with a volume of 1 cm 3 , is composed of an fcc lattice with a lattice con-

stant of 2.5 mm. The “atoms” in this material are actually coffee beans. Assume the 

coffee beans are hard spheres with each bean touching its nearest neighbor. Determine 

the volume of coffee after the coffee beans have been ground. (Assume 100% packing 

density of the ground coffee.)  

1.11   The crystal structure of sodium chloride (NaCl) is a simple cubic with the Na and Cl 

atoms alternating positions. Each Na atom is then surrounded by six Cl atoms and 

likewise each Cl atom is surrounded by six Na atoms. ( a ) Sketch the atoms in a (100) 

plane. ( b ) Assume the atoms are hard spheres with nearest neighbors touching. The 

effective radius of Na is 1.0 Å and the effective radius of Cl is 1.8 Å. Determine the 

lattice constant. ( c ) Calculate the volume density of Na and Cl atoms. ( d  ) Calculate 

the mass density of NaCl.  

1.12   ( a ) A material is composed of two types of atoms. Atom A has an effective radius of 

2.2 Å and atom B has an effective radius of 1.8 Å. The lattice is a bcc with atoms A at 

the corners and atom B in the center. Determine the lattice constant and the volume den-

sities of A atoms and B atoms. ( b ) Repeat part ( a ) with atoms B at the corners and atom 

A in the center. ( c ) What comparison can be made of the materials in parts ( a ) and ( b )?  

1.13   ( a ) Consider the materials described in Problem 1.12( a ) and 1.12( b ). For each case, 

calculate the surface density of A atoms and B atoms in the (100) plane. What com-

parison can be made of the two materials? ( b ) Repeat part ( a ) for the (110) plane.  
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1.14   ( a ) The crystal structure of a particular material consists of a single atom in the center 

of a cube. The lattice constant is  a  0  and the diameter of the atom is  a  0 . Determine the 

volume density of atoms and the surface density of atoms in the (110) plane. ( b ) Com-

pare the results of part ( a ) to the results for the case of the simple cubic structure 

shown in Figure 1.5a with the same lattice constant.  

1.15   The lattice constant of a simple cubic lattice is  a  0 . ( a ) Sketch the following planes: 

(i) (110), (ii) (111), (iii) (220), and (iv) (321). (b) Sketch the following directions: 

(i) [110], (ii) [111], (iii) [220], and (iv) [321].  

1.16   For a simple cubic lattice, determine the Miller indices for the planes shown in 

Figure P1.16.   

1.17   A body-centered cubic lattice has a lattice constant of 4.83 Å. A plane cutting the 

 lattice has intercepts of 9.66 Å, 19.32 Å, and 14.49 Å along the three cartesian coordi-

nates. What are the Miller indices of the plane?  

1.18   The lattice constant of a simple cubic primitive cell is 5.28 Å. Determine the distance 

between the nearest parallel ( a ) (100), ( b ) (110), and ( c ) (111) planes.  

1.19   The lattice constant of a single crystal is 4.73 Å. Calculate the surface density (#/cm 2 ) 

of atoms on the (i) (100), (ii) (110), and (iii) (111) plane for a ( a ) simple cubic, 

( b ) body-centered cubic, and ( c ) face-centered cubic lattice.  

1.20   Determine the surface density of atoms for silicon on the ( a ) (100) plane, ( b ) (110) 

plane, and ( c ) (111) plane.  

1.21   Consider a face-centered cubic lattice. Assume the atoms are hard spheres with the 

surfaces of the nearest neighbors touching. Assume the effective radius of the atom 

is 2.37 Å. ( a ) Determine the volume density of atoms in the crystal. ( b ) Calculate the 

surface density of atoms in the (110) plane. ( c ) Determine the distance between near-

est (110) planes. ( d  ) Repeat parts ( b ) and ( c ) for the (111) plane.    
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  Figure P1.16 |  Figure for Problem 1.16.   
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24 CHAPTER 1   The Crystal Structure of Solids

   Section 1.5 Atomic Bonding  

1.22   Calculate the density of valence electrons in silicon.  

1.23   The structure of GaAs is the zincblende lattice. The lattice constant is 5.65 Å. 

 Calculate the density of valence electrons in GaAs.    

   Section 1.6 Imperfections and Impurities in Solids  

1.24   ( a ) If 5 � 10 17  phosphorus atoms per cm 3  are add to silicon as a substitutional impurity, 

determine the percentage of silicon atoms per unit volume that are displaced in the sin-

gle crystal lattice. ( b ) Repeat part (a) for 2 � 10 15  boron atoms per cm 3  added to silicon.  

1.25   ( a ) Assume that 2 � 10 16  cm �3  of boron atoms are distributed homogeneously 

throughout single crystal silicon. What is the fraction by weight of boron in the 

 crystal? ( b ) If phosphorus atoms, at a concentration of 10 18  cm �3 , are added to the 

 material in part (a), determine the fraction by weight of phosphorus.  

1.26   If 2 � 10 16  cm �3  boron atoms are added to silicon as a substitutional impurity and are 

distributed uniformly throughout the semiconductor, determine the distance between 

boron atoms in terms of the silicon lattice constant. (Assume the boron atoms are dis-

tributed in a rectangular or cubic array.)  

1.27   Repeat Problem 1.26 for 4 � 10 15  cm �3  phosphorus atoms being added to silicon.     

  READING LIST 
  1.   Azaroff, L.V., and J. J. Brophy.  Electronic Processes in Materials.  New York: 

 McGraw-Hill, 1963.  

  2.   Campbell, S. A.  The Science and Engineering of Microelectronic Fabrication.  New 

York: Oxford University Press, 1996.  

  3.   Dimitrijev, S.  Principles of Semiconductor Devices . New York: Oxford University 

Press, 2006.  

  4.   Kittel, C.  Introduction to Solid State Physics,  7th ed. Berlin: Springer-Verlag, 1993.  

     *5.     Li, S. S.  Semiconductor Physical Electronics.  New York: Plenum Press, 1993.  

  6.   McKelvey, J. P.  Solid State Physics for Engineering and Materials Science.  Malabar, 

FL: Krieger, 1993.  

  7.   Pierret, R. F.  Semiconductor Device Fundamentals.  Reading, MA: Addison-Wesley, 

1996.  

  8.   Runyan, W. R., and K. E. Bean.  Semiconductor Integrated Circuit Processing and 
Technology.  Reading, MA: Addison-Wesley, 1990.  

  9.   Singh, J.  Semiconductor Devices: Basic Principles.  New York: John Wiley and Sons, 

2001.  

 10.   Streetman, B. G., and S. K. Banerjee.  Solid State Electronic Devices,  6 th  ed. Upper 

Saddle River, NJ: Pearson Prentice Hall, 2006.  

 11.   Sze, S. M.  VLSI Technology.  New York: McGraw-Hill, 1983.  

*12.   Wolfe, C. M., N. Holonyak, Jr., and G. E. Stillman.  Physical Properties of 
 Semiconductors.  Englewood Cliffs, NJ: Prentice Hall, 1989.     

 *Indicates references that are at an advanced level compared to this text. 

nea29583_ch01_001-024.indd   24nea29583_ch01_001-024.indd   24 12/11/10   9:46 AM12/11/10   9:46 AM

Cotta
Rectangle

Cotta
Rectangle

Cotta
Rectangle



25

 2
Introduction to Quantum 

Mechanics     

    T   he goal of this text is to help readers understand the operation and character-

istics of semiconductor devices. Ideally, we would like to begin discussing 

these devices immediately. However, in order to understand the current– 

voltage characteristics, we need some knowledge of electron behavior in a semicon-

ductor when the electron is subjected to various potential functions. 

  The motion of large objects, such as planets and satellites, can be predicted to a 

high degree of accuracy using classical theoretical physics based on Newton’s laws 

of motion. But certain experimental results, involving electrons and light waves, 

appear to be inconsistent with classical physics. However, these experimental re-

sults can be predicted using the principles of quantum mechanics. The behavior and 

characteristics of electrons in a semiconductor can be described by the formulation 

of quantum mechanics called wave mechanics. The essential elements of this wave 

mechanics, using Schrodinger’s wave equation, are presented in this chapter. 

  The goal of this chapter is to provide a brief introduction to quantum mechanics 

so that readers gain an understanding of and become comfortable with the analysis 

techniques. This introductory material forms the basis of semiconductor physics. ■   

  2.0 |  PREVIEW 
  In this chapter, we will: 

  ■   Discuss a few basic principles of quantum mechanics that apply to semicon-

ductor device physics.  

  ■   State Schrodinger’s wave equation and discuss the physical meaning of the 

wave function.  

  ■   Consider the application of Schrodinger’s wave equation to various potential 

functions to determine some of the fundamental properties of electron behavior 

in a crystal.  

 C H A P T E R 

nea29583_ch02_025-057.indd   25nea29583_ch02_025-057.indd   25 12/11/10   9:59 AM12/11/10   9:59 AM



26 CHAPTER 2   Introduction to Quantum Mechanics

  ■   Apply Schrodinger’s wave equation to the one-electron atom. The result of this 

analysis yields the four basic quantum numbers, the concept of discrete energy 

bands, and the initial buildup of the periodic table.      

  2.1 |  PRINCIPLES OF QUANTUM MECHANICS 
  Before we delve into the mathematics of quantum mechanics, there are three prin-

ciples we need to consider: the principle of energy quanta, the wave–particle duality 

principle, and the uncertainty principle. 

  2.1.1  Energy Quanta 

 One experiment that demonstrates an inconsistency between experimental results 

and the classical theory of light is called the photoelectric effect. If monochromatic 

light is incident on a clean surface of a material, then under certain conditions, elec-

trons (photoelectrons) are emitted from the surface. According to classical physics, 

if the intensity of the light is large enough, the work function of the material will be 

overcome and an electron will be emitted from the surface independent of the inci-

dent frequency. This result is not observed. The observed effect is that at a constant 

incident intensity, the maximum kinetic energy of the photoelectron varies linearly 

with frequency with a limiting frequency  �  �  �  0 , below which no photoelectron 

is produced. This result is shown in Figure 2.1. If the incident intensity varies at a 

constant frequency, the rate of photoelectron emission changes, but the maximum 

kinetic energy remains the same.  

  Planck postulated in 1900 that thermal radiation is emitted from a heated sur-

face in discrete packets of energy called  quanta . The energy of these quanta is given 

by E � h�, where � is the frequency of the radiation and  h  is a constant now known 

as Planck’s constant (h � 6.625 � 10�34 J-s). Then in 1905, Einstein interpreted the 

photoelectric results by suggesting that the energy in a light wave is also contained 
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  Figure 2.1  | (a) The photoelectric effect and (b) the maximum kinetic energy of 

the photoelectron as a function of incident frequency.   
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 2.1   Principles of Quantum Mechanics 27

in discrete packets or bundles. The particle-like packet of energy is called a  photon,  
whose energy is also given by E � h�. A photon with suffi cient energy, then, can 

knock an electron from the surface of the material. The minimum energy required 

to remove an electron is called the  work function  of the material and any excess 

photon energy goes into the kinetic energy of the photoelectron. This result was 

confi rmed experimentally as demonstrated in Figure 2.1. The photoelectric effect 

shows the discrete nature of the photon and demonstrates the particle-like behavior 

of the photon. 

  The maximum kinetic energy of the photoelectron can be written as    

 T �   1 __ 
2
   mv2 � hv � � � hv � hv0  (v � v0) (2.1)

 � � hv0

where hv is the incident photon energy and � �  h � 0  is the minimum energy, or work 

function, required to remove an electron from the surface.   

   EXAMPLE 2.1   Objective:  Calculate the photon energy corresponding to a particular wavelength. 

   Consider an x-ray with a wavelength of � � 0.708 � 10�8 cm. 

   ■ Solution 
  The energy is     

E � hv �   hc _ 
�

   �   
(6.625 � 10�34)(3 � 1010)

  _____________________  
0.708 � 10�8

   � 2.81 � 10�15 J

  This value of energy may be given in the more common unit of electron-volt (see Appen-

dix D). We have      

E �   2.81 � 10�15

 ___________ 
1.6 � 10�19

   � 1.75 � 104 eV

   ■ Comment 
  The reciprocal relation between photon energy and wavelength is demonstrated: A large 

 energy corresponds to a short wavelength.  

   ■ EXERCISE PROBLEM  
  Ex 2.1  Determine the energy (in eV) of a photon having a wavelength of (a) � � 100 Å and 

(b) � � 4500 Å. 

[Ans. (a) 124 eV; (b) 2.76 eV]

    

  2.1.2 Wave–Particle Duality 

 We have seen in the last section that light waves, in the photoelectric effect, behave 

as if they are particles. The particle-like behavior of electromagnetic waves was 

also instrumental in the explanation of the Compton effect. In this experiment, an 

x-ray beam was incident on a solid. A portion of the x-ray beam was defl ected and 

the frequency of the defl ected wave had shifted compared with the incident wave. 

The observed change in frequency and the defl ected angle corresponded exactly to 

the expected results of a “billiard ball” collision between an x-ray quanta, or photon, 

and an electron in which both energy and momentum are conserved. 
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28 CHAPTER 2   Introduction to Quantum Mechanics

  In 1924, de Broglie postulated the existence of matter waves. He suggested 

that since waves exhibit particle-like behavior, particles should be expected to show 

wave-like properties. The hypothesis of de Broglie was the existence of a  wave– 
particle duality principle . The momentum of a photon is given by

   p �   h _ 
�

     (2.2)

where � is the wavelength of the light wave. Then, de Broglie hypothesized that the 

wavelength of a particle can be expressed as

   � �   h __ p     (2.3)

where  p  is the momentum of the particle and � is known as the  de Broglie wavelength  

of the matter wave. 

  The wave nature of electrons has been tested in several ways. In one experiment 

by Davisson and Germer in 1927, electrons from a heated fi lament were accelerated 

at normal incidence onto a single crystal of nickel. A detector measured the scattered 

electrons as a function of angle. Figure 2.2 shows the experimental setup and Fig-

ure 2.3 shows the results. The existence of a peak in the density of scattered electrons 

can be explained as a constructive interference of waves scattered by the periodic 

atoms in the planes of the nickel crystal. The angular distribution is very similar to 

an interference pattern produced by light diffracted from a grating.   

  In order to gain some appreciation of the frequencies and wavelengths involved 

in the wave-particle duality principle, Figure 2.4 shows the electromagnetic fre-

quency spectrum. We see that a wavelength of 72.7 Å obtained in the next exam-

ple is in the ultraviolet range. Typically, we will be considering wavelengths in the 

  Figure 2.2 |  Experimental arrangement of the Davisson–

Germer experiment.   
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  Figure 2.3 |  Scattered electron fl ux as 

a function of scattering angle for the 

Davisson–Germer experiment.   
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 2.1   Principles of Quantum Mechanics 29

ultraviolet and visible range. These wavelengths are very short compared to the usual 

radio spectrum range.  1      

  Figure 2.4 |  The electromagnetic frequency spectrum.   
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1 An electron microscope is a microscope that produces a magnifi ed image of a specimen. The electron 

microscope has a magnifi cation approximately 1000 times that of an optical microscope, because the 

electrons have wavelengths on the order of 100,000 times shorter than the light waves. 

   EXAMPLE 2.2   Objective : Calculate the de Broglie wavelength of a particle. 

   Consider an electron traveling at a velocity of 107 cm/s � 105 m/s. 

   ■ Solution 
  The momentum is given by

   p � mv � (9.11 � 10�31)(105) � 9.11 � 10�26 kg-m/s   

  Then, the de Broglie wavelength is

   � �   h __ p   �   6.625 � 10�34

  ____________  
9.11 � 10�26

   � 7.27 � 10�9 m  

or

   � � 72.7 Å    

   ■ Comment 
  This calculation shows the order of magnitude of the de Broglie wavelength for a “typical” electron.  

   ■ EXERCISE PROBLEM  
Ex 2.2    ( a ) An electron has a kinetic energy of 12 meV. Determine the de Broglie wavelength 

(in  Å ) ,  ( b ) A particle with mass 2.2 � 10 −31  kg has a de Broglie wavelength of 112  Å . 

Determine the momentum and kinetic energy of the particle. 

E � 4.97 � 10
–2 

eV]
[Ans. (a) � � 112 Å; (b) p � 5.915 � 10

–26
 kg-m/s,
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30 CHAPTER 2   Introduction to Quantum Mechanics

  In some cases, electromagnetic waves behave as if they are particles (photons) 

and sometimes particles behave as if they are waves. This wave–particle duality prin-

ciple of quantum mechanics applies primarily to small particles such as electrons, 

but it has also been shown to apply to protons and neutrons. For very large particles, 

we can show that the relevant equations reduce to those of classical mechanics. The 

wave–particle duality principle is the basis on which we will use wave theory to 

describe the motion and behavior of electrons in a crystal.  

  2.1.3  The Uncertainty Principle 

 The Heisenberg uncertainty principle, given in 1927, also applies primarily to very 

small particles and states that we cannot describe with absolute accuracy the behav-

ior of these subatomic particles. The uncertainty principle describes a fundamental 

relationship between conjugate variables, including position and momentum and 

also energy and time. 

  The fi rst statement of the uncertainty principle is that it is impossible to simulta-

neously describe with absolute accuracy the position and momentum of a particle. If 

the uncertainty in the momentum is 	p and the uncertainty in the postion is 	x, then 

the uncertainty principle is stated as  2   

   	p 	x � 
   (2.4)

where 
 is defi ned as 
 � h/2� � 1.054 � 10�34 J-s and is called a modifi ed Planck’s 

constant. This statement may be generalized to include angular position and angular 

momentum. 

  The second statement of the uncertainty principle is that it is impossible to 

 simultaneously describe with absolute accuracy the energy of a particle and the in-

stant of time the particle has this energy. Again, if the uncertainty in the energy is 

given by 	E and the uncertainty in the time is given by 	t, then the uncertainty prin-

ciple is stated as

   	E 	t � 
    (2.5)

  One way to visualize the uncertainty principle is to consider the simultaneous 

measurement of position and momentum, and the simultaneous measurement of en-

ergy and time. The uncertainty principle implies that these simultaneous measure-

ments are in error to a certain extent. However, the modifi ed Planck’s constant 
 is 

very small; the uncertainty principle is only signifi cant for subatomic particles. We 

must keep in mind nevertheless that the uncertainty principle is a fundamental state-

ment and does not deal only with measurements. 

  One consequence of the uncertainty principle is that we cannot, for example, de-

termine the exact position of an electron. We will, instead, determine the   probability  

of fi nding an electron at a particular position. In later chapters, we will develop a 

2 In some texts, the uncertainty principle is stated as 	p 	x � 
�2. We are interested here in the order of 

magnitude and will not be concerned with small differences. 
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 2.2   Schrodinger’s Wave Equation 31

 probability density function  that will allow us to determine the probability that an 

electron has a particular energy. So in describing electron behavior, we will be deal-

ing with probability functions.     

TYU 2.1  The uncertainty in position of an electron is 	x � 8 Å. (a) Determine the 

 minimum uncertainly in momentum. (b) If the nominal value of momentum 

is p � 1.2 � 10–23 kg-m/s, determine the corresponding  uncertainty in kinetic 

 energy. (The uncertainty in kinetic energy can be found from 	E � (dE/dp) 	p � 

(p 	p/m) 

[Ans. (a) 	p � 1.318 � 10
–25 

kg-m/s; (b) 	E � 10.85 eV]

TYU 2.2  (a) A proton’s energy is measured with an uncertainty of 0.8 eV. 

Determine the minimum uncertainty in time over which this energy is measured. 

(b) Repeat part (a) for an electron. 

[Ans. (a) 	t � 8.23�l0
–16

 s; (b) same as part (a)] 

 

TEST YOUR UNDERSTANDING

  2.2 |  SCHRODINGER’S WAVE EQUATION 
  The various experimental results involving electromagnetic waves and particles, 

which could not be explained by classical laws of physics, showed that a revised 

formulation of mechanics was required. Schrodinger, in 1926, provided a formula-

tion called  wave mechanics,  which incorporated the principles of quanta introduced 

by Planck, and the wave–particle duality principle introduced by de Broglie. On the 

basis of wave–particle duality principle, we will describe the motion of electrons 

in a crystal by wave theory. This wave theory is described by Schrodinger’s wave 

equation. 

  2.2.1  The Wave Equation 

 The one-dimensional, nonrelativistic Schrodinger’s wave equation is given by

     �
2

 ____ 
2m

   �   
�2� (x, t)

 ________ 
�x2

    V(x)�(x, t) � j
  ��(x, t) __ 
�t

     (2.6)

where �(x, t) is the wave function, V(x) is the potential function assumed to be inde-

pendent of time,  m  is the mass of the particle, and  j  is the imaginary constant  �
___

 �1  . 

There are theoretical arguments that justify the form of Schrodinger’s wave equation, 

but the equation is a basic postulate of quantum mechanics. The wave function �(x, t) 
will be used to describe the behavior of the system and, mathematically, �(x, t) can 

be a complex quantity. 

  We may determine the time-dependent portion of the wave function and the 

position-dependent, or time-independent, portion of the wave function by using the 

technique of separation of variables. Assume that the wave function can be written 

in the form

   �(x, t) � � (x)�(t)   (2.7)
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32 CHAPTER 2   Introduction to Quantum Mechanics

where �(x) is a function of the position  x  only and �(t) is a function of time  t  only. 

Substituting this form of the solution into Schrodinger’s wave equation, we obtain

     �
2

 ____ 
2m

   �(t)   
�2�(x)

 ______ 
�x2

    V(x)� (x)�(t) � j
�(x)   
��(t)

 _____ 
�t      (2.8)

 If we divide by the total wave function, Equation (2.8) becomes

     �
2

 ____ 
2m

     1 ____ 
�(x)

     
�2�(x)

 ______ 
�x2

    V(x) � j
 �   1 ____ 
�(t)

   �   
��(t)

 _____ 
�t      (2.9)

 Since the left side of Equation (2.9) is a function of position  x  only and the right side 

of the equation is a function of time  t  only, each side of this equation must be equal 

to a constant. We will denote this separation of variables constant by �. 

  The time-dependent portion of Equation (2.9) is then written as

   � � j
 �   1 ____ 
�(t)

    �   
��(t)

 _____ 
�t     (2.10)

where again the parameter � is called a separation constant. The solution of Equa-

tion (2.10) can be written in the form

   �(t) �  e �j(��
)t  (2.11a)   

 The form of this solution is the classical exponential form of a sinusoidal wave. We 

have that E � h� or E � h��2�. Then � � ��
 � E�
 so that the separation con-

stant is equal to the total energy  E  of the particle. 

  We can then write

 �(t) �  e �j(E�
)t  �  e �j�t  (2.11b) 

 We see that � � E�
 and is the radian or angular frequency of the sinusoidal wave. 

  The time-independent portion of Schrodinger’s wave equation can now be writ-

ten from Equation (2.9) as

     �
2

 ____ 
2m

   �   1 ____ 
�(x)

   �   
�2�(x)

 ______ 
�x2

    V(x) � E   (2.12)

where the separation constant is the total energy  E  of the particle. Equation (2.12) 

may be written as

     
�2�(x)

 __ 
�x2

      2m _ 

2

   (E � V(x))�(x) � 0  (2.13)  

where again  m  is the mass of the particle, V(x) is the potential experienced by the par-

ticle, and  E  is the total energy of the particle. This time-independent Schrodinger’s 

wave equation can also be justifi ed on the basis of the classical wave equation as 

shown in Appendix E. The pseudo-derivation in the appendix is a simple approach 

but shows the plausibility of the time-independent Schrodinger’s equation.  

  2.2.2  Physical Meaning of the Wave Function 

 We are ultimately trying to use the wave function �(x, t) to describe the behavior of 

an electron in a crystal. The function �(x, t) is a wave function, so it is reasonable to 
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 2.2   Schrodinger’s Wave Equation 33

ask what the relation is between the function and the electron. The total wave func-

tion is the product of the position-dependent, or time-independent, function and the 

time-dependent function. From Equation (2.7) we have     

 �(x, t) � �(x) �(t) � �(x)  e �j(E�
)t  � �(x)  e �j�t  (2.14)

 Since the total wave function �(x, t) is a complex function, it cannot by itself repre-

sent a real physical quantity. 

  Max Born postulated in 1926 that the function ��(x, t) � 2 dx is the probability of 

fi nding the particle between  x  and x  dx at a given time, or that  � �(x, t)�2 is a prob-

ability density function. We have that

   ��(x, t)�2 � �(x, t) � �*(x, t)   (2.15)

where �*(x, t) is the complex conjugate function. Therefore

   �*(x, t) � �*(x) �  e j(E�
)t    

 Then the product of the total wave function and its complex conjugate is given by

   �(x, t)�*(x, t) �  � �(x) e �j(E�
)t  �   � �*(x) e j(E�
)t  �  � �(x)�*(x)    (2.16)

 Therefore, we have that

   ��(x, t)�2 � �(x)�*(x) � ��(�)�2   (2.17)

is the probability density function and is independent of time. One major difference 

between classical and quantum mechanics is that in classical mechanics, the position 

of a particle or body can be determined precisely, whereas in quantum mechanics, the 

position of a particle is found in terms of a probability. We will determine the prob-

ability density function for several examples, and since this property is independent of 

time, we will, in general, only be concerned with the time-independent wave function.  

  2.2.3  Boundary Conditions 

 Since the function ��( x )� 2  represents the probability density function, then for a  single 

particle, we must have 

  �
��

  
�
    |�(x)|2 dx � 1  (2.18)

 The probability of fi nding the particle somewhere is certain. Equation (2.18) allows 

us to normalize the wave function and is one boundary condition that is used to 

 determine some wave function coeffi cients. 

  The remaining boundary conditions imposed on the wave function and its 

 derivative are postulates. However, we may state the boundary conditions and pres-

ent arguments that justify why they must be imposed. The wave function and its fi rst 

derivative must have the following properties if the total energy  E  and the potential 

 V ( x ) are fi nite everywhere.  

 Condition 1.   �(x) must be fi nite, single-valued, and continuous.  

 Condition 2.   ��(x)��x must be fi nite, single-valued, and continuous.   
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34 CHAPTER 2   Introduction to Quantum Mechanics

  Since � � ( x )� 2  is a probability density, then  � ( x ) must be fi nite and single-valued. 

If the probability density were to become infi nite at some point in space, then the 

probability of fi nding the particle at this position would be certain and the uncertainty 

principle would be violated. If the total energy  E  and the potential V(x) are fi nite 

everywhere, then from Equation (2.13), the second derivative must be fi nite, which 

implies that the fi rst derivative must be continuous. The fi rst derivative is related to 

the particle momentum, which must be fi nite and single-valued. Finally, a fi nite fi rst 

derivative implies that the function itself must be continuous. In some of the specifi c 

examples that we will consider, the potential function will become infi nite in par-

ticular regions of space. For these cases, the fi rst derivative will not necessarily be 

continuous, but the remaining boundary conditions will still hold. 

  Figure 2.5 shows two possible examples of potential functions and the corre-

sponding wave solutions. In Figure 2.5a, the potential function is fi nite everywhere. 

The wave function as well as its fi rst derivative is continuous. In Figure 2.5b, the po-

tential function is infi nite for  x  � 0 and for  x  � a. The wave function is continuous 

at the boundaries, but the fi rst derivative is discontinuous. We will actually deter-

mine the wave functions in the following sections and in end-of-chapter problems.     

  2.3 |  APPLICATIONS OF SCHRODINGER’S WAVE 
EQUATION 

  We will now apply Schrodinger’s wave equation in several examples using various 

potential functions. These examples will demonstrate the techniques used in the 

solution of Schrodinger’s differential equation and the results of these examples 

will provide an indication of the electron behavior under these various potentials. 

 Figure 2.5 |   Potential functions and corresponding wave function solutions for the case (a) when the potential 

function is fi nite everywhere and (b) when the potential function is infi nite in some regions. 

V(x) � �

�(x)

V(x) � �

V(x) � V0 V(x) � V0

x � 0 x � ax � 0 x � a

V0 V0

V(x)

(a) (b)

�(x)
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 2.3    Applications of Schrodinger’s Wave Equation 35

We will utilize the resulting concepts later in the discussion of semiconductor 

properties. 

  2.3.1  Electron in Free Space 

 As a fi rst example of applying the Schrodinger’s wave equation, consider the motion 

of an electron in free space. If there is no force acting on the particle, then the potential 

function V(x) will be constant and we must have E � V(x). Assume, for simplicity, 

that the potential function  V ( x ) � 0 for all  x.  Then, the time-independent wave equa-

tion can be written from Equation (2.13) as

     
�2�(x)

 ______ 
�x2

      2mE ____ 

2

   �(x) � 0    (2.19)

 The solution to this differential equation can be written in the form

   �(x) � A exp  �   jx �
____

 2mE  
 __ 



   �   B exp  �   �jx �

____

 2mE  
 __ 


  
   �  (2.20a)

or

 �(x) � A exp(  jkx)  B exp(�jkx) (2.20b)

where

 k �  �
_____

   2mE _ 

2

     (2.21)

and is called a wave number. 

  Recall that the time-dependent portion of the solution is

   �(t) �  e �j(E�
)t  �  e �j�t  (2.22)   

 Then the total solution for the wave function is given by

   �(x, t) � A exp[ j(kx � �t)]  B exp[�j(kx  �t)] (2.23)   

 This wave function solution is a traveling wave, which means that a particle moving 

in free space is represented by a traveling wave. The fi rst term, with the coeffi cient 

 A , is a wave traveling in the  x  direction, while the second term, with the coeffi cient 

 B , is a wave traveling in the � x  direction. The value of these coeffi cients will be 

determined from boundary conditions. We will again see the traveling-wave solution 

for an electron in a crystal or semiconductor material. 

  Assume, for a moment, that we have a particle traveling in the  x  direction, 

which will be described by the  x  traveling wave. The coeffi cient  B  � 0. We can 

write the traveling-wave solution in the form

   �(x, t) � A exp[ j(kx � �t)]   (2.24)

where  k  is the wave number given by

   k �  �
_____

   2mE _ 

2

     �  �
___

   
p2

 _ 

2

     �   
p
 _ 



     (2.25a)
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36 CHAPTER 2   Introduction to Quantum Mechanics

or

    p  � 
 k     (2.25b)

 Also recall that the de Broglie wavelength was given by

   � �    h  _  p    �   2�  
  _ p       (2.26)

 Combining Equations (2.25a) and (2.26), the wavelength can also be written in terms 

of the wave number as

   � �   2� _ 
 k
      (2.27a)

or

    k  �   2� _ 
�

      (2.27b)

 A free particle with a well-defi ned energy will also have a well-defi ned wavelength 

and momentum. 

  The probability density function is �(x, t)�*(x, t) � AA*, which is a con-

stant independent of position. A free particle with a well-defi ned momentum can 

be found anywhere with equal probability. This result is in agreement with the 

Heisenberg uncertainty principle in which a precise momentum implies an unde-

fi ned position. 

  A localized free particle is defi ned by a wave packet, formed by a superposition 

of wave functions with different momentum or  k  values. We will not consider the 

wave packet here.  

  2.3.2  The Infi nite Potential Well 

 The problem of a particle in the infi nite potential well is a classic example of a bound 

particle. The potential V(x) as a function of position for this problem is shown in 

Figure 2.6. The particle is assumed to exist in region II, so the particle is contained 

within a fi nite region of space. The time-independent Schrodinger’s wave equation 

is again given by Equation (2.13) as

   
�2�(x)

 __ 
�x2

      2m _ 
�2

   (E � V(x))�(x) � 0   (2.13)  

where  E  is the total energy of the particle. If  E  is fi nite, the wave function must 

be zero, or �(x) � 0, in both regions I and III. A particle cannot penetrate these 

infi nite potential barriers, so the probability of fi nding the particle in regions I and 

III is zero. 

   The time-independent Schrodinger’s wave equation in region II, where  V  � 0, 

becomes

     
�2�(x)

 __ 
�x2

      2mE _ 

2

   �(x) � 0    (2.28)
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 A particular form of solution to this equation is given by

   �(x) � A 1  cos kx  A 2  sin kx   (2.29)

where

   k �  �
_____

   2mE _ 

2

        (2.30)

  One boundary condition is that the wave function �(x) must be continuous so 

that

   �(x � 0) � �(x � a) � 0    (2.31)

 Applying the boundary condition at x � 0, we must have that A 1  � 0. At x � a, 

we have

   �(x � a) � 0 � A 2  sin ka    (2.32)

 This equation is valid if  ka  �  n �, where the parameter  n  is a positive integer, or 

 n  � 1, 2, 3, . . . . The parameter  n  is referred to as a quantum number. We can write

   k �   n� _ a      (2.33)

 Negative values of  n  simply introduce a negative sign in the wave function and yield 

redundant solutions for the probability density function. We cannot physically dis-

tinguish any difference between n and �n solutions. Because of this redundancy, 

negative values of  n  are not considered. 

  The coeffi cient  A  2  can be found from the normalization boundary condition that 

was given by Equation (2.18) as  �   
�

 �(x)�* (x)dx � 1. If we assume that the wave 

  Figure 2.6 |  Potential function of the infi nite 

potential well.   

Region I Region II Region III

V(x)

� �

x � 0 x � a
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38 CHAPTER 2   Introduction to Quantum Mechanics

function solution �(x) is a real function, then �(x) � �*(x). Substituting the wave 

function into Equation (2.18), we have

  �
0
  

a

       A 
2
  2  sin2 kx dx � 1    (2.34)

 Evaluating this integral gives  3   

    A 
2
  �  �

__

   2 _ a        (2.35)

  Finally, the time-independent wave solution is given by

   �(x) �  �
__

   2 _ a     sin  �   n�x _ a   	    where n � 1, 2, 3, . . .    (2.36)

  This solution represents the electron in the infi nite potential well and is a stand-

ing wave solution. The free electron was represented by a traveling wave, and now 

the bound particle is represented by a standing wave. 

  The parameter  k  in the wave solution was defi ned by Equations (2.30) and 

(2.33). Equating these two expressions for  k , we obtain

  k2   k n  
2  �    

2m E n  _ 

2

   �   n
2�2

 _ 
a2

      (2.37)

 The total energy can then be written as

 E �  E 
n
  �   


2n2�2

 __ 
2ma2

      where n � 1, 2, 3, . . .    (2.38)

  For the particle in the infi nite potential well, the wave function is now given by

   �(x) �  �
__

   2 _ a     sin kn 
x   (2.39)

where the constant  k n  , from Equation (2.37), must have discrete values, implying that 

the total energy of the particle can only have discrete values.  This result means that 
the energy of the particle is  quantized.  That is, the energy of the particle can only 
have particular discrete values.  The quantization of the particle energy is contrary 

to results from classical physics, which would allow the particle to have continuous 

energy values. The discrete energies lead to quantum states that will be considered 

in more detail in this and later chapters. The quantization of the energy of a bound 

particle is an important result. 

  This quantization of electron energy will be observed again at the end of the 

chapter for an electron bound to an ion forming an atom.  

 3  A more thorough analysis shows that  �A  2 � 2  � 2�a, so solutions for the coeffi cient  A  2  include  �
____

 2� a   . 
� �

____

 2�a  ,   j  �
____

 2� a   , − j  �
____

 2� a   , or any complex number whose magnitude is  �
____

 2� a   . Since the wave 

 function itself has no physical meaning, the choice of which coeffi cient to use is immaterial: They all 

produce the same probability density function. 
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  Figure 2.7a shows the fi rst four allowed energies for the particle in the infi nite 

potential well, and Figure 2.7b,c shows the corresponding wave functions and prob-

ability functions. We may note that as the energy increases, the probability of fi nding 

the particle at any given value of  x  becomes more uniform.   

  2.3.3 The Step Potential Function 

 Consider now a step potential function as shown in Figure 2.8. In the previous sec-

tion, we considered a particle being confi ned between two potential barriers. In this 

example, we will assume that a fl ux of particles is incident on the potential barrier. 

We will assume that the particles are traveling in the  x  direction and that they origi-

nated at  x  � � . A particularly interesting result is obtained for the case when the 

total energy of the particle is less than the barrier height, or  E  �  V  0 .  

  We again need to consider the time-independent wave equation in each of the 

two regions. This general equation was given in Equation (2.13) as �2�(x)��x2  

2m�
2(E � V(x))�(x) � 0. The wave equation in region I, in which  V  � 0, is

     
�2�1(x)

 __ 
�x2

      2mE _ 

2

   �1(x) � 0    (2.40)

   EXAMPLE 2.3   Objective:  Calculate the fi rst three energy levels of an electron in an infi nite potential well. 

   Consider an electron in an infi nite potential well of width 5 Å. 

   ■ Solution 
  From Equation (2.38) we have  4   

   E 
n
  �   


2n2�2

 __ 
2ma2

   �   
n2(1.054 � 10�34)2�2

  _____   
2(9.11 � 10�31)(5 � 10�10)2

   � n2(2.41 � 10�19) J  

or

   E 
n
  �   

n2(2.41 � 10�19)
  ___  

1.6 � 10�19
   � n2(1.51) eV   

  Then,

   E1 � 1.51 eV, E2 � 6.04 eV, E3 � 13.59 eV    

   ■ Comment 
  This calculation shows the order of magnitude of the energy levels of a bound electron.  

   ■ EXERCISE PROBLEM  
Ex 2.3    ( a ) The width of an infi nite potential well is 12 Å .  Determine the fi rst three allowed 

energy levels (in eV) for an electron. ( b ) Repeat part ( a ) for a proton.      

[Ans. ( a ) 0.261eV, 1.045 eV, 2.351 eV; ( b ) 1.425 � 10 
−4

  eV, 5.70 � l0 
−4

  eV, 1.28 � 10 
−3

  eV]

 4  See Appendix D for a discussion of the electron-volt (eV) as a unit of energy. 

 2.3    Applications of Schrodinger’s Wave Equation 39

nea29583_ch02_025-057.indd   39nea29583_ch02_025-057.indd   39 12/13/10   1:44 PM12/13/10   1:44 PM

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight



40 CHAPTER 2   Introduction to Quantum Mechanics

 The general solution to this equation can be written in the form

   �1(x) � A1
 e jk1x   B1

 e �jk1x  (x � 0)   (2.41)

where the constant  k  1  is

   k1 �  �
_____

   2mE _ 

2

        (2.42)

 The fi rst term in Equation (2.41) is a traveling wave in the  x  direction that repre-

sents the incident wave, and the second term is a traveling wave in the � x  direction 

  Figure 2.7 |  Particle in an infi nite potential well: (a) four lowest discrete energy levels, 

(b) corresponding wave functions, and (c) corresponding probability functions.   

  (From Pierret [10].)  

(a)

15

n � 1

n � 2

n � 4

n � 3

10

5

�
�

E
  u

n
it

s 
o
f 

�
2
�

2
  
  
  
  
  
  
 

2
m

a2

(b)
�

n

x � 0 x � a

��
n�

2

(c)

x � 0 x � a

Incident particles

Region I Region II

V(x)

V0

x � 0

  Figure 2.8 |  The step potential function.   
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that represents a refl ected wave. As in the case of a free particle, the incident and 

refl ected particles are represented by traveling waves. 

  For the incident wave,  A  1  �   A   1  
  *   is the probability density function of the incident parti-

cles. If we multiply this probability density function by the incident velocity, then  v  
i
  �  A  1  �   A   1  

  *     

is the fl ux of incident particles in units of #/cm 2 -s. Likewise, the quantity  v   r   �  B  1  �    B   1  
  *      is 

the fl ux of the refl ected particles, where  v   r   is the velocity of the refl ected wave. (The 

parameters  v   i   and  v   r   in these terms are actually the magnitudes of the velocity only.) 

  In region II, the potential is V � V0. If we assume that E � V0, then the differen-

tial equation describing the wave function in region II can be written as

     
�2�2(x)

 __ 
�x2

   �   2m _ 

2

   (V0 � E)�2(x) � 0    (2.43)

 The general solution may then be written in the form

   �2(x) � A2 e �k2x   B2
 e k2x  (x � 0)   (2.44)

where

   k2 �  �
__________

   
2m(V0 � E)

 __ 

2

        (2.45)

  One boundary condition is that the wave function �2(x) must remain fi nite, 

which means that the coeffi cient B2 � 0. The wave function is now given by

   �2(x) � A2 e �k2x  (x � 0)    (2.46)

 The wave function at  x  � 0 must be continuous so that

   �1(0) � �2(0)    (2.47)

 Then from Equations (2.41), (2.46), and (2.47), we obtain

   A1  B1 � A2     (2.48)

  Since the potential function is everywhere fi nite, the fi rst derivative of the wave 

function must also be continuous so that

         ��1 _ 
�x   
  

 x�0
  �       ��2 _ 

�x   
  
 x�0

     (2.49)

 Using Equations (2.41), (2.46), and (2.49), we obtain

   jk1A1 � jk1B1 � �k2A2    (2.50)

  We can solve Equations (2.48) and (2.50) to determine the coeffi cients  B  1  and  A  2  

in terms of the incident wave coeffi cient  A  1 . The results are

 B1 �   
�( k 

2
  2   2jk1k2 �  k 

1
  2 )
  ____  

 k 
2
  2    k 

1
  2 
   � A1 (2.51a)

and

 A2 �   
2k1(k1 � jk2)

 ___ 
 k 

2
  2    k 

1
  2 
   � A1 (2.51b)

 2.3    Applications of Schrodinger’s Wave Equation 41
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42 CHAPTER 2   Introduction to Quantum Mechanics

The refl ected probability density function is given by

 B1 �  B 
1
  *  �   

( k 
2
  2  �  k 

1
  2   2jk1k2)( k 

2
  2  �  k 

1
  2  � 2jk1k2)

   ______  
( k 

2
  2    k 

1
  2  ) 2 

   � A1 �  A 
1
  *  (2.52)

   We can defi ne a refl ection coeffi cient,  R , as the ratio of the refl ected fl ux to the 

incident fl ux, which is written as

   R �   
v r  � B1 �  B 1  

* 
 __ 

v1 � A1 �  A 1  
*   
   (2.53)

where  �   i   and  �   r   are the incident and refl ected velocities, respectively, of the particles. 

In region I,  V  � 0 so that  E  �  T , where  T  is the kinetic energy of the particle. The 

kinetic energy is given by

   T �   1 _ 
2
   mv2   (2.54)

so that the constant  k  1 , from Equation (2.42) may be written as

   k1 �  �
__________

   2m _ 

2

    �   1 _ 
2
   mv2 	    �  �

_____

 m2   v
2

 _ 

2

     �   mv _ 



      (2.55)

 The incident velocity can then be written as

   v i  �   
 _ m   � k1    (2.56)

 Since the refl ected particle also exists in region I, the refl ected velocity (magnitude) 

is given by

   v r  �   
 _ m   � k1     (2.57)

 The incident and refl ected velocities (magnitudes) are equal. The refl ection coef-

fi cient is then

   R �   
v r  � B1 �  B 1  

* 
 __ 

v i  � A1 �  A 1  
* 
   �   

B1 �  B 1  
* 
 __ 

A1 �  A 1  
* 
      (2.58)

 Substituting the expression from Equation (2.52) into Equation (2.58), we obtain

 R �   
B1 �  B 

1
  * 
 __ 

A1 �  A 
1
  * 
   �   

 k 2  
2  �  k 1  

2   4 k 1  
2  k 2  

2 
  ___ 

 k 2  
2    k 1  

2 
   � 1.0 (2.59)

   The result of  R  � 1 implies that all of the particles incident on the potential 

barrier for  E   �  V  0  are eventually refl ected. Particles are not absorbed or transmitted 

through the potential barrier. This result is entirely consistent with classical physics 

and one might ask why we should consider this problem in terms of quantum me-

chanics. The interesting result is in terms of what happens in region II. 

  The wave solution in region II was given by Equation (2.46) as �2(x) � 

A2 e �k2x . The coeffi cient  A  2  from Equation (2.48) is A2 � A1  B1, which we derived 

from the boundary conditions. For the case of E � V0, the coeffi cient  A  2  is not zero. 

If  A  2  is not zero, then the probability density function �2(x) �  � 2  
* (x) of the particle 

being found in region II is not equal to zero.  This result implies that there is a fi nite 

nea29583_ch02_025-057.indd   42nea29583_ch02_025-057.indd   42 12/11/10   9:59 AM12/11/10   9:59 AM

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight

eduardo
Highlight



probability that the incident particle will penetrate the potential barrier and exist in 
region II. The probability of a particle penetrating the potential barrier is another 
difference between classical and quantum mechanics: The quantum mechanical 
penetration is classically not allowed.  Although there is a fi nite probability that the 

particle may penetrate the barrier, since the refl ection coeffi cient in region I is unity, 

the particle in region II must eventually turn around and move back into region I.   

 2.3    Applications of Schrodinger’s Wave Equation 43

   EXAMPLE 2.4   Objective:  Calculate the penetration depth of a particle impinging on a potential barrier. 

   Consider an incident electron that is traveling at a velocity of 1 � 105 m/s in region I. 

   ■ Solution 
  With  V ( x ) � 0, the total energy is also equal to the kinetic energy so that

   E � T �   1 _ 
2
   mv2 � 4.56 � 10�21 J � 2.85 � 10�2 eV   

  Now, assume that the potential barrier at  x  � 0 is twice as large as the total energy of the inci-

dent particle, or that  V  0  � 2 E . The wave function solution in region II is � 2 ( x ) �  A  2 e −k2 , where 

the constant  k  2  is given by k 2  �  �
_____________

  2m(V0 � E)�
2  . 

   In this example, we want to determine the distance  x  �  d  at which the wave function 

magnitude has decayed to  e  −1  of its value at  x  � 0. Then, for this case, we have  k  2  d  � 1 or

   1 � d  �
___________

    
2m(2E � E)

 ___ 

2

     � d  �
_____

   2mE _ 

2

       

   The distance is then given by

   d �  �
_____

   
2

 _ 
2mE

     �   1.054 � 10�34

  ______   
 �

_________________________

   2(9.11 � 10�31) (4.56 � 10�21)  
   � 11.6 � 10�10 m  

or

   d � 11.6 Å    

   ■ Comment 
  This penetration distance corresponds to approximately two lattice constants of silicon. The 

numbers used in this example are rather arbitrary. We used a distance at which the wave func-

tion decayed to e�1 of its initial value. We could have arbitrarily used e�2, for example, but the 

results give an indication of the magnitude of penetration depth. 

  ■ EXERCISE PROBLEM  
  Ex 2.4  The probability of fi nding a particle at a distance  d  in region II compared with that 

at x � 0 is given by exp (�2k2d). Consider an electron traveling in region I at a 

velocity of 105 m/s incident on a potential barrier whose height is three times the 

kinetic energy of the electron. Find the probability of fi nding the electron at a dis-

tance  d  compared with  x  � 0 where  d  is ( a ) 10 Å and ( b ) 100 Å into the potential 

barrier. 

[Ans. (a) P � 8.680%; (b) P � 2.43 � 10
�9

%]

     

  The case when the total energy of a particle, which is incident on the potential 

barrier, is greater than the barrier height, or E � V0, is left as an exercise at the end 

of the chapter. 
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44 CHAPTER 2   Introduction to Quantum Mechanics

  2.3.4 The Potential Barrier and Tunneling 

 We now want to consider the potential barrier function, which is shown in Fig-

ure 2.9. The more interesting problem, again, is in the case when the total energy 

of an incident particle is E � V0. Again assume that we have a fl ux of incident 

particles originating on the negative  x -axis traveling in the  x  direction. As before, 

we need to solve Schrodinger’s time-independent wave equation in each of the 

three regions. The solutions of the wave equation in regions I, II, and III are given, 

respectively, as

   �1(x) � A1 e jk1x   B1 e �jk1x    (2.60a)

   �2(x) � A2 e k2x   B2 e �k2x    (2.60b)

   �3(x) � A3 e jk1x   B3 e �jk1x    (2.60c)

where

   k1 �  �
_____

   2mE _ 

2

       (2.61a)

and

   k2 �  �
___________

   2m _ 

2

   (V0 � E)      (2.61b) 

  The coeffi cient  B  3  in Equation (2.60c) represents a negative traveling wave in re-

gion III. However, once a particle gets into region III, there are no potential changes 

to cause a refl ection; therefore, the coeffi cient  B  3  must be zero. We must keep both 

exponential terms in Equation (2.60b) since the potential barrier width is fi nite; that 

is, neither term will become unbounded. We have four boundary relations for the 

boundaries at  x  � 0 and  x  � a corresponding to the wave function and its fi rst de-

rivative being continuous. We can solve for the four coeffi cients  B  1 ,  A  2 ,  B  2 , and  A  3  in 

terms of  A  1 . The wave solutions in the three regions are shown in Figure 2.10.  

V(x)

Region I

V0

Incident

particles

(E � V0)

Region II Region III

x � 0 x � a

  Figure 2.9 |  The potential barrier function.   
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  One particular parameter of interest is the transmission coeffi cient, in this case 

defi ned as the ratio of the transmitted fl ux in region III to the incident fl ux in region I. 

Then the transmission coeffi cient  T  is

   T �    
v t  � A3 �  A 3  

* 
 __ 

v i  � A1 �  A  i   
* 
   �   

A3 �  A 3  
* 
 __ 

A1 �  A 1  
*   
   (2.62)

where  v t   and  v i   are the velocities of the transmitted and incident particles, respec-

tively. Since the potential  V  � 0 in both regions I and III, the incident and transmitted 

velocities are equal. The transmission coeffi cient may be determined by solving the 

boundary condition equations. For the special case when  E    V  0 , we fi nd that     

 T � 16  �   E _ 
V0

    	   � 1 �   E _ 
V0

    	  exp (�2k2a)  (2.63)

   Equation (2.63) implies that there is a fi nite probability that a particle imping-
ing a potential barrier will penetrate the barrier and will appear in region III. This 
phenomenon is called  tunneling  and it, too, contradicts classical mechanics.  We 

will see later how this quantum mechanical tunneling phenomenon can be applied to 

semiconductor device characteristics, such as in the tunnel diode.  

  Figure 2.10 |  The wave functions through the potential barrier.   

0

�
(x

)

x � 0 x � a

   EXAMPLE 2.5   Objective:  Calculate the probability of an electron tunneling through a potential barrier. 

   Consider an electron with an energy of 2 eV impinging on a potential barrier with 

V0 � 20 eV and a width of 3 Å. 

   ■ Solution 
  Equation (2.63) is the tunneling probability. The factor  k  2  is

   k2 �  �
__________

   
2m(V0 � E)

 __ 

2

     �  �
_______________________________

     
2(9.11 � 10�31)(20 � 2)(1.6 � 10�19)

   _______   
(1.054 � 10�34)2

      

or

   k2 � 2.17 � 1010 m�1   

  Then

   T � 16(0.1)(1 � 0.1) exp [�2(2.17 � 1010)(3 � 10�10)]  

 2.3    Applications of Schrodinger’s Wave Equation 45
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46 CHAPTER 2   Introduction to Quantum Mechanics

  Additional applications of Schrodinger’s wave equation with various one-

dimensional potential functions are found in problems at the end of the chapter. 

Several of these potential functions represent quantum well structures that are found 

in modern semiconductor devices.      

and fi nally

   T � 3.17 � 10�6    

   ■ Comment 
  The tunneling probability may appear to be a small value, but the value is not zero. If a large 

number of particles impinge on a potential barrier, a signifi cant number can penetrate the barrier.  

■ EXERCISE PROBLEM
Ex 2.5  (a)Estimate the probability of an electron with energy E � 0.l2 eV tun-

neling through a rectangular potential barrier with a height of V0 � 1.2 eV 

and a width of a � 5 Å. (b) Repeat part (a) for a barrier width of a � 25 Å.  

[Ans. (a) T � 7.02 � 10
�3

; (b) T � 3.97 � 10
�12

]

  2.4 |  EXTENSIONS OF THE WAVE THEORY 
TO ATOMS  5    

  So far in this chapter, we have considered several one-dimensional potential energy 

functions and solved Schrodinger’s time-independent wave equation to obtain the prob-

ability function of fi nding a particle at various positions. Consider now the one-electron, 

or hydrogen, atom potential function. We will only briefl y consider the mathematical 

details and wave function solutions, but the results are interesting and important. 

  2.4.1 The One-Electron Atom 

 The nucleus is a heavy, positively charged proton and the electron is a light, nega-

tively charged particle that, in the classical Bohr theory, is revolving around the 

 5The detailed mathematical analysis is beyond the scope of this text, but the results, which are empha-

sized in this section, are important in the following discussions of semiconductor physics. 

   TEST YOUR UNDERSTANDING  

TYU 2.3   ( a ) Estimate the probability of an electron with energy  E  � 0.10 eV tunneling 

through a rectangular potential barrier with a barrier height of  V  0  � 0.8 eV and 

width  a  � 12  Å . ( b ) Repeat part ( a ) for a barrier height of  V  0  � 1.5 eV. 

[Ans. ( a )  T  � 5.97 � 10 
−5

 ; ( b )  T  � 4.79 � 10 
�7

 ]

  

TYU 2.4   A certain semiconductor device requires a tunneling probability of  T  � 5 � 10 �6  

for an electron tunneling through a rectangular barrier with a barrier height of 

 V  0  � 0.8 eV. The electron energy is  E  � 0.08 eV.    

Determine the maximum barrier width. 

(Ans. a � 14.46 Å)
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 2.4    Extensions of the Wave Theory to Atoms 47

nucleus. The potential function is due to the coulomb attraction between the proton 

and electron and is given by

   V(r) �   �e2

 _ 
4�	0r

     (2.64)

where  e  is the magnitude of the electronic charge and 	0 is the permittivity of free 

space. This potential function, although spherically symmetric, leads to a three-

dimensional problem in spherical coordinates. 

  We may generalize the time-independent Schrodinger’s wave equation to three 

dimensions by writing

   �2�(r, 
, �)    
2m0 _ 

2

   (E � V(r))�(r, 
, �) � 0   (2.65)

where �2 is the Laplacian operator and must be written in spherical coordinates for 

this case. The parameter m0 is the rest mass of the electron.  6    In spherical coordinates, 

Schrodinger’s wave equation may be written as

     1 _ 
r2

   �   � _ 
�r    � r2   

��
 _ 

�r   	     1 __ 
r2 sin2


   �   
�2�

 _ 
��2

      1 __ 
r2 sin


   �   � _ 
�


    � sin 
�  �� _ 
�


    	   
(2.66)

    
2m0 _ 

2

   (E � V(r))� � 0   

  The solution to Equation (2.66) can be determined by the separation-of-variables 

technique. We will assume that the solution to the time-independent wave equation 

can be written in the form

   �(r, 
, �) � R(r) � �(
) � �(�)   (2.67)

where  R , �, and �, are functions only of r, 
, and �, respectively. Substituting this 

form of solution into Equation (2.66), we will obtain

     sin2
 _ 
R

   �   � _ 
�r    � r2   �R _ 

�r
   	     1 _ 

�
   �   

�2�
 _ 

��2
      sin
 _ 

�
   �   � _ 

�

    � sin 
 �   �� _ 

�

   	   

(2.68)

  r2 sin2 
 �   
2m0 _ 

2

   (E � V) � 0   

  We may note that the second term in Equation (2.68) is a function of � only, 

whereas all the other terms are functions of either  r  or �. We may then write that

     1 _ 
�

   �   
�2�

 _ 
��2

   � �m2   (2.69)

where  m  is a separation of variables constant.  7    The solution to Equation (2.69) is of 

the form

   � � e jm�    (2.70)

 6The mass should be the rest mass of the two-particle system, but since the proton mass is much greater 

than the electron mass, the equivalent mass reduces to that of the electron. 

 7Where  m  means the separation-of-variables constant developed historically. That meaning will be 

retained here even though there may be some confusion with the electron mass. In general, the mass 

parameter will be used in conjunction with a subscript. 
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48 CHAPTER 2   Introduction to Quantum Mechanics

 Since the wave function must be single-valued, we impose the condition that  m  is an 

integer, or

   m � 0, �1, �2, �3, . . .    (2.71)

  Incorporating the separation-of-variables constant, we can further separate the vari-

ables 
 and  r  and generate two additional separation-of-variables constants  l  and n. The 

separation-of-variables constants n, l, and  m  are known as  quantum numbers . The param-

eter  n  is referred to as the principal quantum number,  l  is the azimuthal or angular quantum 

number, and  m  is the magnetic quantum number. The quantum numbers are related by 

   n � 1, 2, 3, . . .

 l � n � 1, n � 2, n � 3, . . . 0 (2.72)

 |m| � l, l � 1, . . . , 0  

 Each set of quantum numbers corresponds to a quantum state that the electron may occupy. 

  The electron energy may be written in the form    

 En �   
�m0e4

 ___ 
(4�	0)

22
2n2
   (2.73)

where again  n  is the principal quantum number. The negative energy indicates that 

the electron is bound to the nucleus and we again see that the energy of the bound 

electron is quantized. If the energy were to become positive, then the electron would 

no longer be a bound particle and the total energy would no longer be quantized. 

Since the parameter  n  in Equation (2.73) is an integer, the total energy of the electron 

can take on only discrete values. The quantized energy is again a result of the particle 

being bound in a fi nite region of space.  

EXAMPLE 2.6   Objective:  Calculate the fi rst three energy levels of an electron for the one-electron atom. 

  ■ Solution 
 We have

  En �   
�m0e4

 ___  
(4�	0)2 2
2n2

   �   
�(9.11 � 10�31)(1.6 � 10�19)4

   _______    
[4�(8.85 � 10�12)]2 2(1.054 � 10�34)2 n2

  

 �   �21.726 � 10�19

  ___ 
n2

   J or �   �13.58 __ 
n2

   eV

 For n � 1; E1 � �13.58 eV

 n � 2; E2 � �3.39 eV

 n � 3; E3 � �1.51 eV  

   ■ Comment 
 As the energy levels increase, the energy becomes less negative, which means that the electron 

is becoming less tightly bound to the atom. 

  ■ EXERCISE PROBLEM  
  Ex 2.6 In Example 2.6, assume the permittivity of free space, 	 0 , is replaced by the permittivity 

of a material where 	 � 	  r   	 0  .  Repeat the calculations in Example 2.6 if    	  r � 11.7 (silicon). 

(Ans.  E  1  � −99.2 meV,  E 2   � −24.8 meV,  E  3  � −11.0 meV)
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  The solution of the wave equation may be designated by �nlm, where n, l, and  m  

are again the various quantum numbers. For the lowest energy state, n � 1, l � 0, 

and m � 0, and the wave function is given by

   �100 �   1 _ 
 �

__
 �  
   �   �   1 _ a0

    	  3�2

   e �r�a0     (2.74)

 This function is spherically symmetric, and the parameter a0 is given by

   a0 �   
4�	0 
2

 __ 
m0e2

   � 0.529 Å   (2.75)

and is equal to the Bohr radius. 

  The radial probability density function, or the probability of fi nding the electron 

at a particular distance from the nucleus, is proportional to the product �100 �  � 100  
*
   and 

also to the differential volume of the shell around the nucleus. The probability den-

sity function for the lowest energy state is plotted in Figure 2.11a. The most probable 

distance from the nucleus is at r � a0, which is the same as the Bohr theory. Consid-

ering this spherically symmetric probability function, we may now begin to conceive 

the concept of an electron cloud, or energy shell, surrounding the nucleus rather than 

a discrete particle orbiting around the nucleus.  

  The radial probability density function for the next higher, spherically symmet-

ric wave function, corresponding to  n  � 2, l � 0, and  m  � 0, is shown in Fig-

ure 2.11b. This fi gure shows the idea of the next-higher energy shell of the electron. 

The second energy shell is at a greater radius from the nucleus than the fi rst energy 

shell. As indicated in the fi gure, though, there is still a small probability that the elec-

tron will exist at the smaller radius. For the case of  n  � 2 and l � 1, there are three 

possible states corresponding to the three allowed values of the quantum number  m . 

These wave functions are no longer spherically symmetric. 

  Although we have not gone into a great deal of mathematical detail for the one-elec-

tron atom, three results are important for the further analysis of semiconductor materials. 

0.5

0.4

0.3

0.2

0.1

0
5 10

a 0
P

nl
 (

r)

(a) (b)

r
a0

n � 1

l � 0

a 0
P

nl
 (

r)

0.2

0.1

0
5 10 15

r
a0

n � 2, l � 0

  Figure 2.11 |  The radial probability density function for the one-electron atom in the 

(a) lowest energy state and (b) next-higher energy state.   

  (From Eisberg and Resnick [5].)  

 2.4    Extensions of the Wave Theory to Atoms 49
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50 CHAPTER 2   Introduction to Quantum Mechanics

The fi rst is the solution of Schrodinger’s wave equation, which again yields electron prob-

ability functions, as it did for the simpler potential functions. In developing the physics of 

semiconductor materials in later chapters, we will also be considering electron probability 

functions. The second result is the quantization of allowed energy levels for the bound 

electron. The third is the concept of quantum numbers and quantum states, which evolved 

from the separation-of-variables technique. We will consider this concept again in the 

next section and in later chapters when we deal with the semiconductor material physics.  

  2.4.2 The Periodic Table 

 The initial portion of the periodic table of elements may be determined by using 

the results of the one-electron atom plus two additional concepts. The fi rst concept 

needed is that of  electron spin . The electron has an intrinsic angular momentum, or 

spin, which is quantized and may take on one of two possible values. The spin is 

designated by a quantum number  s , which has a value of s �   1 __ 
2
   or s � �   1 __ 

2
  . We now 

have four basic quantum numbers:  n ,  l ,  m , and  s . 

  The second concept needed is the  Pauli exclusion principle . The Pauli exclusion 

principle states that, in any given system (an atom, molecule, or crystal), no two elec-

trons may occupy the same quantum state. In an atom, the exclusion principle means 

that no two electrons may have the same set of quantum numbers. We will see that 

the exclusion principle is also an important factor in determining the distribution of 

electrons among available energy states in a crystal. 

  Table 2.1 shows the fi rst few elements of the periodic table. For the fi rst element, 

hydrogen, we have one electron in the lowest energy state corresponding to n � 1. 

From Equation (2.72) both quantum numbers  l  and  m  must be zero. However, the elec-

tron can take on either spin factor    1 __ 
2
   or �   1 __ 

2
  . For helium, two electrons may exist in 

the lowest energy state. For this case, l � m � 0, so now both electron spin states are 

occupied and the lowest energy shell is full. The chemical activity of an element is 

determined primarily by the valence, or outermost, electrons. Since the valence energy 

shell of helium is full, helium does not react with other elements and is an inert element. 

Table 2.1 | Initial portion of the periodic table

Element Notation n l m s

Hydrogen  1s1 1 0 0    1 __ 
2
   or �   1 __ 

2
   

Helium 1s2  1 0 0    
1
 

__
 

2
   and �   1 __ 

2
   

Lithium 1s22s1  2 0 0    
1
 

__
 

2
   or �   1 __ 

2
   

Beryllium 1s22s2  2 0 0    
1
 

__
 

2
   and �   1 __ 

2
   

Boron 1s22s22p1  2 1

Carbon  1s22s22p2 2 1

Nitrogen  1s22s22p3 2 1  m � 0, �1, 1 

Oxygen  1s22s22p4 2 1  s �    1 __ 
2
  , �   1 __ 

2
   

Fluorine 1s22s22p5  2 1

Neon 1s22s22p6  2 1
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 Glossary of Important Terms 51

  The third element, lithium, has three electrons. The third electron must go into 

the second energy shell corresponding to n � 2. When n � 2, the quantum number  l  
may be 0 or 1, and when l � 1, the quantum number  m  may be �1, 0, or 1. In each 

case, the electron spin factor may be    1 __ 
2
   or �   1 __ 

2
  . For n � 2, then, there are eight pos-

sible quantum states. Neon has 10 electrons. Two electrons are in the n � 1 energy 

shell and eight electrons are in the n � 2 energy shell. The second energy shell is now 

full, which means that neon is also an inert element. 

  From the solution of Schrodinger’s wave equation for the one-electron atom, 

plus the concepts of electron spin and the Pauli exclusion principle, we can begin 

to build up the periodic table of elements. As the atomic numbers of the elements 

increase, electrons will begin to interact with each other, so that the buildup of the 

periodic table will deviate somewhat from the simple method.      

  2.5 | SUMMARY  
  ■   A few basic concepts of quantum mechanics, which can be used to describe the behav-

ior of electrons under various potential functions, were considered. The understanding 

of electron behavior is crucial in understanding semiconductor physics.  

  ■   The wave–particle duality principle is an important element in quantum mechanics. 

Particles can have wave-like behavior and waves can have particle-like behavior.  

  ■   Schrodinger’s wave equation forms the basis for describing and predicting the behavior 

of electrons.  

  ■   Max Born postulated that |�(x)|2 is a probability density function.  

  ■   A result of applying Schrodinger’s wave equation to a bound particle is that the energy 

of the bound particle is  quantized.   
  ■   A result of applying Schrodinger’s wave equation to an electron incident on a potential 

barrier is that there is a fi nite probability of  tunneling .  

  ■   The concept of quantum numbers was developed from the results of applying 

Schrodinger’s wave equation to the one-electron atom.  

  ■   The basic structure of the periodic table is predicted by applying Schrodinger’s wave 

equation to the one-electron atom and using the Pauli exclusion principle.    

  GLOSSARY OF IMPORTANT TERMS   
   de Broglie wavelength    The wavelength of a particle given as the ratio of Planck’s constant 

to momentum.  

   Heisenberg uncertainty principle    The principle that states that we cannot describe with 

absolute accuracy the relationship between sets of conjugate variables that describe the 

behavior of particles, such as momentum and position.  

   Pauli exclusion principle    The principle that states that no two electrons can occupy the 

same quantum state.  

   photon    The particle-like packet of electromagnetic energy.  

   quanta    The particle-like packet of thermal radiation.  

   quantized energies    The allowed discrete energy levels that bound particles may occupy.  

   quantum numbers    A set of numbers that describes the quantum state of a particle, such as 

an electron in an atom.  
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52 CHAPTER 2   Introduction to Quantum Mechanics

   quantum state    A particular state of an electron that may be described, for example, by a set 

of quantum numbers.  

   tunneling    The quantum mechanical phenomenon by which a particle may penetrate through 

a thin potential barrier.  

   wave–particle duality    The characteristic by which electromagnetic waves sometimes ex-

hibit particle-like behavior and particles sometimes exhibit wave-like behavior.     

  CHECKPOINT 
  After studying this chapter, the reader should have the ability to: 

  ■   Discuss the principle of energy quanta, the wave–particle duality principle, and the un-

certainty principle.  

  ■   Apply Schrodinger’s wave equation and boundary conditions to problems with various 

potential functions.  

  ■   Determine quantized energy levels of bound particles.  

  ■   Determine the approximate tunneling probability of aaaaaaaaaaaa particle incident on a 

potential barrier.      

  ■   State Pauli exclusion principle.  

  ■   Discuss the results of the one-electron atom analysis, including quantum numbers and 

their interrelationship as well as the initial formation of the periodic table.  

  REVIEW QUESTIONS  
  1.   State the wave–particle duality principle and state the relationship between momentum 

and wavelength.  

  2.   What is the physical meaning of Schrodinger’s wave function?  

  3.   What is meant by a probability density function?  

  4.   List the boundary conditions for solutions to Schrodinger’s wave equation.  

  5.   What is meant by quantized energy levels? Can an electron contained in a potential well 

have an arbitrary energy?  

  6.   Describe the concept of tunneling.  

  7.   List the quantum numbers of the one-electron atom and discuss how they were developed.  

  8.   State the interrelationship between the quantum numbers of the one-electron   at  om and 

how this result leads to, for example, the development of inert elements.

  PROBLEMS  
  2.1 The classical wave equation for a two-wire transmission line is given by �2V(x, t)��x2 

� LC � �2V(x, t)��t2. One possible solution is given by V(x, t) � (sin Kx) � (sin �t) 
where K � n��a and � � K� �

___
 LC  . Sketch, on the same graph, the function V(x, t) as 

a function of  x  for 0 � x � a and n � 1 when ( i ) �t � 0, ( ii ) �t � ��2, ( iii ) �t � �, 

( i� ) �t � 3��2, and ( � ) �t � 2�.  

  2.2 The function V(x, t) � cos (2� x�� � �t) is also a solution to the classical wave equa-

tion. Sketch on the same graph the function V(x, t) as a function of  x  for 0 � x � 3� 

when: ( i ) �t � 0, ( ii ) �t � 0.25�, ( iii ) �t � 0.5�, ( i� ) �t � 0.75�, and ( � ) �t � �.  

  2.3 Repeat Problem 2.2 for the function  V ( x ,  t ) � cos (2�x��  � t ).  

  2.4 Determine the phase velocities of the traveling waves described in Problems 2.2 and 2.3.   
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   Section 2.1 Principles of Quantum Mechanics  

2.5   The work function of a material refers to the minimum energy required to remove an 

electron from the material. Assume that the work function of gold is 4.90 eV and that 

of cesium is 1.90 eV. Calculate the maximum wavelength of light for the photoelectric 

emission of electrons for gold and cesium.            

2.6 (a) The wavelength of green light is � � 550 nm. If an electron has the same wave-

length, determine the electron velocity and momentum. (b) Repeat part (a) for red 

light with a wavelength of � � 440 nm. (c) For parts (a) and (b), is the momentum of 

the photon equal to the momentum of the electron?

2.7 Determine the de Broglie wavelength for (a) an electron with kinetic energy of 

(i) 1.2 eV, (ii) 12 eV, (iii) 120 eV; and for (b) a hydrogen atom with a kinetic energy 

of 1.2 eV.

2.8   According to classical physics, the average energy of an electron in an electron gas at 

thermal equilibrium is 3kT�2. Determine, for T � 300 K, the average electron energy 

(in eV), average electron momentum, and the de Broglie wavelength.  

2.9   An electron and a photon have the same energy. At what value of energy (in eV) will 

the wavelength of the photon be 10 times that of the electron?         

2.10 (a) The de Broglie wavelength of an electron is 85 Å. Determine the electron 

energy (eV), momentum, and velocity. (b) An electron is moving with a velocity of 

8 � 105 cm/s. Determine the electron energy (eV), momentum, and de Broglie wave-

length (in Å).

2.11   It is desired to produce x-ray radiation with a wavelength of 1 Å. ( a ) Through what 

potential voltage difference must the electron be accelerated in vacuum so that it can, 

upon colliding with a target, generate such a photon? (Assume that all of the elec-

tron’s energy is transferred to the photon.) ( b ) What is the de Broglie wavelength of 

the electron in part ( a ) just before it hits the target?  

2.12   When the uncertainty principle is considered, it is not possible to locate a photon in 

space more precisely than about one wavelength. Consider a photon with wavelength 

� � 1 �m. What is the uncertainty in the photon’s momentum?       

2.13 (a) The uncertainty in position is 12 Å for a particle of mass 9 � 10�31 kg. The nomi-

nal energy of the particle is 16 eV. Determine the minimum uncertainty in (i) momen-

tum and (ii) kinetic energy of the particle. (b) Repeat part (a) for a particle of mass 

5 � 10�28 kg.

2.14   An automobile has a mass of 1500 kg. What is the uncertainty in the velocity (in 

miles per hour) when its center of mass is located with an uncertainty no greater than 

1 cm?         

2.15 (a) The electron’s energy is measured with an uncertainty no greater than 0.8 eV. 

Determine the minimum uncertainty in the time over which the measurement is made. 

(b) The uncertainty in the position of an electron is no greater than 1.5 Å. Determine 

the minimum uncertainty in its momentum.

   Section 2.2 Schrodinger’s Wave Equation  

2.16   Assume that �1(x, t) and �2(x, t) are solutions of the one-dimensional time-dependent 

Schrodinger’s wave equation. ( a ) Show that �1  �2 is a solution. ( b ) Is �1 � �2 a 

solution of the Schrodinger’s equation in general? Why or why not?  
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54 CHAPTER 2   Introduction to Quantum Mechanics

2.17   Consider the wave function �(x, t) � A � cos  �   �x _ 
2
   	  	   e �j�t  for �1 � x � 3. 

Determine  A  so that  � 
�1

   

3

 �� (x, t)�2dx � 1.  

2.18   Consider the wave function �(x, t) � A(cos n�x) e �j�t  for �1�2  � x � 1�2, 

where n is an integer. Determine  A  so that  � 
�1�2

  

1�2

 �� (x, t)�2dx � 1.  

2.19   The solution to Schrodinger’s wave equation for a particular situation is given by 

�(x) �  �
____

 2�a0
  �  e �x/a0 . Determine the probability of fi nding the particle between the 

following limits: ( a ) 0 � x � a0�4, ( b ) a0�4 � x � a0�2, and ( c ) 0 � x � a0.              

2.20 An electron is described by a wave function given by �(x) �  �
__

   2 _ a      cos �   �x _ a   	  
 for   �a _ 

2
   � x �   a _ 

2
  . The wave function is zero elsewhere. Calculate the probability of 

fi nding the electron between (a) 0 � x �    a _ 
4
  , (b)   a _ 

4
   � x �   a _ 

2
  , and (c)   �a _ 

2
   � x �   a _ 

2
  .

2.21 Repeat Problem 2.20 if the wave function is given by �(x) �  �
__

   2 _ a     sin  �   2�x _ a   	 .

   Section 2.3 Applications of Schrodinger’s Wave Equation                                

2.22 (a) An electron in free space is described by a plane wave given by �(x, t) � A e j(kx��t) . 
If k � 8 � 108 m�1 and � 8 � 1012 rad/s, determine the (i) phase velocity and wave-

length of the plane wave, and the (ii) momentum and kinetic energy (in eV) of the 

electron. (b) Repeat part (a) for k � �1.5 � 109 m�1 and � �1.5 � 1013 rad/s.

2.23 An electron is traveling in the negative x direction with a kinetic energy of 0.025 eV. 

(a) Write the equation of a plane wave that describes this particle. (b) What is the wave 

number, wavelength, and angular frequency of the wave that describes this electron.

2.24 Determine the wave number, wavelength, angular frequency, and period of a 

wave function that describes an electron traveling in free space at a velocity of 

(a) v � 5 � 106 cm/s and (b) v � 108 cm/s.

2.25 An elecron is bound in a one-dimesional infi nite potential well with a width of 75 Å. 

Determine the electron energy levels (in eV) for n � 1, 2, 3.

2.26 An electron is bound in a one-dimensional infi nite potential well with a width of 

10 Å. (a) Calculate the fi rst three energy levels that the electron may occupy. (b) If the 

electron drops from the third to the second energy level, what is the wavelength of a 

photon that might be emitted?

2.27 A particle with a mass of 15 mg is bound in a one-dimensional infi nite potential well 

that is 1.2 cm wide. (a) If the energy of the particle is 15 mJ, determine the value of n 

for that state. (b) What is the energy of the (n1) state? (c) Would quantum effects be 

observable for this particle?

2.28   Calculate the lowest energy level for a neutron in a nucleus, by treating it as if it were 

in an infi nite potential well of width equal to 10 −14  m. Compsare this with the lowest 

energy level for an electron in the same infi nite potential well.   

2.29   Consider the particle in the infi nite potential well as shown in Figure P2.29. Derive 

and sketch the wave functions corresponding to the four lowest energy levels. (Do not 

normalize the wave functions.)   

*2.30   Consider a three-dimensional infi nite potential well. The potential function is given 

by V(x) � 0 for 0 � x � a, 0 � y � a, 0 � z � a, and V(x) �  elsewhere. Start with 

*Asterisks next to problems indicate problems that are more diffi cult.
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Schrodinger’s wave equation, use the separation of variables technique, and show that 

the energy is quantized and is given by

    E   n xn ynz

   �   

2�2

 _ 
2ma2

    �  n 
 x  2     n 

 y  2     n 
 z  2   	   

 where n x  � 1, 2, 3, . . .,  n y  � 1, 2, 3, . . . ,  n z  � 1, 2, 3, . . . .  

2.31   Consider a free electron bound within a two-dimensional infi nite potential well de-

fi ned by V � 0 for 0 � x � 40 Å, 0 � y � 20 Å, and V � � elsewhere. ( a ) Determine 

the expression for the allowed electron energies. ( b ) Describe any similarities and any 

differences with the results of the one-dimensional infi nite potential well.  

2.32   Consider a proton in a one-dimensional infi nite potential well shown in Figure 2.6. 

( a ) Derive the expression for the allowed energy states of the proton. ( b ) Calculate 

the energy difference (in units of eV) between the lowest possible energy and the next 

higher energy state for ( i ) a � 4 Å, and ( ii ) a � 0.5 cm.  

2.33   For the step potential function shown in Figure P2.33, assume that  E  �  V  0  and that 

particles are incident from the  x  direction traveling in the � x  direction. ( a ) Write the 

wave solutions for each region. ( b ) Derive expressions for the transmission and refl ec-

tion coeffi cients.  

2.34   Consider an electron with a kinetic energy of 2.8 eV incident on a step potential func-

tion of height 3.5 eV. Determine the relative probability of fi nding the electron at a dis-

tance (a) 5 Å beyond the barrier, (b) 15 Å beyond the barrier, and (c) 40 Å beyond the 

barrier compared with the probability of fi nding the incident particle at the barrier edge.   

2.35   (a) Calculate the transmission coeffi cient of an electron with a kinetic energy of 

0.1 eV impinging on a potential barrier of height 1.0 eV and a width of 4 Å (b) Repeat 

part (a) for a barrier width of 12 Å. (c) Using the results of part (a), determine the 

density of electrons per second that impinge the barrier if the tunneling current den-

sity is 1.2 mA/cm2.   

2.36   ( a ) Estimate the tunneling probability of a particle with an effective mass of 

0.067 m  0  (an electron in gallium arsenide), where  m  0  is the mass of an electron, tun-

neling through a rectangular potential barrier of height  V  0  � 0.8 eV and width 15 Å. 

The particle kinetic energy is 0.20 eV. ( b ) Repeat part ( a ) if the effective mass of the 

particle is 1.08m0 (an electron in silicon).  

  Figure P2.33 |  Potential 

function for Problem 2.33.   

Incident particles

V0

x � 0 	x

V(x) � V(x) �

x � 0x � �
a
2

x � 	
a
2

  Figure P2.29 |  Potential function 

for Problem 2.29.   
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56 CHAPTER 2   Introduction to Quantum Mechanics

2.37   (a) A proton with a kinetic energy of 1 MeV is incident on a potential barrier of height 

12 MeV and width 10�14 m. What is the tunneling probability. (b) The width of the 

potential barrier in part (a) is to be decreased so that the tunneling probability is in-

creased by a factor of 10. What is the width of the potential barrier?    

*2.38   An electron with energy  E  is incident on a rectangular potential barrier as shown in 

Figure 2.9. The potential barrier is of width  a  and height V0  E. ( a ) Write the form 

of the wave function in each of the three regions. ( b ) For this geometry, determine 

what coeffi cient in the wave function solutions is zero. ( c ) Derive the expression for 

the transmission coeffi cient for the electron (tunneling probability). ( d ) Sketch the 

wave function for the electron in each region.  

*2.39   A potential function is shown in Figure P2.39 with incident particles coming from �� 

with a total energy E � V2. The constants  k  are defi ned as

  k1 �  �
_____

   2mE _ 

2

        k2 �  �
___________

   2m _ 

2

   (E � V1)     k3 �  �
___________

   2m _ 

2

    (E � V2)     

  Assume a special case for which k2a � 2n�, n � 1, 2, 3, . . . . Derive the expression, 

in terms of the constants, k1, k2, and k3, for the transmission coeffi cient. The transmis-

sion coeffi cient is defi ned as the ratio of the fl ux of particles in region III to the inci-

dent fl ux in region I.   

*2.40   Consider the one-dimensional potential function shown in Figure P2.40. Assume 

the total energy of an electron is E � V0. ( a ) Write the wave solutions that apply in 

each region. ( b ) Write the set of equations that result from applying the boundary 

conditions. ( c ) Show explicitly why, or why not, the energy levels of the electron are 

quantized.     

   Section 2.4 Extensions of the Wave Theory to Atoms  

2.41   Calculate the energy of the electron in the hydrogen atom (in units of eV) for the fi rst 

four allowed energy levels.  

2.42   Show that the most probable value of the radius  r  for the 1 s  electron in a hydrogen 

atom is equal to the Bohr radius  a  0 .  

  Figure P2.39 |  Potential function for 

Problem 2.39.   

Incident particles E 
 V2

I II III

V1

V2

x � 0 x � a

  Figure P2.40 |  Potential function for 

Problem 2.40.   

V(x) � �

I II III

V0

x � 0 x � a

nea29583_ch02_025-057.indd   56nea29583_ch02_025-057.indd   56 12/13/10   1:44 PM12/13/10   1:44 PM

eduardo
Highlight



 Reading List 57

2.43   Show that the wave function for � 100  given by Equation (2.74) is a solution to the 

differential equation given by Equation (2.65).  

2.44   What property do H, Li, Na, and K have in common?     
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3
  Introduction to the Quantum 

Theory of Solids 

   I
 n the last chapter, we applied quantum mechanics and Schrodinger’s wave equa-

tion to determine the behavior of electrons in the presence of various potential 

functions. We found one important characteristic of an electron bound to an 

atom or bound within a fi nite space to be that the electron can take on only discrete 

values of energy; that is, the energies are quantized. We also discussed the Pauli ex-

clusion principle, which stated that only one electron is allowed to occupy any given 

quantum state. In this chapter, we will generalize these concepts to the electron in a 

crystal lattice. 

  One of our goals is to determine the electrical properties of a semiconductor 

material, which we will then use to develop the current–voltage characteristics 

of semiconductor devices. Toward this end, we have two tasks in this chapter: to 

determine the properties of electrons in a crystal lattice and to determine the statisti-

cal characteristics of the very large number of electrons in a crystal.   ■

   3.0 | PREVIEW 
  In this chapter, we will:

  ■  Develop the concept of allowed and forbidden electron energy bands in a 

single-crystal material, and describe conduction and valence energy bands in a 

semiconductor material.  

 ■  Discuss the concept of negatively charged electrons and positively charged 

holes as two distinct charge carriers in a semiconductor material.  

 ■  Develop electron energy versus momentum curves in a single-crystal mate-

rial, which yields the concept of direct and indirect bandgap semiconductor 

materials.  

 ■  Discuss the concept of effective mass of an electron and a hole.  

 ■  Derive the density of quantum states in the allowed energy bands.  

 C H A P T E R 
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 3.1   Allowed and Forbidden Energy Bands 59

 ■  Develop the Fermi-Dirac probability function, which describes the statistical 

distribution of electrons among the allowed energy levels, and defi ne the Fermi 

energy level.      

  3.1 | ALLOWED AND FORBIDDEN ENERGY BANDS 
  In the last chapter, we considered the one-electron, or hydrogen, atom. That analysis 

showed that the energy of the bound electron is quantized: Only discrete values of 

electron energy are allowed. The radial probability density for the electron was also 

determined. This function gives the probability of fi nding the electron at a particu-

lar distance from the nucleus and shows that the electron is not localized at a given 

radius. We can extrapolate these single-atom results to a crystal and qualitatively de-

rive the concepts of allowed and forbidden energy bands. We will then apply quan-

tum mechanics and Schrodinger’s wave equation to the problem of an electron in a 

single crystal. We fi nd that the electronic energy states occur in bands of allowed 

states that are separated by forbidden energy bands. 

  3.1.1 Formation of Energy Bands 

  Figure 3.1a  shows the radial probability density function for the lowest electron 

energy state of the single, noninteracting hydrogen atom, and  Figure 3.1b  shows the 

same probability curves for two atoms that are in close proximity to each other. The 

wave functions of the electrons of the two atoms overlap, which means that the two 

electrons will interact. This interaction or perturbation results in the discrete quan-

tized energy level splitting into two discrete energy levels, schematically shown in 

 Figure 3.1c . The splitting of the discrete state into two states is consistent with the 

Pauli exclusion principle. 

   A simple analogy of the splitting of energy levels by interacting particles is the 

following. Two identical race cars and drivers are far apart on a race track. There is 

no interaction between the cars, so they both must provide the same power to achieve 

a given speed. However, if one car pulls up close behind the other car, there is an 

interaction called  draft.  The second car will be pulled to an extent by the lead car. 

The lead car will therefore require more power to achieve the same speed since it is 

pulling the second car, and the second car will require less power since it is being 

 Figure 3.1 | (a) Probability density function of an isolated hydrogen atom. (b) Overlapping probability density functions 

of two adjacent hydrogen atoms. (c) The splitting of the  n  � 1 state.       
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60 CHAPTER 3   Introduction to the Quantum Theory of Solids

pulled by the lead car. So there is a “splitting” of power (energy) of the two interact-

ing race cars. (Keep in mind not to take analogies too literally.) 

  Now, if we somehow start with a regular periodic arrangement of hydrogen-type 

atoms that are initially very far apart, and begin pushing the atoms together, the ini-

tial quantized energy level will split into a band of discrete energy levels. This effect 

is shown schematically in  Figure 3.2 , where the parameter r0 represents the equi-

librium interatomic distance in the crystal. At the equilibrium interatomic distance, 

there is a band of allowed energies, but within the allowed band, the energies are at 

discrete levels. The Pauli exclusion principle states that the joining of atoms to form 

a system (crystal) does not alter the total number of quantum states regardless of size. 

However, since no two electrons can have the same quantum number, the discrete 

energy must split into a band of energies in order that each electron can occupy a 

distinct quantum state. 

   We have seen previously that, at any energy level, the number of allowed quan-

tum states is relatively small. In order to accommodate all of the electrons in a crystal, 

we must have many energy levels within the allowed band. As an example, suppose 

that we have a system with 1019 one-electron atoms and also suppose that, at the 

equilibrium interatomic distance, the width of the allowed energy band is 1 eV. For 

simplicity, we assume that each electron in the system occupies a different energy 

level and, if the discrete energy states are equidistant, then the energy levels are sepa-

rated by 10�19 eV. This energy difference is extremely small, so that for all practical 

purposes, we have a quasi-continuous energy distribution through the allowed energy 

band. The fact that   10 �19    eV is a very small difference between two energy states can 

be seen from the following example.  

 Figure 3.2 | The splitting of an energy 

state into a band of allowed energies.   
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  Objective:  Calculate the change in kinetic energy of an electron when the velocity changes 

by a small amount. 

  Consider an electron traveling at a velocity of 10 7  cm/s. Assume that the velocity in-

creases by a value of 1 cm/s. The increase in kinetic energy is given by

� E �   1 _ 
2
   m v 2  

2  �   1 _ 
2
   m v 1  

2  �   1 _ 
2
   m �  v  2  

2  �  v  1  
2  � 

      Let    v  2  �  v  1  � � v   . Then

 v  2  
2  � (v1 � �v)2 �  v 1  

2  � 2v1�v � (�v)2

EXAMPLE 3.1 
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      But   � v    v  1 ,   so we have that

�E �   1 _ 
2
   m(2v1�v) � mv1�v

       ■ Solution 
 Substituting the number into this equation, we obtain

�E � (9.11 � 10�31)(105)(0.01) � 9.11 � 10�28 J    

which may be converted to units of electron volts as

�E �   9.11 � 10�28   ___ 
1.6 � 10�19

   � 5.7 � 10�9 eV      

  ■ Comment 
 A change in velocity of 1 cm/s compared with 10 7  cm/s results in a change in energy of 

  5.7 � 10 �9    eV, which is orders of magnitude larger than the change in energy of 10 �19  eV 

between energy states in the allowed energy band. This example serves to demonstrate that a 

difference in adjacent energy states of 10 �19  eV is indeed very small, so that the discrete ener-

gies within an allowed band may be treated as a quasi-continuous distribution.  

■ EXERCISE PROBLEM
Ex 3.1  The initial velocity of an electron is 107 cm/s. If the kinetic energy of the electron 

increases by �E � 10�12 eV, determine the increase in velocity.

  

(Ans. �v � 1.76 � 10
�4

 cm/s)
  Consider again a regular periodic arrangement of atoms, in which each atom 

now contains more than one electron. Suppose the atom in this imaginary crystal 

contains electrons up through the  n  � 3 energy level. If the atoms are initially very 

far apart, the electrons in adjacent atoms will not interact and will occupy the discrete 

energy levels. If these atoms are brought closer together, the outermost electrons 

in the  n  � 3 energy shell will begin to interact initially, so that this discrete energy 

level will split into a band of allowed energies. If the atoms continue to move closer 

together, the electrons in the  n  � 2 shell may begin to interact and will also split into 

a band of allowed energies. Finally, if the atoms become suffi ciently close together, 

the innermost electrons in the  n  � 1 level may interact, so that this energy level may 

also split into a band of allowed energies. The splitting of these discrete energy levels 

is qualitatively shown in  Figure 3.3 . If the equilibrium interatomic distance is  r  0 , then 

we have bands of allowed energies that the electrons may occupy separated by bands 

of forbidden energies. This energy-band splitting and the formation of allowed and 

forbidden bands is the energy-band theory of single-crystal materials. 

   The actual band splitting in a crystal is much more complicated than indicated 

in  Figure 3.3 . A schematic representation of an isolated silicon atom is shown in 

 Figure 3.4a . Ten of the 14 silicon atom electrons occupy deep-lying energy lev-

els close to the nucleus. The four remaining valence electrons are relatively weakly 

bound and are the electrons involved in chemical reactions.  Figure 3.4b  shows the 

band splitting of silicon. We need only consider the  n  � 3 level for the valence 
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62 CHAPTER 3   Introduction to the Quantum Theory of Solids

electrons, since the fi rst two energy shells are completely full and are tightly bound 

to the nucleus. The 3s state co rresponds to  n  � 3 and  l  � 0 and contains two quan-

tum states per atom. This state will contain two electrons at  T  � 0 K. The 3p state 

corresponds to  n  � 3 and  l  � 1 and contains six quantum states per atom. This state 

will contain the remaining two electrons in the individual silicon atom. 

   As the interatomic distance decreases, the 3s and 3p states interact and overlap. 

At the equilibrium interatomic distance, the bands have again split, but now four 

quantum states per atom are in the lower band and four quantum states per atom are 

in the upper band. At absolute zero degrees, electrons are in the lowest energy state, 

so that all states in the lower band (the valence band) will be full and all states in the 

 Figure 3.3 | Schematic showing the splitting of three energy states 

into allowed bands of energies.   
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 Figure 3.4 | (a) Schematic of an isolated silicon atom. (b) The splitting of the 3s and 3p states of silicon into the 

allowed and forbidden energy bands. 

  (From Shockley [6].)      
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upper band (the conduction band) will be empty. The bandgap energy  E g   between 

the top of the valence band and the bottom of the conduction band is the width of the 

forbidden energy band. 

  We have discussed qualitatively how and why bands of allowed and forbid-

den energies are formed in a crystal. The formation of these energy bands is di-

rectly related to the electrical characteristics of the crystal, as we will see later in our 

discussion.  

   *  3.1.2 The Kronig–Penney Model  1     

 In the previous section, we discussed qualitatively the splitting of allowed electron 

energies as atoms are brought together to form a crystal. The concept of allowed and 

forbidden energy bands can be developed more rigorously by considering quantum 

mechanics and Schrodinger’s wave equation. It may be easy for the reader to “get 

lost” in the following derivation, but the result forms the basis for the energy-band 

theory of semiconductors. 

  The potential function of a single, noninteracting, one-electron atom is shown 

in  Figure 3.5a . Also indicated on the fi gure are the discrete energy levels allowed 

for the electron.  Figure 3.5b  shows the same type of potential function for the case 

when several atoms in close proximity are arranged in a one-dimensional array. The 

potential functions of adjacent atoms overlap, and the net potential function for this 

case is shown in  Figure 3.5c . It is this potential function we would need to use in 

Schrodinger’s wave equation to model a one-dimensional single-crystal material. 

   The solution to Schrodinger’s wave equation, for this one-dimensional single-

crystal lattice, is made more tractable by considering a simpler potential function. 

 Figure 3.6  is the one-dimensional Kronig–Penney model of the periodic potential 

function, which is used to represent a one-dimensional single-crystal lattice. We 

need to solve Schrodinger’s wave equation in each region. As with previous quan-

tum mechanical problems, the more interesting solution occurs for the case when 

E � V0, which corresponds to a particle being bound within the crystal. The electrons 

are contained in the potential wells, but we have the possibility of tunneling between 

wells. The Kronig–Penney model is an idealized periodic potential representing a 

one-dimensional single crystal, but the results will illustrate many of the important 

features of the quantum behavior of electrons in a periodic lattice. 

   To obtain the solution to Schrodinger’s wave equation, we make use of a math-

ematical theorem by Bloch. The theorem states that all one-electron wave functions, 

for problems involving periodically varying potential energy functions, must be of 

the form

  �(x) � u(x)ejkx (3.1)

 *Indicates sections that will aid in the total summation of understanding of semiconductor devices, but 

may be skipped the fi rst time through the text without loss of continuity. 

 1Other techniques, such as the nearly free electron model, can be used to predict the energy-band theory 

of semiconductor materials. See, for example, Kittel [3] or Wolfe et al. [14]. 
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64 CHAPTER 3   Introduction to the Quantum Theory of Solids

 Figure 3.5 | (a) Potential function of a single isolated 

atom. (b) Overlapping potential functions of adjacent 

atoms. (c) Net potential function of a one-dimensional 

single crystal.   
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 Figure 3.6 | The one-dimensional periodic potential 

function of the Kronig–Penney model.   
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     The parameter  k  is called a constant of motion and will be considered in more de-

tail as we develop the theory. The function  u ( x ) is a periodic function with period 

(a � b). 

  We stated in Chapter 2 that the total solution to the wave equation is the product 

of the time-independent solution and the time-dependent solution, or

  �(x, t) � �(x)�(t) � u(x)ejkx 	 e�j(E�
)t (3.2)   

which may be written as

  �(x, t) � u(x)ej(kx�(E�
)t) (3.3)    

 This traveling-wave solution represents the motion of an electron in a single-crystal 

material. The amplitude of the traveling wave is a periodic function and the param-

eter  k  is also referred to as a wave number. 

  We can now begin to determine a relation between the parameter  k , the total en-

ergy  E , and the potential  V  0 . If we consider region I in  Figure 3.6  (0 �  x  �  a ) in which 

 V  (x)  � 0, take the second derivative of Equation (3.1), and substitute this result into 

the time-independent Schrodinger’s wave equation given by Equation (2.13), we 

obtain the relation

    
d2u1(x)

 __ 
dx2

   � 2jk   
du1(x)

 _ 
dx

   � (k2 � �2)u1(x) � 0 (3.4)    

 The function  u  1 ( x ) is the amplitude of the wave function in region I and the parameter 

� is defi ned as

  �2 �   2m E _ 

2

   (3.5)    

  Consider now a specifi c region II, − b  �  x  � 0, in which  V ( x ) �  V  0 , and apply 

Schrodinger’s wave equation. We obtain the relation

    
d 2u2(x)

 __ 
dx2

   � 2jk   
du2(x)

 _ 
dx

   �  � k2 � �2 �   
2mV0  _ 


2
   � u2(x) � 0 (3.6)   

where  u  2 ( x ) is the amplitude of the wave function in region II. We may defi ne

    2m  _ 

2

   (E � V0) � �2 �   
2mV0  _ 


2
   � �2 (3.7)   

so that Equation (3.6) may be written as

    
d 2u2(x)

 __ 
dx2

   � 2jk   
du2(x)

 _ 
dx

   � (k2 � �2)u2(x) � 0 (3.8)    

 Note that from Equation (3.7), if  E  �  V  0 , the parameter � is real, whereas if  E  �  V  0 , 

then � is imaginary. 

  The solution to Equation (3.4), for region I, is of the form

  u1(x) � Ae j(��k)x � Be�j(��k)x for (0 � x � a) (3.9)   

and the solution to Equation (3.8), for region II, is of the form

  u2(x) � Ce j(��k)x � De�j(��k)x for (�b � x � 0) (3.10)
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66 CHAPTER 3   Introduction to the Quantum Theory of Solids

     Since the potential function  V ( x ) is everywhere fi nite, both the wave function �( x ) 

and its fi rst derivative ��( x )�� x  must be continuous. This continuity condition im-

plies that the wave   amplitude function u( x ) and its fi rst derivative � u ( x )�� x  must also 

be continuous. 

  If we consider the boundary at  x  � 0 and apply the continuity condition to the 

wave amplitude, we have

  u1(0) � u2(0) (3.11)

     Substituting Equations (3.9) and (3.10) into Equation (3.11), we obtain

  A � B � C � D � 0 (3.12)

     Now applying the condition that

        du1  _ 
dx

   �  x�0
  �      du2  _ 

dx
   �  x�0

   (3.13)

   we obtain

  (� � k)A � (� � k)B � (� � k)C � (� � k)D � 0 (3.14)

      We have considered region I as 0 �  x  �  a  and region II as − b  �  x  � 0. The 

periodicity and the continuity condition mean that the function  u  1 , as  x  →  a , is equal 

to the function  u  2 , as  x  → � b . This condition may be written as

  u1(a) � u2(�b) (3.15)   

Applying the solutions for  u  1 ( x ) and  u  2 ( x ) to the boundary condition in Equation (3.15) 

yields

  Aej(��k)a � Be�j(��k)a � Ce�j(��k)b � De j(��k)b � 0 (3.16)    

 The last boundary condition is

        du1  _ 
dx

   �  x�a
  �       du2  _ 

dx
   �  x��b

   (3.17)   

which gives

 (�  � k)Aej(��k)a � (� � k)Be�j(��k)a � (� � k)Ce�j(��k)b 

� (� � k)De j(��k)b � 0 (3.18)      

  We now have four homogeneous equations, Equations (3.12), (3.14), (3.16), and 

(3.18), with four unknowns as a result of applying the four boundary conditions. In a 

set of simultaneous, linear, homogeneous equations, there is a nontrivial solution if, 

and only if, the determinant of the coeffi cients is zero. In our case, the coeffi cients in 

question are the coeffi cients of the parameters  A ,  B ,  C , and  D . 

  The evaluation of this determinant is extremely laborious and will not be consid-

ered in detail. The result is

    
�(�2 � �2)

 __ 
2��

   (sin �a)(sin �b) � (cos �a)(cos �b) � cos k(a � b) (3.19)
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     Equation (3.19) relates the parameter  k  to the total energy  E  (through the parameter �) 

and the potential function  V  0  (through the parameter �). 

  As we mentioned, the more interesting solutions occur for  E  �  V  0 , which applies 

to the electron bound within the crystal. From Equation (3.7), the parameter � is then 

an imaginary quantity. We may defi ne

  � � j� (3.20)   

where � is a real quantity. Equation (3.19) can be written in terms of � as

    
�2 � �2 

 __ 
2��

   (sin �a)(sinh �b) � (cos �a)(cosh �b) � cos k(a � b) (3.21)    

 Equation (3.21) does not lend itself to an analytical solution, but must be solved 

using numerical or graphical techniques to obtain the relation between  k ,  E , and  V  0 . 

The solution of Schrodinger’s wave equation for a single bound particle resulted in 

discrete allowed energies. The solution of Equation (3.21) will result in a band of 

allowed energies. 

  To obtain an equation that is more susceptible to a graphical solution and thus 

will illustrate the nature of the results, let the potential barrier width  b  → 0 and the 

barrier height  V  0  → �, but such that the product  bV  0  remains fi nite. Equation (3.21) 

then reduces to

   �   mV0ba 
 __ 

�2
   �    sin �a  __ �a   � cos �a � cos ka (3.22)    

 We may defi ne a parameter  P 	 as

  P	 �   
mV0ba 

 __ 
�2

   (3.23)    

 Then, fi nally, we have the relation

  P	   sin �a  __  �a   � cos �a � cos ka (3.24)    

   Equation (3.24) again gives the relation between the parameter k, total energy 
E (through the parameter �), and the potential barrier bV0. We may note that Equa-
tion (3.24) is not a solution of Schrodinger’s wave equation but gives the conditions 
for which Schrodinger’s wave equation will have a solution.  If we assume that the 

crystal is infi nitely large, then  k  in Equation (3.24) can assume a continuum of values 

and must be real.  

  3.1.3 The  k -Space Diagram 

 To begin to understand the nature of the solution, initially consider the special case 

for which  V  0  � 0. In this case  P 	 � 0, which corresponds to a free particle since there 

are no potential barriers. From Equation (3.24), we have that

  cos �a � cos ka (3.25)   

or

  � � k (3.26)    

 3.1   Allowed and Forbidden Energy Bands 67
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68 CHAPTER 3   Introduction to the Quantum Theory of Solids

 Since the potential is equal to zero, the total energy  E  is equal to the kinetic energy, 

so that, from Equation (3.5), Equation (3.26) may be written as

  � �  �
_____

   2m E _ 

2

     �  �
_________

   
2m �   1 _ 

2
  mv2 � 
 __ 


2
     �   

p
 _ 



   � k (3.27)   

where  p  is the particle momentum. The constant of the motion parameter  k  is related 

to the particle momentum for the free electron. The parameter  k  is also referred to as 

a wave number. 

  We can also relate the energy and momentum as

  E �   
p2 

 _ 
2m

   �   k
2
2  _ 
2m

   (3.28)    

  Figure 3.7  shows the parabolic relation of Equation (3.28) between the energy  E  

and momentum  p  for the free particle. Since the momentum and wave number are 

linearly related,  Figure 3.7  is also the  E  versus  k  curve for the free particle. 

   We now want to consider the relation between  E  and  k  from Equation (3.24) for 

the particle in the single-crystal lattice. As the parameter  P � increases, the particle 

becomes more tightly bound to the potential well or atom. We may defi ne the left 

side of Equation (3.24) to be a function  f  (� a ), so that

  f (�a) � P�   sin �a __ �a   � cos �a (3.29)    

  Figure 3.8a  is a plot of the fi rst term of Equation (3.29) versus �a.  Figure 3.8b  shows 

a plot of the cos �a term and  Figure 3.8c  is the sum of the two terms, or f (�a). 

   Now from Equation (3.24), we also have that

  f (�a) � cos ka (3.30)    

 For Equation (3.30) to be valid, the allowed values of the f (�a) function must be bounded 

between �1 and �1.  Figure 3.8c  shows the allowed values of f (�a) and the allowed val-

ues of �a in the shaded areas. Also shown on the fi gure are the values of  ka  from the 

right side of Equation (3.30), which correspond to the allowed values of f (�a). 

 Figure 3.7 | The parabolic  E  versus  k  

curve for the free electron.   

p or kp � 0

E
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  The parameter � is related to the total energy  E  of the particle through 

Equation (3.5), which is  �  2  � 2 m E �
 2 . A plot of the energy  E  of the particle as a 

function of the wave number  k  can be generated from  Figure 3.8c .  Figure 3.9  shows 

this plot and thus shows the concept of allowed energy bands for the particle propa-

gating in the crystal lattice. Since the energy  E  has discontinuities, we also have the 

concept of forbidden energies for the particles in the crystal.   

 Figure 3.8 | A plot of (a) the fi rst term in Equation (3.29), (b) the second term in Equation 

(3.29), and (c) the entire f (�a) function. The shaded areas show the allowed values of (�a)

corresponding to real values of  k .   

�4� 4��3� 3��2� 2��� � �a

(a)

sin �aP� �a

cos �a

(b)

�4� 4��3� 3��2� 2��� � �a

f (�a)

(c)

�a�4� �3� �2�

�1

�1

�� � 2� 3� 4�

ka � � ka � �
ka � 3�

ka � 2�
ka � 0

   EXAMPLE 3.2  Objective : Determine the width (in eV) of a forbidden energy band. 

 Determine the width of the forbidden bandgap that exists at   ka � �   (see  Figure 3.9 ). Assume 

that the coeffi cient   P� � 8   and the potential width is   a � 4.5 Å  . 

  ■ Solution 
 Combining Equations (3.29) and (3.30), we have

      cos ka � P�   sin �a  __ �a   � cos �a

 3.1   Allowed and Forbidden Energy Bands 69
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70 CHAPTER 3   Introduction to the Quantum Theory of Solids

 Figure 3.9 | The  E  versus  k  diagram generated from 

 Figure 3.8 . The allowed energy bands and forbidden 

energy bandgaps are indicated.   

Allowed

energy

band

Forbidden

energy band

0 �
a

2�
a

3�
a

k

E

3�
a�

2�
a�

�
a�

 At    ka  � �   and using    P � � 8  , we have

      �1 � 8   sin �a  __ �a   � cos �a

 We need to fi nd the smallest values of   � a    that satisfy this equation and then relate   �   to the 

energy E to fi nd the bandgap energy. From  Figure 3.8 , we see that, at one value of    ka  � �  , we 

have   � a  � � � � 1  a   . Then

     �1a �  �
_____

   
2mE1  _ 


2
     	 a � �

or

      E1 �   �
2
2  _ 

2ma2
   �   

�2(1.054 � 10�34)2 
  _____   

2(9.11 � 10�31) (4.5 � 10�10)2
   � 2.972 � 10�19 J

 From  Figure 3.8 , we see that, at the other value of  ka � �, �a  is in the range � � � a  � 2�. 

By trial and error, we fi nd   � a  � 5.141 � � 2  a   . Then

     �2a �  �
_____

   
2mE2  _ 


2
     	 a � 5.141

or

      E2 �   
(5.141)2 
2 

 __ 
2ma2

   �   
(5.141)2(1.054 � 10�34)2 

   _____   
2(9.11 � 10�31) (4.5 � 10�10)2

   � 7.958 � 10�19 J

 The bandgap energy is then

     Eg � E2 � E1 � 7.958 � 10�19 � 2.972 � 10�19 � 4.986 � 10�19 J
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or

       Eg �   4.986 � 10�19   ___  
1.6 � 10�19

   � 3.12 eV

  ■ Comment 
 The results of this example give an order of magnitude of forbidden energy band widths.  

■ EXERCISE PROBLEM
Ex 3.2  Using the parameters given in Example 3.2, determine the width of the allowed en-

ergy band in the range � � ka � 2�. 

(Ans. �E � 2.46 eV)
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  Consider again the right side of Equation (3.24), which is the function cos  ka.  
The cosine function is periodic so that

  cos ka � cos(ka � 2n�) � cos(ka � 2n�) (3.31)   

where  n  is a positive integer. We may consider  Figure 3.9  and displace portions of 

the curve by 2�. Mathematically, Equation (3.24) is still satisfi ed.  Figure 3.10  shows 

how various segments of the curve can be displaced by the 2� factor.   Figure 3.11  

shows the case in which the entire  E  versus  k  plot is contained within ��� a  �
 k  � �� a . This plot is referred to as a reduced  k -space diagram, or a reduced-zone 

representation.   
  We noted in Equation (3.27) that for a free electron, the particle momentum 

and the wave number  k  are related by  p  � 
 k . Given the similarity between the free 

 Figure 3.10 | The  E  versus  k  diagram showing 2� 

displacements of several sections of allowed energy 

bands.   

0 �
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 Figure 3.11 | The  E  versus  k  diagram 

in the reduced-zone representation.   

0

Reduced

k space

�
a

�
a

k

E

�

nea29583_ch03_058-105.indd   71nea29583_ch03_058-105.indd   71 12/11/10   10:09 AM12/11/10   10:09 AM

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight



72 CHAPTER 3   Introduction to the Quantum Theory of Solids

electron solution and the results of the single crystal shown in  Figure 3.9 , the param-

eter 
k in a single crystal is referred to as the  crystal momentum.  This parameter is 

not the actual momentum of the electron in the crystal but is a constant of the motion 

that includes the crystal interaction. 

   We have been considering the Kronig–Penney model, which is a  one- dimensional 
periodic potential function used to model a single-crystal lattice. The principal re-
sult of this analysis, so far, is that electrons in the crystal occupy certain allowed 
energy bands and are excluded from the forbidden energy bands.  For real three-

dimensional single-crystal materials, a similar energy-band theory exists. We will 

obtain additional electron properties from the Kronig–Penney model in the next 

sections.    

  TEST YOUR UNDERSTANDING

TYU 3.1 Using the parameters given in Example 3.2, determine the width (in eV) of the 

second forbidden energy band existing at ka � 2� (see Figure 3.8(c)). 

(Ans. Eg � 4.23 eV)

TYU 3.2 Using the parameters given in Example 3.2, determine the width (in eV) of the 

allowed energy band in the range 0 � ka � � (see Figure 3.8(c)). 

(Ans. E � 0.654 eV)

 

  3.2 | ELECTRICAL CONDUCTION IN SOLIDS 
  Again, we are eventually interested in determining the current–voltage character-

istics of semiconductor devices. We will need to consider electrical conduction in 

solids as it relates to the band theory we have just developed. Let us begin by consid-

ering the motion of electrons in the various allowed energy bands. 

  3.2.1 The Energy Band and the Bond Model 

 In Chapter 1, we discussed the covalent bonding of silicon.  Figure 3.12  shows a two-

dimensional representation of the covalent bonding in a single-crystal silicon lattice. 

This fi gure represents silicon at T � 0 K in which each silicon atom is surrounded 

by eight valence electrons that are in their lowest energy state and are directly in-

volved in the covalent bonding.  Figure 3.4b  represented the splitting of the discrete 

silicon energy states into bands of allowed energies as the silicon crystal is formed. 

At  T  � 0 K, the 4 N  states in the lower band, the valence band, are fi lled with the 

valence electrons. All of the valence electrons schematically shown in  Figure 3.12  

are in the valence band. The upper energy band, the conduction band, is completely 

empty at  T  � 0 K. 

   As the temperature increases above 0 K, a few valence band electrons may gain 

enough thermal energy to break the covalent bond and jump into the conduction 

band.  Figure 3.13a  shows a two-dimensional representation of this bond-breaking 
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 3.2   Electrical Conduction in Solids 73

effect and  Figure 3.13b , a simple line representation of the energy-band model, 

shows the same effect. 

   The semiconductor is neutrally charged. This means that, as the negatively 

charged electron breaks away from its covalent bonding position, a positively 

charged “empty state” is created in the original covalent bonding position in the 

valence band. As the temperature further increases, more covalent bonds are broken, 

more electrons jump to the conduction band, and more positive “empty states” are 

created in the valence band. 

  We can also relate this bond breaking to the  E  versus  k  energy bands.  Fig-

ure 3.14a  shows the  E  versus  k  diagram of the conduction and valence bands at 

 T  � 0 K. The energy states in the valence band are completely full and the states in 

the conduction band are empty.  Figure 3.14b  shows these same bands for  T  � 0 K, 

in which some electrons have gained enough energy to jump to the conduction band 

and have left empty states in the valence band. We are assuming at this point that no 

external forces are applied so the electron and “empty state” distributions are sym-

metrical with  k .   

 Figure 3.12 | Two-dimensional 

representation of the covalent bonding 

in a semiconductor at  T  � 0 K.   

 Figure 3.13 | (a) Two-dimensional representation of the breaking of a covalent bond. 

(b) Corresponding line representation of the energy band and the generation of a negative 

and positive charge with the breaking of a covalent bond.     
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74 CHAPTER 3   Introduction to the Quantum Theory of Solids

  3.2.2 Drift Current 

 Current is due to the net fl ow of charge. If we had a collection of positively charged 

ions with a volume density  N  (cm �3 ) and an average drift velocity  v d   (cm/s), then the 

drift current density would be

  J � qNvd  A/cm2 (3.32)    

 If, instead of considering the average drift velocity, we considered the individual ion 

velocities, then we could write the drift current density as

  J � q  	 
i=1

   

N

  vi
  (3.33)   

where  v i   is the velocity of the ith ion. The summation in Equation (3.33) is taken over 

a unit volume so that the current density  J  is still in units of A/cm2. 

  Since electrons are charged particles, a net drift of electrons in the conduction 

band will give rise to a current. The electron distribution in the conduction band, as 

shown in  Figure 3.14b , is an even function of  k  when no external force is applied. 

Recall that  k  for a free electron is related to momentum so that, since there are as 

many electrons with a � k  value as there are with a � k  value, the net drift current 

density due to these electrons is zero. This result is certainly expected since there is 

no externally applied force. 

  If a force is applied to a particle and the particle moves, it must gain energy. This 

effect is expressed as

  dE � F dx � F v dt (3.34)   

where  F  is the applied force, dx is the differential distance the particle moves,  v  is the 

velocity, and  dE  is the increase in energy. If an external force is applied to the elec-

trons in the conduction band, there are empty energy states into which the electrons 

can move; therefore, because of the external force, electrons can gain energy and a 

 Figure 3.14 | The  E  versus  k  diagram of the conduction and valence bands of a semiconductor 

at (a)  T  � 0 K and (b)  T  � 0 K.     
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net momentum. The electron distribution in the conduction band may look like that 

shown in  Figure 3.15 , which implies that the electrons have gained a net momentum.  
  We may write the drift current density due to the motion of electrons as

  J � �e  	 
i=1

   

n

  vi
  (3.35)   

where  e  is the magnitude of the electronic charge and  n  is the number of electrons 

per unit volume in the conduction band. Again, the summation is taken over a unit 

volume so that the current density is still in units of A/cm 2 . We may note from Equa-

tion (3.35) that the current is directly related to the electron velocity; that is, the cur-

rent is related to how well the electron can move in the crystal.  

  3.2.3 Electron Effective Mass 

 The movement of an electron in a lattice will, in general, be different from that of 

an electron in free space. In addition to an externally applied force, there are internal 

forces in the crystal due to positively charged ions or protons and negatively charged 

electrons, which will infl uence the motion of electrons in the lattice. We can write

  Ftotal � Fext � Fint � ma (3.36)   

where  F  total ,  F  ext , and  F  int  are the total force, the externally applied force, and the 

internal forces, respectively, acting on a particle in a crystal. The parameter  a  is the 

acceleration and  m  is the rest mass of the particle. 

  Since it is diffi cult to take into account all of the internal forces, we will write the 

equation

  Fext � m*a (3.37)   

where the acceleration  a  is now directly related to the external force. The parameter 

 m *, called the  effective mass,  takes into account the particle mass and also takes into 

account the effect of the internal forces. 

  To use an analogy for the effective mass concept, consider the difference in mo-

tion between a glass marble in a container fi lled with water and in a container fi lled 

with oil. In general, the marble will drop through the water at a faster rate than through 

the oil. The external force in this example is the gravitational force and the internal 
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 Figure 3.15 | The asymmetric distribution 

of electrons in the  E  versus  k  diagram 

when an external force is applied.   

E

k
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76 CHAPTER 3   Introduction to the Quantum Theory of Solids

forces are related to the viscosity of the liquids. Because of the difference in motion 

of the marble in these two cases, the mass of the marble would appear to be different 

in water than in oil. (As with any analogy, we must be careful not to be too literal.) 

  We can also relate the effective mass of an electron in a crystal to the  E  versus  k  

curves, such as is shown in  Figure 3.11 . In a semiconductor material, we will be deal-

ing with allowed energy bands that are almost empty of electrons and other energy 

bands that are almost full of electrons. 

  To begin, consider the case of a free electron whose  E  versus  k  curve is shown 

in  Figure 3.7 . Recalling Equation (3.28), the energy and momentum are related by 

 E  �  p  2 �2 m  � 
 2  k  2 �2 m , where  m  is the mass of the electron. The momentum and 

wave number  k  are related by  p  � 
 k . If we take the derivative of Equation (3.28) 

with respect to  k , we obtain

    dE _ 
dk

   �   

2k _ m   �   


p
 _ m   (3.38)    

 Relating momentum to velocity, Equation (3.38) can be written as

    1 _ 



     dE _ 
dk

   �   
p
 _ m   � v (3.39)   

where v is the velocity of the particle. The fi rst derivative of  E  with respect to  k  is 

related to the velocity of the particle. 

  If we now take the second derivative of  E  with respect to k, we have

    d 2E  _ 
dk2

   =   

2  _ m   (3.40)    

 We may rewrite Equation (3.40) as

    1 _ 

2

     d
2E _ 

dk2
   �   1 _ m   (3.41)    

 The second derivative of  E  with respect to  k  is inversely proportional to the mass 

of the particle. For the case of a free electron, the mass is a constant (nonrelativis-

tic effect), so the second derivative function is a constant. We may also note from 

 Figure 3.7  that  d    2  E � dk  2  is a positive quantity, which implies that the mass of the 

electron is also a positive quantity. 

  If we apply an electric fi eld to the free electron and use Newton’s classical equa-

tion of motion, we can write

  F � ma � �eE (3.42)   

where  a  is the acceleration, E is the applied electric fi eld, and  e  is the magnitude of 

the electronic charge. Solving for the acceleration, we have

  a �   �eE _ m   (3.43)    

 The motion of the free electron is in the opposite direction to the applied electric fi eld 

because of the negative charge. 

  We may now apply the results to the electron in the bottom of an allowed energy 

band. Consider the allowed energy band in  Figure 3.16a . The energy near the bottom 
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 3.2   Electrical Conduction in Solids 77

of this energy band may be approximated by a parabola, just as that of a free particle. 

We may write

  E � Ec � C1(k)2 (3.44)    

 The energy  E c   is the energy at the bottom of the band. Since  E  �  E c  , the parameter 

 C  1  is a positive quantity. 

  Taking the second derivative of  E  with respect to  k  from Equation (3.44), we obtain

   d 2E _ 
dk2

   � 2C1      (3.45)

 We may put Equation (3.45) in the form

    1 _ 

2 

     d  2E _ 
dk2

   �   
2C1 _ 

2

    (3.46)    

 Comparing Equation (3.46) with Equation (3.41), we may equate 
 2 �2 C  1  to the mass 

of the particle. However, the curvature of the curve in  Figure 3.16a  will not, in gen-

eral, be the same as the curvature of the free-particle curve. We may write

    1 _ 

2 

     d  2E _ 
dk2

   �   
2C1 _ 

2

   �   1 _ 
m*

   (3.47)

 where  m * is called the effective mass. Since  C  1  � 0, we have that  m * � 0 also. 

  The effective mass is a parameter that relates the quantum mechanical results to 

the classical force equations. In most instances, the electron in the bottom of the con-

duction band can be thought of as a classical particle whose motion can be modeled by 

 Newtonian mechanics, provided that the internal forces and quantum mechanical prop-

erties are taken into account through the effective mass. If we apply an electric fi eld to 

the electron in the bottom of the allowed energy band, we may write the acceleration as

     a �   �eE _ 
mn*

   (3.48)

where mn* is the effective mass of the electron. The effective mass mn* of the electron 

near the bottom of the conduction band is a constant.  

Figure 3.16 | (a) The conduction band in reduced k space, and the parabolic 

approximation. (b) The valence band in reduced k space, and the parabolic 

approximation.

(a)

E

EC

Parabolic

approximation

kk � 0

(b)

E

EV

Parabolic

approximation

kk � 0
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78 CHAPTER 3   Introduction to the Quantum Theory of Solids

3.2.4   Concept of the Hole 

 In considering the two-dimensional representation of the covalent bonding shown in 

 Figure 3.13a , a positively charged “empty state” was created when a valence electron 

was elevated into the conduction band. For  T  � 0 K, all valence electrons may gain 

thermal energy; if a valence electron gains a small amount of thermal energy, it may 

hop into the empty state. The movement of a valence electron into the empty state is 

equivalent to the movement of the positively charged empty state itself.  Figure 3.17  

shows the movement of valence electrons in the crystal, alternately fi lling one empty 

state and creating a new empty state—a motion equivalent to a positive charge mov-

ing in the valence band. The crystal now has a second equally important charge car-

rier that can give rise to a current. This charge carrier is called a  hole  and, as we will 

see, can also be thought of as a classical particle whose motion can be modeled using 

Newtonian mechanics. 

  The drift current density due to electrons in the valence band, such as shown in 

 Figure 3.14b , can be written as

  J � �e  	 
i (fi lled)

  

 

  vi
  (3.49)

   

where the summation extends over all fi lled states. This summation is inconvenient 

since it extends over a nearly full valence band and takes into account a very large 

number of states. We may rewrite Equation (3.49) in the form

  J � �e  	 
i (total)

  

 

  vi
  � e  	 

i (empty)

  

 

  vi
  (3.50)

    If we consider a band that is totally full, all available states are occupied by elec-

trons. The individual electrons can be thought of as moving with a velocity as given 

by Equation (3.39):

  v(E) �  �   1 _ 



   �   �   dE _ 
dk

   �  (3.39)

   The band is symmetric in  k  and each state is occupied so that, for every electron 

with a velocity v, there is a corresponding electron with a velocity �v. Since the 

band is full, the distribution of electrons with respect to  k  cannot be changed with an 

Figure 3.17 |  Visualization of the movement of a hole in a semiconductor. 

(a) (b) (c)
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 3.2   Electrical Conduction in Solids 79

externally applied force. The net drift current density generated from a completely 

full band, then, is zero, or

  �e  	 
i (total)

  

 

  vi  � 0     (3.51)

  We can now write the drift current density from Equation (3.50) for an almost 

full band as

  J � �e  	 
i (empty)

  

 

  vi
  (3.52)

 where the  v i   in the summation is the

  v(E) �  �   1 _ 



   �   �   dE _ 
dk

   � 
 associated with the empty state. Equation (3.52) is entirely equivalent to placing a 

positively charged particle in the empty states and assuming all other states in the 

band are empty, or neutrally charged. This concept is shown in  Figure 3.18 .  Fig-

ure 3.18a  shows the valence band with the conventional electron-fi lled states and 

empty states, whereas  Figure 3.18b  shows the new concept of positive charges oc-

cupying the original empty states. This concept is consistent with the discussion of 

the positively charged “empty state” in the valence band, as shown in  Figure 3.17 . 

  The  v i   in the summation of Equation (3.52) is related to how well this positively 

charged particle moves in the semiconductor. Now consider an electron near the top 

of the allowed energy band shown in  Figure 3.16b . The energy near the top of the 

allowed energy band may again be approximated by a parabola so that we may write

  (E � Ev) � �C2(k)2 (3.53)

     The energy Ev is the energy at the top of the energy band. Since  E  �  E v   for electrons 

in this band, the parameter  C  2  must be a positive quantity. 

  Taking the second derivative of  E  with respect to  k  from Equation (3.53), we obtain

    d  2E _ 
dk 2

   � �2C2 (3.54)

     We may rearrange this equation so that

    1 _ 

2 

     d  2E _ 
dk2

   �   
�2C2 _ 


2
    (3.55)

Figure 3.18 |  (a) Valence band with conventional electron-fi lled states and empty states. 

(b) Concept of positive charges occupying the original empty states. 

(a)

E

k

(b)

E

k
++++ ++ +
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80 CHAPTER 3   Introduction to the Quantum Theory of Solids

   Comparing Equation (3.55) with Equation (3.41), we may write

    1 _ 

2 

     d  2E _ 
dk2

   �   
�2C2 _ 


2
   �   1 _ 

m*
   (3.56)

 where  m * is again an effective mass. We have argued that  C  2  is a positive quantity, 

which now implies that  m * is a negative quantity. An electron moving near the top 

of an allowed energy band behaves as if it has a negative mass. 

  We must keep in mind that the effective mass parameter is used to relate quan-

tum mechanics and classical mechanics. The attempt to relate these two theories 

leads to this strange result of a negative effective mass. However, we must recall that 

solutions to Schrodinger’s wave equation also led to results that contradicted classi-

cal mechanics. The negative effective mass is another such example. 

  In discussing the concept of effective mass in the previous section, we used an 

analogy of marbles moving through two liquids. Now consider placing an ice cube in 

the center of a container fi lled with water: the ice cube will move upward toward the 

surface in a direction opposite to the gravitational force. The ice cube appears to have 

a negative effective mass since its acceleration is opposite to the external force. The 

effective mass parameter takes into account all internal forces acting on the particle. 

  If we again consider an electron near the top of an allowed energy band and use 

Newton’s force equation for an applied electric fi eld, we will have

  F � m*a � �eE (3.57)    

 However,  m * is now a negative quantity, so we may write

  a �   �eE __ 
�m*

   �   �eE _ 
m*

   (3.58)

   An electron moving near the top of an allowed energy band moves in the same direc-

tion as the applied electric fi eld. 

  The net motion of electrons in a nearly full band can be described by consider-

ing just the empty states, provided that a positive electronic charge is associated with 

each state and that the negative of  m * from Equation (3.56) is associated with each 

state. We now can model this band as having particles with a positive electronic 

charge and a positive effective mass. The density of these particles in the valence 

band is the same as the density of empty electronic energy states. This new particle is 

the  hole . The hole, then, has a positive effective mass denoted by  m p  * and a positive 

electronic charge, so it will move in the same direction as an applied fi eld.  

3.2.5   Metals, Insulators, and Semiconductors 

 Each crystal has its own energy-band structure. We noted that the splitting of the 

energy states in silicon, for example, to form the valence and conduction bands, was 

complex. Complex band splitting occurs in other crystals, leading to large varia-

tions in band structures between various solids and to a wide range of electrical 

characteristics observed in these various materials. We can qualitatively begin to 

 understand some basic differences in electrical characteristics caused by variations 

in band structure by considering some simplifi ed energy bands. 
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 3.2   Electrical Conduction in Solids 81

  There are several possible energy-band conditions to consider.  Figure 3.19a  

shows an allowed energy band that is completely empty of electrons. If an elec-

tric fi eld is applied, there are no particles to move, so there will be no current.  Fig-

ure 3.19b  shows another allowed energy band whose energy states are completely 

full of electrons. We argued in the previous section that a completely full energy band 

will also not give rise to a current. A material that has energy bands either completely 

empty or completely full is an insulator. The resistivity of an insulator is very large 

or, conversely, the conductivity of an insulator is very small. There are essentially no 

charged particles that can contribute to a drift current.  Figure 3.19c  shows a simplifi ed 

energy-band diagram of an insulator. The bandgap energy Eg of an insulator is usually 

on the order of 3.5 to 6 eV or larger, so that at room temperature, there are essentially 

no electrons in the conduction band and the valence band remains completely full. 

There are very few thermally generated electrons and holes in an insulator. 

   Figure 3.20a  shows an energy band with relatively few electrons near the bottom 

of the band. Now, if an electric fi eld is applied, the electrons can gain energy, move 

to higher energy states, and move through the crystal. The net fl ow of charge is a 

current.  Figure 3.20b  shows an allowed energy band that is almost full of electrons, 

which means that we can consider the holes in this band. If an electric fi eld is applied, 

the holes can move and give rise to a current.  Figure 3.20c  shows the simplifi ed 

energy-band diagram for this case. The bandgap energy may be on the order of 1 eV. 

Figure 3.20 |  Allowed energy bands 

showing (a) an almost empty band, (b) an 

almost full band, and (c) the bandgap 

energy between the two allowed bands. 

(a)
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energy

band
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empty)

(b)

Allowed

energy

band

(almost

full)

(c)

Eg
Electrons Empty electronic

states

Conduction

band

(almost

empty)

Valence

band

(almost

full)

Figure 3.19 |   Allowed energy bands 

showing (a) an empty band, (b) a 

completely full band, and (c) the bandgap 

energy between the two allowed bands.    
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82 CHAPTER 3   Introduction to the Quantum Theory of Solids

This energy-band diagram represents a semiconductor for  T  � 0 K. The resistivity 

of a semiconductor, as we will see in the next chapter, can be controlled and varied 

over many orders of magnitude. 

    The characteristics of a metal include a very low resistivity. The energy-band 

diagram for a metal may be in one of two forms.  Figure 3.21a  shows the case of a 

partially full band in which there are many electrons available for conduction, so that 

the material can exhibit a large electrical conductivity.  Figure 3.21b  shows another 

possible energy-band diagram of a metal. The band splitting into allowed and forbid-

den energy bands is a complex phenomenon, and  Figure 3.21b  shows a case in which 

the conduction and valence bands overlap at the equilibrium interatomic distance. 

As in the case shown in  Figure 3.21a , there are large numbers of electrons as well 

as large numbers of empty energy states into which the electrons can move, so this 

material can also exhibit a very high electrical conductivity.                    

Partially

filled

band

Full

band

(a) (b)

Lower

band Electrons

Upper

band

Figure 3.21 |  Two possible energy bands of a metal showing (a) a partially fi lled band and 

(b) overlapping allowed energy bands. 

   TEST YOUR UNDERSTANDING  

TYU 3.3   A simplifi ed  E  versus  k  curve for an electron in the conduction band is 

given. The value of  a  is   10 Å. Determine the relative effective mass  m *� m  0 . 

(Ans.  m *� m  0  � 1.175)

  

TYU 3.4   A simplifi ed  E  versus  k  curve for a hole in the valence band is given. As-

sume a value of  a  � 12 Å. Determine the relative effective mass  m *� m  0 .    

(Ans.  m*� m 0    � 0.2985)

E

0

E = Ec + 0.32 eV

Ec k
�
a

�
a�

Figure 3.22 | Figure for Exercise TYU 3.3.

0

E � Ev � 0.875 eV

Ev

�
a

�
a�

E

k

Figure 3.23 | Figure for Exercise TYU 3.4.
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 3.3   Extension to Three Dimensions 83

 3.3 | EXTENSION TO THREE DIMENSIONS  
 The basic concepts of allowed and forbidden energy bands and effective mass have 

been developed in the previous sections. In this section, we will extend these concepts 

to three dimensions and to real crystals. We will qualitatively consider particular char-

acteristics of the three-dimensional crystal in terms of the  E  versus  k  plots, bandgap 

energy, and effective mass. We must emphasize that we will only briefl y touch on the 

basic three-dimensional concepts; therefore, many details will not be considered. 

  One problem encountered in extending the potential function to a three- 

dimensional crystal is that the distance between atoms varies as the direction through 

the crystal changes.  Figure 3.24  shows a face-centered cubic structure with the [100] 

and [110] directions indicated. Electrons traveling in different directions encounter 

different potential patterns and therefore different  k -space boundaries. The  E  versus 

 k  diagrams are, in general, a function of the  k -space direction in a crystal.  

 3.3.1 The  k -Space Diagrams of Si and GaAs 

  Figure 3.25  shows an  E  versus  k  diagram of gallium arsenide (GaAs) and of silicon 

(Si). These simplifi ed diagrams show the basic properties considered in this text but 

do not show many of the details more appropriate for advanced-level courses.   
  Note that in place of the usual positive and negative  k  axes, we now show two 

different crystal directions. The  E  versus  k  diagram for the one-dimensional model 

was symmetric in  k  so that no new information is obtained by displaying the negative 

axis. It is normal practice to plot the [100] direction along the normal �k axis and 

to plot the [111] portion of the diagram so the � k  points to the left. In the case of 

diamond or zincblende lattices, the maxima in the valence band energy and minima 

in the conduction band energy occur at k � 0 or along one of these two directions. 

   Figure 3.25a  shows the  E  versus  k  diagram for GaAs. The valence band maxi-

mum and the conduction band minimum both occur at  k  � 0. The electrons in the 

 Figure 3.24 | The (100) plane of a 

face-centered cubic crystal showing the 

[100] and [110] directions.   

[110]

direction

[100]

direction

a–

b–
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84 CHAPTER 3   Introduction to the Quantum Theory of Solids

conduction band tend to settle at the minimum conduction band energy that is at 

 k  � 0. Similarly, holes in the valence band tend to congregate at the uppermost va-

lence band energy. In GaAs, the minimum conduction band energy and maximum 

valence band energy occur at the same  k  value. A semiconductor with this property 

is said to be a  direct  bandgap semiconductor; transitions between the two allowed 

bands can take place with no change in crystal momentum. This direct nature has 

signifi cant effect on the optical properties of the material. GaAs and other direct 

bandgap materials are ideally suited for use in semiconductor lasers and other opti-

cal devices. 

  The  E  versus  k  diagram for silicon is shown in  Figure 3.25b . The maximum in 

the valence band energy occurs at  k  � 0 as before. The minimum in the conduction 

band energy occurs not at  k  � 0, but along the [100] direction. The difference be-

tween the minimum conduction band energy and the maximum valence band energy 

is still defi ned as the bandgap energy  E g  . A semiconductor whose maximum valence 

band energy and minimum conduction band energy do not occur at the same  k  value 

is called an  indirect  bandgap semiconductor. When electrons make a transition be-

tween the conduction and valence bands, we must invoke the law of conservation of 

momentum. A transition in an indirect bandgap material must necessarily include an 

interaction with the crystal so that crystal momentum is conserved. 

  Germanium is also an indirect bandgap material, whose valence band maximum 

occurs at  k  � 0 and whose conduction band minimum occurs along the [111] direc-

tion. GaAs is a direct bandgap semiconductor, but other compound semiconductors, 

such as GaP and AlAs, have indirect bandgaps.   

 Figure 3.25 | Energy-band structures of (a) GaAs and (b) Si.  

 (From Sze [12].)     
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 3.4   Density of States Function 85

 3.3.2 Additional Effective Mass Concepts 

 The curvature of the  E  versus  k  diagrams near the minimum of the conduction band 

energy is related to the effective mass of the electron. We may note from  Figure 3.25  

that the curvature of the conduction band at its minimum value for GaAs is larger 

than that of silicon, so the effective mass of an electron in the conduction band of 

GaAs will be smaller than that in silicon. 

  For the one-dimensional  E  versus  k  diagram, the effective mass was defi ned by 

Equation (3.41) as 1� m * � 1�
 2  	  d  2  E � dk  2 . A complication occurs in the effective 

mass concept in a real crystal. A three-dimensional crystal can be described by three 

 k  vectors. The curvature of the  E  versus  k  diagram at the conduction band minimum 

may not be the same in the three  k  directions. In later sections and chapters, the ef-

fective mass parameters used in calculations will be a kind of statistical average that 

is adequate for most device calculations.  2        

 3.4 | DENSITY OF STATES FUNCTION  
 As we have stated, we eventually wish to describe the current–voltage characteristics 

of semiconductor devices. Since current is due to the fl ow of charge, an important step 

in the process is to determine the number of electrons and holes in the semiconductor 

that will be available for conduction. The number of carriers that can contribute to the 

conduction process is a function of the number of available energy or quantum states 

since, by the Pauli exclusion principle, only one electron can occupy a given quantum 

state. When we discussed the splitting of energy levels into bands of allowed and 

forbidden energies, we indicated that the band of allowed energies was actually made 

up of discrete energy levels. We must determine the density of these allowed energy 

states as a function of energy in order to calculate the electron and hole concentrations.  

 3.4.1 Mathematical Derivation 

 To determine the density of allowed quantum states as a function of energy, we need 

to consider an appropriate mathematical model. Electrons are allowed to move rela-

tively freely in the conduction band of a semiconductor but are confi ned to the crys-

tal. As a fi rst step, we will consider a free electron confi ned to a three-dimensional 

infi nite potential well, where the potential well represents the crystal. The potential 

of the infi nite potential well is defi ned as

   V(x, y, z) � 0   for 0 � x � a (3.59)

 0 � y � a

 0 � z � a

 V(x, y, z) � �  elsewhere  

where the crystal is assumed to be a cube with length  a . Schrodinger’s wave equa-

tion in three dimensions can be solved by using the separation of variables technique. 

 2See Appendix F for further discussion of effective mass concepts. 
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86 CHAPTER 3   Introduction to the Quantum Theory of Solids

Extrapolating the results from the one-dimensional infi nite potential well, we can 

show (see Problem 3.23) that

    2m� _ 

2

   � k2 �  k x  
2  �  k y  

2  �  k z  
2  �  �  n x  

2   �  n y  
2  �  n z  

2  �   �   �2

 _ 
a2

   �  (3.60)   

where  n x  ,  n y  , and  n z   are positive integers. (Negative values of  n x  ,  n y  , and  n z   yield the 

same wave function, except for the sign, as the positive integer values, resulting in 

the same probability function and energy; therefore the negative integers do not rep-

resent a different quantum state.) 

  We can schematically plot the allowed quantum states in  k  space.  Figure 3.26a  

shows a two-dimensional plot as a function of  k x   and  k y  . Each point represents an 

allowed quantum state corresponding to various integral values of  n x   and  n y  . Posi-

tive and negative values of  k x  ,  k y  , or  k z   have the same energy and represent the same 

energy state. Since negative values of  k x  ,  k y  , or  k z   do not represent additional quantum 

states, the density of quantum states will be determined by considering only the posi-

tive one-eighth of the spherical  k  space as shown in  Figure 3.26b .  

  The distance between two quantum states in the  k x   direction, for example, is 

given by

     k x�1  � kx � (nx � 1)  �   � _ a   �  � nx  �   � _ a   �  �   � _ a    (3.61)  

 Generalizing this result to three dimensions, the volume  V k   of a single quantum state is 

   Vk �   �   � _ a   �  3  (3.62)  

 We can now determine the density of quantum states in  k  space. A differential vol-

ume in  k  space is shown in  Figure 3.26b  and is given by 4� k  2   dk , so the differential 

density of quantum states in  k  space can be written as

   gT  (k) dk � 2  �   1 _ 
8
   �    4�k2 dk __ 

  �   � _ a   �  3 
   (3.63)   

 Figure 3.26 | (a) A two-dimensional array of allowed quantum states in 

 k  space. (b) The positive one-eighth of the spherical  k  space.   

(b)

ky

kx

kz

k

(a)

k y

kx kxkx � 1

dk

k
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 3.4   Density of States Function 87

 The fi rst factor, 2, takes into account the two spin states allowed for each quantum 

state; the next factor,   1 _ 
8
  , takes into account that we are considering only the quantum 

states for positive values of  k x  ,  k y  , and  k z  . The factor 4� k  2   dk  is again the differential 

volume and the factor (�/ a ) 3  is the volume of one quantum state. Equation (3.63) 

may be simplifi ed to 

  gT (k) dk �   �k2 dk __ 
�3

   	 a3 (3.64)   

  Equation (3.64) gives the density of quantum states as a function of momentum, 

through the parameter  k . We can now determine the density of quantum states as a 

function of energy  E . For a free electron, the parameters  E  and  k  are related by   

 k2 �   2mE _ 

2

   (3.65a)

or

 k �   1 _ 



   �
____

 2mE   (3.65b)      

 The differential  dk  is 

  dk �   1 _ 



    �
___

   m _ 
2E

     dE (3.66)   

 Then, substituting the expressions for  k  2  and  dk  into Equation (3.64), the number of 

energy states between  E  and  E  �  dE  is given by

   gT (E ) dE �   �a3

 _ 
�3

    �   2mE _ 

2

   �  	   1 _ 



    �
___

   m _ 
2E

     dE (3.67)   

 Since  
  �  h �2�, Equation (3.67) becomes

   gT (E ) dE �   4�a3

 _ 
h3

   	 (2m)3�2 	  �
__

 E   dE (3.68)   

 Equation (3.68) gives the total number of quantum states between the energy  E  and 

 E  �  dE  in the crystal space volume of  a  3 . If we divide by the volume  a  3 , then we will 

obtain the density of quantum states per unit volume of the crystal. Equation (3.68) 

then becomes

  g (E ) �   
4�(2m)3�2

 __ 
h3

    �
__

 E   (3.69)    

 The density of quantum states is a function of energy  E . As the energy of this free 

electron becomes small, the number of available quantum states decreases. This den-

sity function is really a double density, in that the units are given in terms of states 

per unit energy per unit volume.      

   EXAMPLE 3.3  Objective:  Calculate the density of states per unit volume over a particular energy range. 

  Consider the density of states for a free electron given by Equation (3.69). Calculate the 

density of states per unit volume with energies between 0 and 1 eV.  
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88 CHAPTER 3   Introduction to the Quantum Theory of Solids

 3.4.2 Extension to Semiconductors 

 In the previous section, we derived a general expression for the density of allowed 

electron quantum states using the model of a free electron with mass  m  bounded in a 

three-dimensional infi nite potential well. We can extend this same general model to a 

semiconductor to determine the density of quantum states in the conduction band and the 

density of quantum states in the valence band. Electrons and holes are confi ned within the 

semiconductor crystal, so we will again use the basic model of the infi nite potential well. 

  The parabolic relationship between energy and momentum of a free electron is 

given in Equation (3.28) as  E  �  p  2 �2 m  � 
 2  k  2 �2 m .  Figure 3.16a  shows the conduc-

tion energy band in the reduced  k  space. The  E  versus  k  curve near k � 0 at the bot-

tom of the conduction band can be approximated as a parabola, so we may write

   E � Ec �   

2k2

 _ 
2mn*

   (3.70)  

where  E c   is the bottom edge of the conduction band and mn* is the electron density of 

states effective mass.  3    Equation (3.70) may be rewritten to give 

  E � Ec �   

2k2

 _ 
2mn*

   (3.71)   

 ■ Solution 
 The volume density of quantum states, from Equation (3.69), is

   N �  
∫

0

 

 
1 eV 

g (E) dE �   
4�(2m)3�2

 __ 
h3

   	  
∫

0

 

 
1 eV 

 �
__

 E   dE   

or 

  N �   
4�(2m)3�2

 __ 
h3

   	   2 _ 
3
   	 E 3�2   

 The density of states is now

   N �   
4�[2(9.11 � 10�31)]3�2

  ____  
(6.625 � 10�34)3

   	   2 _ 
3
   	 (1.6 � 10�19)3�2 � 4.5 � 1027 m�3  

or 

  N � 4.5 � 1021 states/cm3     

 ■ Comment 
 The density of quantum states is typically a large number. An effective density of states in a 

semiconductor, as we will see in the following sections and in the next chapter, is also a large 

number but is usually less than the density of atoms in the semiconductor crystal.

■ EXERCISE PROBLEM
  Ex 3.3  For a free electron, calculate the density of quantum states (#/cm 3 ) 

over the energy range of (a) 0 �  E  � 2.0 eV and (b) 1 �  E  � 2 eV. 

[Ans. (a)  N  � 1.28 � 10  
22

  cm 
−3

 ; (b)  N  � 8.29 � 10  
21

  cm 
−3

 ]

   

 3Again, see Appendix F for further discussion of effective mass concepts. 
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 3.4   Density of States Function 89

  The general form of the  E  versus  k  relation for an electron in the bottom of a 

conduction band is the same as the free electron, except the mass is replaced by the 

effective mass. We can then think of the electron in the bottom of the conduction 

band as being a “free” electron with its own particular mass. The right side of Equa-

tion (3.71) is of the same form as the right side of Equation (3.28), which was used 

in the derivation of the density of states function. Because of this similarity, which 

yields the “free” conduction electron model, we may generalize the free electron 

results of Equation (3.69) and write the density of allowed electronic energy states in 

the conduction band as 

  gc(E) �   
4�(2 m n  * )3�2

 __ 
h3

    �
______

 E � Ec
   (3.72)   

 Equation (3.72) is valid for  E  �  E c  . As the energy of the electron in the conduction 

band decreases, the number of available quantum states also decreases. 

  The density of quantum states in the valence band can be obtained by using the 

same infi nite potential well model, since the hole is also confi ned in the semiconduc-

tor crystal and can be treated as a “free” particle. The density of states effective mass 

of the hole is   m  p    * .  Figure 3.16b  shows the valence energy band in the reduced  k  space. 

We may also approximate the  E  versus  k  curve near  k  � 0 by a parabola for a “free” 

hole, so that 

  E � Ev �   

2k2

 _ 
2 m p  * 

   (3.73)   

 Equation (3.73) may be rewritten to give 

 Ev � E �   

2k2

 _ 
2 m p  * 

   (3.74)    

 Again, the right side of Equation (3.74) is of the same form used in the general deri-

vation of the density of states function. We may then generalize the density of states 

function from Equation (3.69) to apply to the valence band, so that 

 gv(E) �   
4�(2 m p  * )3�2

 __ 
h3

    �
______

 Ev � E   (3.75)    

 Equation (3.75) is valid for  E  �  E v   .
  We have argued that quantum states do not exist within the forbidden energy 

band, so  g ( E ) � 0 for  E v   �  E  �  E c  .  Figure 3.27  shows the plot of the density of 

quantum states as a function of energy. If the electron and hole effective masses were 

equal, then the functions  g c  ( E ) and  g v  ( E ) would be symmetrical about the energy 

midway between  E c   and  E v  , or the midgap energy,  E  midgap   .
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90 CHAPTER 3   Introduction to the Quantum Theory of Solids

 Figure 3.27 | The density of energy 

states in the conduction band and the 

density of energy states in the valence 

band as a function of energy.   

EC

EV

E

gV (E)

gC (E)

g(E)

EXAMPLE 3.4   Objective:  Determine the number (#/cm3) of quantum states in silicon between  E c   and  E c   � 

 kT  at  T  � 300 K.  

 ■ Solution 
 Using Equation (3.72), we can write

   N �  
∫
 

EC

 

 

 

EC � kT
 

    
4� � 2 m n  *  � 3�2

 __ 
h3

    �
______

 E � Ec
   	 dE  

  �     
4� � 2 m n  *  � 3�2

 __ 
h3

        	   2 _ 
3
   	 (E � Ec)3�2 
   EC

 
 

     Ec � kT

  

  �   
4�[2(1.08)(9.11 � 10�31)]3�2

   _____  
(6.625 � 10�34)3

   	   2 _ 
3
   	  � (0.0259)(1.6 � 10�19) � 3�2 

 � 2.12 � 1025 m�3    

or

    N  � 2.12 � 10 19  cm −3      

 ■ Comment 
 The result of this example shows the order of magnitude of the density of quantum states in a 

semiconductor. 

 ■  EXERCISE PROBLEM 
  Ex3.4  Determine the number (#/cm 3 ) of quantum states in silicon between ( E v   �  kT ) and  E v   

at  T  � 300 K. 

(Ans.  N  � 7.92 × 10 
18

  cm 
−3

 )
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 3.5   Statistical Mechanics 91

        3.5 | STATISTICAL MECHANICS  
 In dealing with large numbers of particles, we are interested only in the statistical be-

havior of the group as a whole rather than in the behavior of each individual particle. 

For example, gas within a container will exert an average pressure on the walls of the 

vessel. The pressure is actually due to the collisions of the individual gas molecules 

with the walls, but we do not follow each individual molecule as it collides with the 

wall. Likewise in a crystal, the electrical characteristics will be determined by the 

statistical behavior of a large number of electrons.  

3.5.1  Statistical Laws 

 In determining the statistical behavior of particles, we must consider the laws that 

the particles obey. There are three distribution laws determining the distribution of 

particles among available energy states. 

  One distribution law is the Maxwell–Boltzmann probability function. In this case, 

the particles are considered to be distinguishable by being numbered, for example, from 

1 to N, with no limit to the number of particles allowed in each energy state. The behavior 

of gas molecules in a container at fairly low pressure is an example of this distribution. 

  A second distribution law is the Bose–Einstein function. The particles in this 

case are indistinguishable and, again, there is no limit to the number of particles per-

mitted in each quantum state. The behavior of photons, or black body radiation, is an 

example of this law. 

  The third distribution law is the Fermi–Dirac probability function. In this case, 

the particles are again indistinguishable, but now only one particle is permitted in 

each quantum state. Electrons in a crystal obey this law. In each case, the particles 

are assumed to be noninteracting.   

 3.5.2 The Fermi–Dirac Probability Function 

  Figure 3.28  shows the  i th energy level with gi quantum states. A maximum of one 

particle is allowed in each quantum state by the Pauli exclusion principle. There 

are  g i   ways of choosing where to place the fi rst particle, ( g i   � 1) ways of choosing 

where to place the second particle, ( g i   � 2) ways of choosing where to place the third 

particle, and so on. Then the total number of ways of arranging  N i   particles in the  i th 

energy level (where  N i   �  g i  ) is 

   (gi)(gi � 1) 	 	 	 (gi � (Ni � 1)) �   
gi!
 __ 

(gi � Ni)!
   (3.76)  

 This expression includes all permutations of the  N i   particles among themselves.  

 Figure 3.28 | The  i th energy level with  g i   
quantum states.   

1 2
ith energy

level 3

Quantum states

. . . . . . gi
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92 CHAPTER 3   Introduction to the Quantum Theory of Solids

  However, since the particles are indistinguishable, the  N i  ! number of permuta-

tions that the particles have among themselves in any given arrangement do not 

count as separate arrangements. The interchange of any two electrons, for example, 

does not produce a new arrangement. Therefore, the actual number of independent 

ways of realizing a distribution of  N i   particles in the ith level is

   Wi �   
gi!
 ___ 

Ni!(gi � Ni)!
   (3.77)    

EXAMPLE 3.5   Objective : Determine the possible number of ways of realizing a particular distribution for 

(a)  g i   �  N i   � 10 and (b)  g i   � 10,  N i   � 9.  

 ■ Solution 
 (a)  gi    �  N i   � 10: We may note that ( g i   �  N i  )! � 0! � 1. Then, from Equation (3.77), we fi nd

      
gi!
 ___ 

Ni! (gi � Ni)!
      �   10! _ 

10!
   � 1

 (b)  g i   � 10,  Ni    � 9: We may note that ( g i   −  N i  )! � 1! � 1. Then, we fi nd

    
gi!
 ___ 

Ni! (gi � Ni)!
   �   

10!
 __ 

(9!) (1)
   �    

(10) (9!)
 __ 

(9!)
   � 10      

 ■ Comment 
 In part (a), we have 10 particles to be arranged in 10 quantum states. There is only one possible 

arrangement. Each quantum state contains one particle. In part (b), we have 9 particles to be 

arranged in 10 quantum states. There is one empty quantum state, and there are 10 possible posi-

tions in which that empty state may occur. Thus, there are 10 possible arrangements for this case. 

 ■ EXERCISE PROBLEM 
  Ex3.5  Determine the possible number of ways of realizing a particular distribution if 

 gi    � 10 and  Ni    � 8. 

(Ans. 45)

    

  Equation (3.77) gives the number of independent ways of realizing a distribution of 

 N i   particles in the  i th level. The total number of ways of arranging ( N  1 ,  N  2 ,  N  3 , . . . ,  N n  ) 
indistinguishable particles among  n  energy levels is the product of all distributions, or

   W �   
i�1

   

n

      
gi!
 __ 

Ni!(gi � Ni)!
   (3.78)   

 The parameter  W  is the total number of ways in which  N  electrons can be arranged 

in this system, where  N  �  	i�1  
n
     N i   is the total number of electrons in the system. We 

want to fi nd the most probable distribution, which means that we want to fi nd the 

maximum  W . The maximum  W  is found by varying  N i   among the  E i   levels, which 

varies the distribution, but at the same time, we will keep the total number of par-

ticles and total energy constant. 

  We may write the most probable distribution function as

   

  
N(E)

 _ 
g(E)

   � fF (E)�   1 ___  

1 � exp  �   E �  E F 
 __ 

kT
   � 

  
 

(3.79)   
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 3.5   Statistical Mechanics 93

 The number density  N ( E ) is the number of particles per unit volume per unit energy 

and the function  g ( E ) is the number of quantum states per unit volume per unit en-

ergy. The function  f F  ( E ) is called the  Fermi–Dirac distribution  or probability func-

tion and gives the probability that a quantum state at the energy  E  will be occupied 

by an electron. The energy  E F   is called the  Fermi energy . Another interpretation of 

the distribution function is that  f F    ( E ) is the ratio of fi lled to total quantum states at 

any energy  E .   

 3.5.3 The Distribution Function and the Fermi Energy 

 To begin to understand the meaning of the distribution function and the Fermi 

 energy, we can plot the distribution function versus energy. Initially, let  T  � 0 K and 

consider the case when  E  �  E F  . The exponential term in Equation (3.79) becomes 

exp [( E  �  E F  )� kT ] → exp (��) � 0. The resulting distribution function is  fF    ( E  �  E F  ) � 1. 

Again let  T  � 0 K and consider the case when  E  
  E F  . The exponential term in the 

distribution function becomes exp [( E  −  E F  )� kT  ] → exp (��) → ��. The  resulting 

Fermi–Dirac distribution function now becomes  f F  ( E  
  E F  ) � 0. 

  The Fermi–Dirac distribution function for  T  � 0 K is plotted in  Figure 3.29 . 

This result shows that, for  T  � 0 K, the electrons are in their lowest possible energy 

states. The probability of a quantum state being occupied is unity for  E  �  E F   and the 

probability of a state being occupied is zero for  E  
  E F  . All electrons have energies 

below the Fermi energy at  T  � 0 K.  

   Figure 3.30  shows discrete energy levels of a particular system as well as the 

number of available quantum states at each energy. If we assume, for this case, that 

the system contains 13 electrons, then  Figure 3.30  shows how these electrons are 

distributed among the various quantum states at  T  � 0 K. The electrons will be in the 

lowest possible energy state, so the probability of a quantum state being occupied 

in energy levels  E  1  through  E  4  is unity, and the probability of a quantum state being 

occupied in energy level  E  5  is zero. The Fermi energy, for this case, must be above  E  4  

but less than  E  5 . The Fermi energy determines the statistical distribution of electrons 

and does not have to correspond to an allowed energy level.  
  Now consider a case in which the density of quantum states  g ( E ) is a continuous 

function of energy, as shown in  Figure 3.31 . If we have  N  0  electrons in this system, 

f F
(E

)

EFE
0

1.0

 Figure 3.29 | The Fermi probability 

function versus energy for T � 0 K.   

E1

E2

E3

E4

E5

 Figure 3.30 | Discrete energy states 

and quantum states for a particular 

system at T � 0 K.   
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94 CHAPTER 3   Introduction to the Quantum Theory of Solids

then the distribution of these electrons among the quantum states at  T  � 0 K is shown 

by the dashed line. The electrons are in the lowest possible energy state so that all 

states below  E F   are fi lled and all states above  E F   are empty. If  g ( E ) and  N  0  are known 

for this particular system, then the Fermi energy  E F   can be determined.  
  Consider the situation when the temperature increases above  T  � 0 K. Electrons 

gain a certain amount of thermal energy so that some electrons can jump to higher 

energy levels, which means that the distribution of electrons among the available 

energy states will change.  Figure 3.32  shows the same discrete energy levels and 

quantum states as in  Figure 3.30 . The distribution of electrons among the quantum 

states has changed from the  T  � 0 K case. Two electrons from the  E  4  level have 

gained enough energy to jump to  E  5 , and one electron from  E  3  has jumped to  E 4. As 

the temperature changes, the distribution of electrons versus energy changes.  
  The change in the electron distribution among energy levels for  T  � 0 K can be 

seen by plotting the Fermi–Dirac distribution function. If we let  E � E   F   and  T  � 0 K, 

then Equation (3.79) becomes 

  fF(E � EF) �   1 __ 
1 � exp (0)

   �   1 _ 
1 � 1

   �   1 _ 
2
    

The probability of a state being occupied at  E � E   F   is   1 _ 
2
  .  Figure 3.33  shows the 

Fermi–Dirac distribution function plotted for several temperatures, assuming that the 

Fermi energy is independent of temperature.  

 Figure 3.31 | Density of quantum states and electrons in a 

continuous energy system at T � 0 K.   

g(
E)

 o
r 

n(
E

)

EFE

g(E)

n(E)

No � � g(E) dE
0

EF

 Figure 3.32 | Discrete energy states 

and quantum states for the same system 

shown in  Figure 3.30  for T � 0 K.   

E1

E2

E3

E4

E5

 Figure 3.33 | The Fermi probability function versus energy 

for different temperatures.   

1.0

0

1

2

f F
(E

)

E EF

T � T2 � T1

T � T1

T � 0
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 3.5   Statistical Mechanics 95

  We can see that for temperatures above absolute zero, there is a nonzero prob-

ability that some energy states above  E   F   will be occupied by electrons and some 

energy states below  E   F   will be empty. This result again means that some electrons 

have jumped to higher energy levels with increasing thermal energy.    

   EXAMPLE 3.6  Objective:  Calculate the probability that an energy state above  E F   is occupied by an electron. 

  Let  T  � 300 K. Determine the probability that an energy level 3 kT  above the Fermi en-

ergy is occupied by an electron.  

 ■ Solution 
 From Equation (3.79), we can write

     fF(E ) �   1 ___  

1 � exp  �   E �  E F 
 __ 

kT
   � 

    �   1 ___  

1 � exp  �   3kT _ 
kT 

   � 
  

which becomes      

 fF (E ) �   1 __ 
1 � 20.09

   � 0.0474 � 4.74% 

 ■ Comment 
 At energies above  E F  , the probability of a state being occupied by an electron can become sig-

nifi cantly less than unity, or the ratio of electrons to available quantum states can be quite small.

 ■ EXERCISE PROBLEM 
  Ex3.6  Assume the Fermi energy level is 0.30 eV below the conduction band energy Ec. 

Assume   T  � 300 K. (a) Determine the probability of a state being occupied by an 

electron at E � Ec � kT�4. (b) Repeat part (a) for an energy state at E � Ec � kT. 

[Ans. (a) 7.26 � 10
	6

; (b) 3.43 � 10
	6

]

     

  We can see from  Figure 3.33  that the probability of an energy above  E F   being 

occupied increases as the temperature increases and the probability of a state below 

 E F   being empty increases as the temperature increases.  

   EXAMPLE 3.7  Objective : Determine the temperature at which there is 1 percent probability that an energy 

state is empty. 

  Assume that the Fermi energy level for a particular material is 6.25 eV and that the elec-

trons in this material follow the Fermi–Dirac distribution function. Calculate the temperature 

at which there is a 1 percent probability that a state 0.30 eV below the Fermi energy level will 

not contain an electron.  

 ■ Solution 
 The probability that a state is empty is

     1 � fF   (E ) � 1 �   1 ____  

1 � exp  �   E �  E F 
 __ 

kT
   � 
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96 CHAPTER 3   Introduction to the Quantum Theory of Solids

Then

 0.01 � 1 �   1 _____  

1 � exp  �   5.95 � 6.25 ___ 
kT

   � 
      

Solving for  kT , we fi nd  kT  � 0.06529 eV, so that the temperature is  T  � 756 K.   

 ■ Comment 
 The Fermi probability function is a strong function of temperature.

 ■ EXERCISE PROBLEM 
  Ex 3.7  Assume that EF is 0.3 eV below Ec. Determine the temperature at which the prob-

ability of an electron occupying an energy state at E � (Ec � 0.025) eV is 8 � 10�6.

(Ans. T � 321 K)

   

1.0

1

2

fF (E) 1 � fF (E)

E EF

 Figure 3.34 | The probability of a state being occupied, 

fF (E ), and the probability of a state being empty, 1 � fF (E ).   

  We may note that the probability of a state a distance  dE  above  E F   being occu-

pied is the same as the probability of a state a distance  dE  below  E F   being empty. The 

function  f F   ( E ) is symmetrical with the function 1 −  f F    ( E ) about the Fermi energy,  E F  . 
This symmetry effect is shown in  Figure 3.34  and will be used in the next chapter. 

   Consider the case when  E − E F   �  kT , where the exponential term in the de-

nominator of Equation (3.79) is much greater than unity. We may neglect the 1 in the 

denominator, so the Fermi–Dirac distribution function becomes

   fF (E ) � exp  �   �(E � EF)
 __ 

kT
   �  (3.80)   

 Equation (3.80) is known as the Maxwell–Boltzmann approximation, or simply the 

Boltzmann approximation, to the Fermi–Dirac distribution function.  Figure 3.35  

shows the Fermi–Dirac probability function and the Boltzmann approximation. This 

fi gure gives an indication of the range of energies over which the approximation is 

valid.      
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 3.5   Statistical Mechanics 97

Fermi–Dirac function

Boltzmann approximation

1.0

1

2

E EF

 Figure 3.35 | The Fermi–Dirac probability function and the 

Maxwell–Boltzmann approximation.   

   EXAMPLE 3.8  Objective:  Determine the energy at which the Boltzmann approximation may be considered 

valid. 

  Calculate the energy, in terms of kT and EF, at which the difference between the 

Boltzmann approximation and the Fermi–Dirac function is 5 percent of the Fermi function. 

  ■ Solution 
 We can write

       

exp  �   �(E � EF) 
 __ 

kT
   �  �   1 ____  

1 � exp  �   E � EF 
 __ 

kT
   � 

   

    _______   

   1 ____  

1 � exp  �   E � EF 
 __ 

kT
   � 

  
   � 0.05

If we multiply both numerator and denominator by the 1 � exp ( ) function, we have

     exp  �   �(E � EF)
 __ 

kT
   �  �  � 1 � exp  �   E � EF  __ 

kT
   �  �  � 1 � 0.05

which becomes

     exp  �   �(E � EF)
 __ 

kT
   �  � 0.05

or

       (E � EF) � kT ln  �   1 _ 
0.05

   �  � 3kT

  ■ Comment 
 As seen in this example and in  Figure 3.35 , the  E � E F  � kT  notation is somewhat mislead-

ing. The Maxwell–Boltzmann and Fermi–Dirac functions are within 5 percent of each other 

when  E � E   F   � 3 kT . 

■ EXERCISE PROBLEM
  Ex 3.8  Repeat  Example 3.8  for the case when the difference between the Boltzmann 

 approximation and the Fermi–Dirac function is 2 percent of the Fermi function. 

(Ans. E � EF � 3.9kT)
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98 CHAPTER 3   Introduction to the Quantum Theory of Solids

  The actual Boltzmann approximation is valid when exp [(E � E,)�kT] � 1. How-

ever, it is still common practice to use the E � EF � kT notation when applying the 

Boltzmann approximation. We will use this Boltzmann approximation in our discussion 

of semiconductors in the next chapter.   

   TEST YOUR UNDERSTANDING 

   TYU 3.5 Assume that the Fermi energy level is 0.35 eV above the valence band energy. 

Let T � 300 K. (a) Determine the probability of a state being empty of an elec-

tron at E � Ev � kT�2. (b) Repeat part (a) for an energy state at E � Ev � 3kT�2. 

[Ans. (a) 8.20 � 10
�7

; (b) 3.02 � 10
�7

]

  

  TYU 3.6 Repeat Exercise Problem Ex 3.6 for T � 400 K. 

[Ans. (a) 1.31 � 10
�4

; (b) 6.21 � 10
�5

]

  

  TYU 3.7 Repeat Exercise Problem TYU 3.5 for T � 400 K. 

[Ans. (a) 2.41 � 10
�5

; (b) 8.85 � 10
�6

]

   

   3.6 | SUMMARY 
   ■ Discrete allowed electron energies split into a band of allowed energies as atoms are 

brought together to form a crystal.  

  ■ The concept of allowed and forbidden energy bands was developed more rigorously by 

considering quantum mechanics and Schrodinger’s wave equation using the  Kronig–

Penney model representing the potential function of a single-crystal material. This re-

sult forms the basis of the energy-band theory of semiconductors.  

  ■ The concept of effective mass was developed. Effective mass relates the motion of a 

particle in a crystal to an externally applied force and takes into account the effect of the 

crystal lattice on the motion of the particle.  

  ■ Two charged particles exist in a semiconductor. An electron is a negatively charged 

particle with a positive effective mass existing at the bottom of an allowed energy band. 

A hole is a positively charged particle with a positive effective mass existing at the top 

of an allowed energy band.  

  ■ The  E  versus  k  diagrams of silicon and gallium arsenide were given and the concept of 

direct and indirect bandgap semiconductors was discussed.  

  ■ Energies within an allowed energy band are actually at discrete levels and each contains 

a fi nite number of quantum states. The density per unit energy of quantum states was 

determined by using the three-dimensional infi nite potential well as a model.  

  ■ In dealing with large numbers of electrons and holes, we must consider the statistical 

behavior of these particles. The Fermi–Dirac probability function was developed, which 

gives the probability of a quantum state at an energy  E  of being occupied by an elec-

tron. The Fermi energy was defi ned.    

  GLOSSARY OF IMPORTANT TERMS 
     allowed energy band    A band or range of energy levels that an electron in a crystal is al-

lowed to occupy based on quantum mechanics.  

   density of states function    The density of available quantum states as a function of energy, 

given in units of number per unit energy per unit volume.  
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   electron effective mass    The parameter that relates the acceleration of an electron in the 

conduction band of a crystal to an external force; a parameter that takes into account the 

effect of internal forces in the crystal.  

   Fermi–Dirac probability function    The function describing the statistical distribution of 

electrons among available energy states and the probability that an allowed energy state is 

occupied by an electron.  

   fermi energy    In the simplest defi nition, the energy below which all states are fi lled with 

electrons and above which all states are empty at T � 0 K.  

   forbidden energy band    A band or range of energy levels that an electron in a crystal is not 

allowed to occupy based on quantum mechanics.  

   hole    The positively charged “particle” associated with an empty state in the top of the va-

lence band.  

   hole effective mass    The parameter that relates the acceleration of a hole in the valence band 

of a crystal to an applied external force (a positive quantity); a parameter that takes into 

account the effect of internal forces in a crystal.  

   k  -space diagram    The plot of electron energy in a crystal versus  k , where  k  is the 

 momentum-related constant of the motion that incorporates the crystal interaction.  

   Kronig–Penney model    The mathematical model of a periodic potential function represent-

ing a one-dimensional single-crystal lattice by a series of periodic step functions.  

   Maxwell–Boltzmann approximation    The condition in which the energy is several kT 

above the Fermi energy or several kT below the Fermi energy so that the Fermi–Dirac 

probability function can be approximated by a simple exponential function.     

  CHECKPOINT 
  After studying this chapter, the reader should have the ability to

   ■ Discuss the concept of allowed and forbidden energy bands in a single crystal both 

qualitatively and more rigorously from the results of using the Kronig–Penney model.  

  ■ Discuss the splitting of energy bands in silicon.  

  ■ State the defi nition of effective mass from the  E  versus  k  diagram and discuss its mean-

ing in terms of the movement of a particle in a crystal.  

  ■ Discuss the concept of a hole. 

 ■ Discuss the characteristics of a direct and an indirect bandgap semiconductor.  

  ■ Qualitatively, in terms of energy bands, discuss the difference between a metal, an insu-

lator, and semiconductor.  

  ■ What is meant by the density of states function?  

  ■ Understand the meaning of the Fermi–Dirac distribution function and the Fermi energy.      

  REVIEW QUESTIONS 
1.    What is the Kronig–Penney model? What does it represent?  

2.   State two results of using the Kronig–Penney model with Schrodinger’s wave equation.  

3.   What is effective mass? How is effective mass defi ned in terms of the  E  versus 

 k  diagram?  

4.   What is a direct bandgap semiconductor? What is an indirect bandgap semiconductor?  

5.   What is the meaning of the density of states function?  
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100 CHAPTER 3   Introduction to the Quantum Theory of Solids

6.   What was the mathematical model used in deriving the density of states function?  

7.   In general, what is the relation between density of states and energy?  

8.   What is the meaning of the Fermi–Dirac probability function?  

9.   What is the Fermi energy?    

  PROBLEMS 

  Section 3.1 Allowed and Forbidden Energy Bands 

3.1    Consider  Figure 3.4b , which shows the energy-band splitting of silicon. If the equilib-

rium lattice spacing were to change by a small amount, discuss how you would expect 

the electrical properties of silicon to change. Determine at what point the material 

would behave like an insulator or like a metal.  

3.2   Show that Equations (3.4) and (3.6) are derived from Schrodinger’s wave equation, 

using the form of solution given by Equation (3.3).  

3.3   Show that Equations (3.9) and (3.10) are solutions of the differential equations given by 

Equations (3.4) and (3.8), respectively.  

3.4   Show that Equations (3.12), (3.14), (3.16), and (3.18) result from the boundary condi-

tions in the Kronig–Penney model.  

3.5   (a) Plot the function  f  ( �a ) � 12(sin  �a )� �a  � cos  �a  for 0 �  �a  � 4�. Also, given 

the function  f  ( �a ) � cos  ka , indicate the allowed values of  �a  that will satisfy this 

equation. (b) Determine the values of  �a  at (i)  ka  � � and (ii)  ka  � 2�.  

3.6   Repeat Problem 3.5 for the function  f ( �a ) � 5(sin  �a )� �a  � cos  �a � cos ka .  

3.7   Using Equation (3.24), show that  dE�dk  � 0 at  k � n� � a , where n � 0, 1, 2, . . . .   

3.8   Using the parameters of Problem 3.5 for a free electron and letting  a  � 4.2  Å , 

determine the width (in eV) of the forbidden energy bands that exist at (a)  ka  � � 

and (b)  ka  � 2�. (Refer to  Figure 3.8c ).  

3.9   Using the parameters in Problem 3.5 for a free electron and letting  a  � 4.2 Å, deter-

mine the width (in eV) of the allowed energy bands that exist for (a) 0 �  ka  � � and 

(b) � �  ka  � 2�.  

3.10   Repeat Problem 3.8 using the parameters in Problem 3.6.  

3.11   Repeat Problem 3.9 using the parameters in Problem 3.6.  

3.12   The bandgap energy in a semiconductor is usually a slight function of temperature. In 

some cases, the bandgap energy versus temperature can be modeled by

    Eg � Eg(0) �   �T2  __ 
 (� � T)

  

 where Eg(0) is the value of the bandgap energy at T � 0 K. For silicon, the parameter 

values are Eg(0) � 1.170 eV, � � 4.73 � 10�4 eV/K, and � � 636 K. Plot Eg ver-

sus  T  over the range 0 � T � 600 K. In particular, note the value at T � 300 K.    

  Section 3.2 Electrical Conduction in Solids 

3.13    Two possible conduction bands are shown in the  E  versus  k  diagram given in 

Figure P3.13. State which band will result in the heavier electron effective mass; 

state why.   
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3.14   Two possible valence bands are shown in the  E  versus  k  diagram given in 

Figure P3.14. State which band will result in the heavier hole effective mass; 

state why.   

3.15   The  E  versus  k  diagram for a particular allowed energy band is shown in 

Figure P3.15. Determine ( a ) the sign of the effective mass and ( b ) the direction of 

velocity for a particle at each of the four positions shown.   

3.16   Figure P3.16 shows the parabolic  E  versus  k  relationship in the conduction band for 

an electron in two particular semiconductor materials. Determine the effective mass 

(in units of the free electron mass) of the two electrons.   

3.17   Figure P3.17 shows the parabolic  E  versus  k  relationship in the valence band for a 

hole in two particular semiconductor materials. Determine the effective mass (in units 

of the free electron mass) of the two holes.   

3.18   (a) The forbidden bandgap energy in GaAs is 1.42 eV. (i) Determine the minimum 

frequency of an incident photon that can interact with a valence electron and elevate 

the electron to the conduction band. (ii) What is the corresponding wavelength? 

(b) Repeat part (a) for silicon with a bandgap energy of 1.12 eV.  

3.19   The  E  versus  k  diagrams for a free electron (curve A) and for an electron in a 

 semiconductor (curve B) are shown in Figure P3.19. Sketch ( a ) dE�dk versus  k  and 

( b ) d2E�dk2 versus  k  for each curve. ( c ) What conclusion can you make concerning a 

comparison in effective masses for the two cases?      

 Figure P3.13 | Conduction 

bands for Problem 3.13.   

E

A B

k

 Figure P3.14 | Valence bands 

for Problem 3.14.   

E

A B

k

 Figure P3.15 | Figure for Problem 3.15.   

E

A D

B C

0 �
a

k

�
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 Figure P3.16 | Figure for Problem 3.16.   
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102 CHAPTER 3   Introduction to the Quantum Theory of Solids

 Section 3.3 Extension to Three Dimensions 

3.20    The energy-band diagram for silicon is shown in  Figure 3.25b . The minimum energy 

in the conduction band is in the [100] direction. The energy in this one-dimensional 

direction near the minimum value can be approximated by

    E � E0 � E1 cos �(k � k0)

 where k0 is the value of  k  at the minimum energy. Determine the effective mass of the 

particle at k � k0 in terms of the equation parameters.  

3.21   The constant kinetic energy curves for electrons in the conduction band of germanium 

consists of four ellipsoids similar to those in silicon (see Appendix F). The longitudi-

nal and transverse effective masses are ml � 1.64m0 and mt � 0.082m0, respectively. 

Determine the (a) density of states effective mass and (b) conductivity effective mass.  

3.22   Heavy and light holes exist in GaAs with effective masses mhh � 0.45m0 and 

mlh � 0.082m0, respectively. Determine the (a) density of states effective mass and 

(b) conductivity effective mass.    

  Section 3.4 Density of States Function 

3.23    Starting with the three-dimensional infi nite potential well function given by Equa-

tion (3.59) and using the separation of variables technique, derive Equation (3.60).  

3.24   Show that Equation (3.69) can be derived from Equation (3.64).  

3.25   Derive the density of states function for a one-dimensional electron gas in GaAs 

(mn* � 0.067m0). Note that the kinetic energy may be written as E � (� p)2�2mn*, 

which means that there are two momentum states for each energy level.  

3.26   (a) Determine the total number (#/cm3) of energy states in silicon between Ec and 

Ec � 2kT at (i) T � 300 K and (ii) T � 400 K. (b) Repeat part (a) for GaAs.  

3.27   (a) Determine the total number (#/cm3) of energy states in silicon between Ev and 

Ev � 3 kT at (i) T � 300 K and (ii) T � 400 K. (b) Repeat part (a) for GaAs.  

3.28   (a) Plot the density of states in the conduction band of silicon over the range Ec � E 

� Ec � 0.4 eV. (b) Repeat part (a) for the density of states in the valence band over 

the range Ev � 0.4 eV � E � Ev.  

 Figure P3.17 | Figure for Problem 3.17.   

0

E (eV)

EV

EV � 0.025

B

A

k (Å�1)�0.08 0.08

EV � 0.3

 Figure P3.19 | Figure for Problem 3.19.   
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3.29   (a) For silicon, fi nd the ratio of the density of states in the conduction band at 

E � Ec � kT to the density of states in the valence band at E � Ev � kT. (b) Repeat 

part (a) for GaAs.    

  Section 3.5 Statistical Mechanics 

3.30    Plot the Fermi–Dirac probability function, given by Equation (3.79), over the range 

�0.2 � (E � EF) � 0.2 eV for (a) T � 200 K, ( b ) T � 300 K, and ( c ) T � 400 K.  

3.31   (a) Repeat  Example 3.5  for the case when gi � 10 and Ni � 7. (b) Repeat part (a) for 

(i) gi � 12, Ni � 10 and (ii) gi � 12, Ni � 8.  

3.32   Determine the probability that an energy level is occupied by an electron if the state is 

above the Fermi level by ( a ) kT, ( b ) 5kT, and ( c ) 10 kT .  

3.33   Determine the probability that an energy level is empty of an electron if the state is 

below the Fermi level by ( a )  kT , ( b ) 5 kT , and ( c ) 10 kT .  

3.34   (a) The Fermi energy in silicon is 0.30 eV below the conduction band energy Ec 

at T � 300 K. Plot the probability of a state being occupied by an electron in the 

 conduction band over the range Ec � E � Ec � 2kT. (b) The Fermi energy in 

silicon is 0.25 eV above the valence band energy Ev. Plot the probability of a state 

being empty by an electron in the valence band over the range Ev � 2kT eV � 

E � Ev.  

3.35   The probability that a state at Ec � kT is occupied by an electron is equal to the prob-

ability that a state at Ev � kT is empty. Determine the position of the Fermi energy 

level as a function of Ec and Ev.  

3.36   Six free electrons exist in a one-dimensional infi nite potential well of width a � 12 Å. 

Determine the Fermi energy level at T � 0 K.  

3.37   (a) Five free electrons exist in a three-dimensional infi nite potential well with all three 

widths equal to a � 12 Å. Determine the Fermi energy level at T � 0 K. (b) Repeat 

part (a) for 13 electrons.  

3.38   Show that the probability of an energy state being occupied �E above the Fermi 

 energy is the same as the probability of a state being empty �E below the Fermi level.  

3.39   ( a ) Determine for what energy above EF (in terms of kT ) the Fermi–Dirac probability 

function is within 1 percent of the Boltzmann approximation. (b) Give the value of the 

probability function at this energy.  

3.40   The Fermi energy level for a particular material at T � 300 K is 5.50 eV. The elec-

trons in this material follow the Fermi–Dirac distribution function. (a) Find the 

probability of an electron occupying an energy at 5.80 eV. (b) Repeat part (a) if the 

temperature is increased to T � 700 K. (Assume that EF is a constant.) (c) Determine 

the temperature at which there is a 2 percent probability that a state 0.25 eV below the 

Fermi level will be empty of an electron.  

3.41   The Fermi energy for copper at T � 300 K is 7.0 eV. The electrons in copper follow 

the Fermi–Dirac distribution function. (a) Find the probability of an energy level at 

7.15 eV being occupied by an electron. (b) Repeat part (a) for T � 1000 K. (Assume 

that EF is a constant.) (c) Repeat part (a) for E � 6.85 eV and T � 300 K. (d) Deter-

mine the probability of the energy state at E � EF being occupied at T � 300 K and at 

T � 1000 K.  

3.42   Consider the energy levels shown in Figure P3.42. Let T � 300 K. (a) If E1 � EF � 

0.30 eV, determine the probability that an energy state at E � E1 is occupied by 
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104 CHAPTER 3   Introduction to the Quantum Theory of Solids

an electron and the probability that an energy state at E � E2 is empty. (b) Repeat part 

(a) if EF � E2 � 0.40 eV.   

3.43   Repeat problem 3.42 for the case when E1 � E2 � 1.42 eV.  

3.44   Determine the derivative with respect to energy of the Fermi–Dirac distribution func-

tion. Plot the derivative with respect to energy for ( a ) T � 0 K, ( b ) T � 300 K, and 

( c ) T � 500 K.  

3.45   Assume that the Fermi energy level is exactly in the center of the bandgap energy of 

a semiconductor at T � 300 K. (a) Calculate the probability that an energy state in 

the bottom of the conduction band is occupied by an electron for Si, Ge, and GaAs. 

(b) Calculate the probability that an energy state in the top of the valence band is 

empty for Si, Ge, and GaAs.  

3.46   (a) Calculate the temperature at which there is a 10�8 probability that an energy state 

0.60 eV above the Fermi energy level is occupied by an electron. (b) Repeat part (a) 

for a probability of 10�6.  

3.47   Calculate the energy range (in eV) between fF � 0.95 and fF � 0.05 for EF � 5.0 eV at 

(a) T � 200 K and (b) T � 400 K.     
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4
The Semiconductor in 

Equilibrium

S
o far, we have been considering a general crystal and applying to it the 

concepts of quantum mechanics in order to determine a few of the char-

acteristics of electrons in a single-crystal lattice. In this chapter, we apply 

these concepts specifi cally to a semiconductor material. In particular, we use the 

density of quantum states in the conduction band and the density of quantum states 

in the valence band along with the Fermi–Dirac probability function to determine 

the concentration of electrons and holes in the conduction and valence bands, re-

spectively. We also apply the concept of the Fermi energy to the semiconductor 

material.

 This chapter deals with the semiconductor in equilibrium. Equilibrium, or ther-

mal equilibrium, implies that no external forces such as voltages, electric fi elds, mag-

netic fi elds, or temperature gradients are acting on the semiconductor. All properties 

of the semiconductor will be independent of time in this case. ■

4.0 | PREVIEW
In this chapter, we will:

■ Derive the thermal-equilibrium concentrations of electrons and holes in a semi-

conductor as a function of the Fermi energy level.

■ Discuss the process by which the properties of a semiconductor material 

can be favorably altered by adding specifi c impurity atoms to the 

semiconductor.

■ Determine the thermal-equilibrium concentrations of electrons and holes in a 

semiconductor as a function of the concentration of dopant atoms added to the 

semiconductor.

■ Determine the position of the Fermi energy level as a function of the concen-

trations of dopant atoms added to the semiconductor.

C H A P T E R
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 4.1   Charge Carriers in Semiconductors 107

4.1 | CHARGE CARRIERS IN SEMICONDUCTORS
Current is the rate at which charge fl ows. In a semiconductor, two types of charge 

carrier, the electron and the hole, can contribute to a current. Since the current in a 

semiconductor is determined largely by the number of electrons in the conduction 

band and the number of holes in the valence band, an important characteristic of the 

semiconductor is the density of these charge carriers. The density of electrons and 

holes is related to the density of states function and the Fermi distribution function, 

both of which we have considered. A qualitative discussion of these relationships will 

be followed by a more rigorous mathematical derivation of the thermal- equilibrium 

concentration of electrons and holes.

4.1.1 Equilibrium Distribution of Electrons and Holes

The distribution (with respect to energy) of electrons in the conduction band is given 

by the density of allowed quantum states times the probability that a state is occupied 

by an electron. This statement is written in equation form as

 n(E) � gc(E)fF (E) (4.1)

where fF (E) is the Fermi–Dirac probability function and gc(E) is the density of quan-

tum states in the conduction band. The total electron concentration per unit volume 

in the conduction band is then found by integrating Equation (4.1) over the entire 

conduction-band energy.

 Similarly, the distribution (with respect to energy) of holes in the valence band 

is the density of allowed quantum states in the valence band multiplied by the prob-

ability that a state is not occupied by an electron. We may express this as

 p(E) � gv(E)[1 � fF (E)] (4.2)

The total hole concentration per unit volume is found by integrating this function 

over the entire valence-band energy.

 To fi nd the thermal-equilibrium electron and hole concentrations, we need to 

determine the position of the Fermi energy EF with respect to the bottom of the 

conduction-band energy Ec and the top of the valence-band energy Ev. To address 

this question, we will initially consider an intrinsic semiconductor. An ideal in-

trinsic semiconductor is a pure semiconductor with no impurity atoms and no 

lattice defects in the crystal (e.g., pure silicon). We have argued in the previous 

chapter that, for an intrinsic semiconductor at T � 0 K, all energy states in the 

valence band are fi lled with electrons and all energy states in the conduction 

band are empty of electrons. The Fermi energy must, therefore, be somewhere 

between Ec and Ev. (The Fermi energy does not need to correspond to an allowed 

energy.)

 As the temperature begins to increase above 0 K, the valence electrons will gain 

thermal energy. A few electrons in the valence band may gain suffi cient energy to 

jump to the conduction band. As an electron jumps from the valence band to the con-

duction band, an empty state, or hole, is created in the valence band. In an intrinsic 
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108 CHAPTER 4   The Semiconductor in Equilibrium

semiconductor, then, electrons and holes are created in pairs by the thermal energy so 

that the number of electrons in the conduction band is equal to the number of holes 

in the valence band.

 Figure 4.1a shows a plot of the density of states function in the conduction-band 

gc(E), the density of states function in the valence-band gv(E), and the Fermi–Dirac 

probability function for T � 0 K when EF is approximately halfway between Ec and 

Ev. If we assume, for the moment, that the electron and hole effective masses are 

equal, then gc(E) and gv(E) are symmetrical functions about the midgap energy (the 

energy midway between Ec and Ev). We noted previously that the function fF (E ) for 

E � EF is symmetrical to the function 1 � fF (E) for E � EF about the energy E � EF. 

This also means that the function fF(E) for E � EF � dE is equal to the function 

1 � fF (E ) for E � EF � dE.

Figure 4.1 | (a) Density of states functions, Fermi–Dirac probability function, and areas representing electron and hole 

concentrations for the case when EF is near the midgap energy; (b) expanded view near the conduction-band energy; 

and (c) expanded view near the valence-band energy.

gc(E)fF(E) � n(E)

Area � n0 �
electron

concentration

gv(E)(1 � fF(E)) � p(E)

Area � p0 �
hole concentration

gc(E)

gv(E)

Ev

Ec

EF

E

fF(E) � 0

fF(E)

fF(E) � 1

(a)

(b)

(c)

gc(E)

Ec

fF(E)

0

gv(E)

Ev

[1 � fF(E)]

E

E
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 Figure 4.1b is an expanded view of the plot in Figure 4.1a showing fF (E) and 

gc(E) above the conduction-band energy Ec. The product of gc(E) and fF (E) is the 

distribution of electrons n(E ) in the conduction band given by Equation (4.1). This 

product is plotted in Figure 4.1a. Figure 4.1c, which is an expanded view of the plot 

in Figure 4.1a shows [1 � fF (E)] and gv(E ) below the valence-band energy Ev. The 

product of gv(E) and [1 � fF (E)] is the distribution of holes p(E) in the valence band 

given by Equation (4.2). This product is also plotted in Figure 4.1a. The areas under 

these curves are then the total density of electrons in the conduction band and the 

total density of holes in the valence band. From this we see that if gc(E ) and gv(E) 

are symmetrical, the Fermi energy must be at the midgap energy in order to obtain 

equal electron and hole concentrations. If the effective masses of the electron and 

hole are not exactly equal, then the effective density of states functions gc(E) and 

gv(E) will not be exactly symmetrical about the midgap energy. The Fermi level for 

the  intrinsic semiconductor will then shift slightly from the midgap energy in order 

to obtain equal electron and hole concentrations.

4.1.2 The n0 and p0 Equations

We have argued that the Fermi energy for an intrinsic semiconductor is near midgap. 

In deriving the equations for the thermal-equilibrium concentration of electrons n0 

and the thermal-equilibrium concentration of holes p0, we will not be quite so restric-

tive. We will see later that, in particular situations, the Fermi energy can deviate from 

this midgap energy. We will assume initially, however, that the Fermi level remains 

within the bandgap energy.

Thermal-Equilibrium Electron Concentration The equation for the thermal-

equilibrium concentration of electrons may be found by integrating Equation (4.1) 

over the conduction band energy, or

 n0 �  
∫ 
 

 

 
 

 

 

 
   gc(E)fF (E) dE (4.3)

The lower limit of integration is Ec and the upper limit of integration should be the 

top of the allowed conduction band energy. However, since the Fermi probability 

function rapidly approaches zero with increasing energy as indicated in Figure 4.1a, 

we can take the upper limit of integration to be infi nity.

 We are assuming that the Fermi energy is within the forbidden-energy band-

gap. For electrons in the conduction band, we have E � Ec. If (Ec � EF) � kT, then 

(E � EF) � kT, so that the Fermi probability function reduces to the Boltzmann ap-

proximation,1 which is

 fF(E) �   1 ____  

1 � exp   
(E � EF)

 __ 
kT

   
   � exp  �   �(E � EF)

 __ 
kT

   �  (4.4)

 4.1   Charge Carriers in Semiconductors 109

1The Maxwell–Boltzmann and Fermi–Dirac distribution functions are within 5 percent of each other 

when E � EF � 3kT (see Figure 3.35). The � notation is then somewhat misleading to indicate when 

the Boltzmann approximation is valid, although it is commonly used.
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110 CHAPTER 4   The Semiconductor in Equilibrium

Applying the Boltzmann approximation to Equation (4.3), the thermal-equilibrium 

density of electrons in the conduction band is found from

 n0 �  
∫

Ec

 
 
� 
     
4� (2 m n  * )3�2

 __ 
h3

    �
______

 E � Ec
   exp  �   �(E � EF)

 __ 
kT

   �  dE (4.5)

 The integral of Equation (4.5) may be solved more easily by making a change of 

variable. If we let

 � �   
E � Ec  __ 

kT
   (4.6)

then Equation (4.5) becomes

 n0 �   
4� (2 m n  * kT)3�2 

  ___ 
h3 

   exp  �   �(Ec � EF)
 __ 

kT
   �   

∫
0

 
 
� 
  �1�2 exp (��) d� (4.7)

The integral is the gamma function, with a value of

  
∫

0

 
 
� 
  �1�2 exp (��) d� �   1 _ 

2
    �

__
 �   (4.8)

Then Equation (4.7) becomes

 n0 � 2  �   2� m n  *  kT 
 __ 

h2 
   �  3�2

  exp  �   �(Ec � EF)
 __ 

kT
   �  (4.9)

We may defi ne a parameter Nc as

 Nc � 2  �   2� m n  *  kT 
 __ 

h2 
   �  3�2

  (4.10)

The parameter  m n  *  is the density of states effective mass of the electron. The thermal-

equilibrium electron concentration in the conduction band can be written as

 n0 � Nc exp  �   �(Ec � EF)
 __ 

kT
   �  (4.11)

The parameter Nc is called the effective density of states function in the conduction 

band. If we were to assume that  m n  *  � m0, then the value of the effective density 

of states function at T � 300 K is Nc � 2.5 � 1019 cm�3, which is the order of 

magnitude of Nc for most semiconductors. If the effective mass of the electron is 

larger or smaller than m0, then the value of the effective density of states function 

changes accordingly, but is still of the same order of magnitude.

Objective: Calculate the probability that a quantum state in the conduction band at 

E � Ec � kT�2 is occupied by an electron, and calculate the thermal-equilibrium electron 

concentration in silicon at T � 300 K.

 Assume the Fermi energy is 0.25 eV below the conduction band. The value of Nc for 

silicon at T � 300 K is Nc � 2.8 � 1019 cm�3 (see Appendix B).

■ Solution
The probability that a quantum state at E � Ec � kT�2 is occupied by an electron is given by

 fF(E) �   1 ____  

1 � exp  �   E � EF 
 __ 

kT
   � 

   	 exp  �   �(E � EF)
 __ 

kT
   �  � exp  �   �(Ec � (kT�2) � EF)

  ____ 
kT

   � 

EXAMPLE 4.1 
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 4.1   Charge Carriers in Semiconductors 111

or

 fF(E) � exp  �   �(0.25 � (0.0259�2))
  ____  

0.0259
   �  � 3.90 � 10�5

The electron concentration is given by

 n0 � Nc exp  �   �(Ec � EF)
 __ 

kT
   �  � (2.8 � 1019) exp  �   �0.25 __ 

0.0259
   � 

or

 n0 � 1.80 � 1015 cm�3

■ Comment
The probability of a state being occupied can be quite small, but the fact that there are a large 

number of states means that the electron concentration is a reasonable value.

■ EXERCISE PROBLEM
Ex 4.1  Determine the probability that a quantum state at energy E � Ec � kT is occupied 

by an electron, and calculate the electron concentration in GaAs at T � 300 K if the 

Fermi energy level is 0.25 eV below Ec. 

[Ans. fF(E) � 2.36 � 10
�5

, n0 � 3.02 � 10
13

 cm
�3

]

Thermal-Equilibrium Hole Concentration The thermal-equilibrium concentra-

tion of holes in the valence band is found by integrating Equation (4.2) over the 

valence-band energy, or

 p0 �  
∫ 
 

 

 
 

 

 

 
   gv(E)[1 � fF (E)] dE (4.12)

We may note that

 1 � fF(E) �   1 ___  

1 � exp  �   EF � E __ 
kT

   � 
   (4.13a)

For energy states in the valence band, E � Ev. If (EF � Ev) � kT (the Fermi function 

is still assumed to be within the bandgap), then we have a slightly different form of 

the Boltzmann approximation. Equation (4.13a) may be written as

 1 � fF(E) �   1 ___  

1 � exp  �   EF � E
 __ 

kT
   � 

   
 exp  �   �(EF � E)
 __ 

kT
   �  (4.13b)

Applying the Boltzmann approximation of Equation (4.13b) to Equation (4.12), we 

fi nd the thermal-equilibrium concentration of holes in the valence band is

 p0 �  
∫

��

 
 

Ev
 
    

4� (2 m p  * )3�2

 __ 
h3 

    �
______

 Ev � E   exp  �   �(EF � E)
 __ 

kT
   �  dE (4.14)

where the lower limit of integration is taken as minus infi nity instead of the bottom 

of the valence band. The exponential term decays fast enough so that this approxima-

tion is valid.
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112 CHAPTER 4   The Semiconductor in Equilibrium

 Equation (4.14) may be solved more easily by again making a change of vari-

able. If we let

 �	 �   
Ev � E

 __ 
kT

   (4.15)

then Equation (4.14) becomes

 p0 �   
�4�(2 m p  *  kT)3�2

  ___ 
h3

   exp  �   �(EF � Ev)
 __ 

kT
   �   

∫
��

 
 

0

 

 
  (�	)1�2 exp (��	) d�	 (4.16)

where the negative sign comes from the differential dE � �kTd�	. Note that the 

lower limit of �	 becomes �� when E � ��. If we change the order of integration, 

we introduce another minus sign. From Equation (4.8), Equation (4.16) becomes

 p0 � 2   �   2� m p  *  kT
 __ 

h2
   �  3�2

  exp  �   �(EF � Ev)
 __ 

kT
   �  (4.17)

We may defi ne a parameter Nv as

 Nv � 2   �   2� m p  * kT
 __ 

h2
   �  3�2

  (4.18)

which is called the effective density of states function in the valence band. The 

 parameter  m p  *  is the density of states effective mass of the hole. The thermal- 

equilibrium concentration of holes in the valence band may now be written as

 p0 � Nv exp  �   �(EF � Ev)
 __ 

kT
   �  (4.19)

The magnitude of Nv is also on the order of 1019 cm�3 at T � 300 K for most 

semiconductors.

Objective: Calculate the thermal-equilibrium hole concentration in silicon at T � 400 K.

 Assume that the Fermi energy is 0.27 eV above the valence-band energy. The value of Nv 

for silicon at T � 300 K is Nv � 1.04 � 1019 cm�3. (See Appendix B)

■ Solution
The parameter values at T � 400 K are found as:

Nv � (1.04 � 1019)   �   400 _ 
300

   �  3�2

  � 1.60 � 1019 cm�3

and

kT � (0.0259)  �   400 _ 
300

   �  � 0.03453 eV

The hole concentration is then

p0 � Nv exp  �   �(EF � Ev)
 __ 

kT
   �  � (1.60 � 1019) exp  �   �0.27 __ 

0.03453
   � 

or

p0 � 6.43 � 1015 cm�3

EXAMPLE 4.2 
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 The effective density of states functions, Nc and Nv, are constant for a given 

semiconductor material at a fi xed temperature. Table 4.1 gives the values of the den-

sity of states function and of the density of states effective masses for silicon, gallium 

arsenide, and germanium. Note that the value of Nc for gallium arsenide is smaller 

than the typical 1019 cm�3 value. This difference is due to the small electron effective 

mass in gallium arsenide.

 The thermal-equilibrium concentrations of electrons in the conduction band and 

of holes in the valence band are directly related to the effective density of states con-

stants and to the Fermi energy level.

 4.1   Charge Carriers in Semiconductors 113

■ Comment
The parameter values at any temperature can easily be found by using the 300 K values and 

the temperature dependence.

■ EXERCISE PROBLEM
Ex 4.2  (a) Repeat Example 4.2 at T � 250 K. (b) What is the ratio of p0 at T � 250 K to 

that at T � 400 K? 

[Ans. (a) p0 � 2.92 � 10
13

 cm
�3

; (b) 4.54 � 10
�3

]

TYU 4.1 Calculate the thermal equilibrium electron and hole concentration in silicon 

at T � 300 K for the case when the Fermi energy level is 0.22 eV below the 

 conduction-band energy Ec. The value of Eg is given in Appendix B.4. 

(Ans. n0 � 5.73 � 10
15

 cm
�3

, p0 � 8.43 � 10
3
 cm

�3
)

TYU 4.2 Determine the thermal equilibrium electron and hole concentration in GaAs 

at T � 300 K for the case when the Fermi energy level is 0.30 eV above the 

 valence-band energy Ev. The value of Eg is given in Appendix B.4. 

(Ans. n0 � 0.0779 cm
�3

, p0 � 6.53 � 10
13

 cm
�3

)

TEST YOUR UNDERSTANDING

4.1.3 The Intrinsic Carrier Concentration

For an intrinsic semiconductor, the concentration of electrons in the conduction band 

is equal to the concentration of holes in the valence band. We may denote ni and pi 

as the electron and hole concentrations, respectively, in the intrinsic  semiconductor. 

These parameters are usually referred to as the intrinsic electron concentration 

and intrinsic hole concentration. However, ni � pi, so normally we simply use the 

 parameter ni as the intrinsic carrier concentration, which refers to either the intrinsic 

electron or hole concentration.

Table 4.1 | Effective density of states function and density of states effective mass values

 Nc
 (cm−3) Nv

 (cm−3)  m n  * �m0  m p  * �m0

Silicon  2.8 � 1019 1.04 � 1019 1.08 0.56
Gallium arsenide  4.7 � 1017   7.0 � 1018 0.067 0.48
Germanium 1.04 � 1019  6.0 � 1018 0.55 0.37
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114 CHAPTER 4   The Semiconductor in Equilibrium

 The Fermi energy level for the intrinsic semiconductor is called the intrinsic 

Fermi energy, or EF � EFi. If we apply Equations (4.11) and (4.19) to the intrinsic 

semiconductor, then we can write

 n0 � ni � Nc exp  �   �(Ec � EFi)
 __ 

kT
   �  (4.20)

and

 p0 � pi � ni � Nv exp  �   �(EFi � Ev)
 __ 

kT
   �  (4.21)

If we take the product of Equations (4.20) and (4.21), we obtain

  n i  
2  � Nc Nv exp  �   �(Ec � EFi)

 __ 
kT

   �  
 exp  �   �(EFi � Ev)
 __ 

kT
   �  (4.22)

or

  n i  
2  � Nc Nv exp  �   �(Ec � Ev)

 __ 
kT

   �  � Nc Nv exp  �   �Eg 
 _ 

kT
   �  (4.23)

where Eg is the bandgap energy. For a given semiconductor material at a constant 

temperature, the value of ni is a constant, and independent of the Fermi energy.

 The intrinsic carrier concentration for silicon at T � 300 K may be calculated 

by using the effective density of states function values from Table 4.1. The value 

of ni calculated from Equation (4.23) for Eg � 1.12 eV is ni � 6.95 � 109 cm�3. 

The commonly accepted value2 of ni for silicon at T � 300 K is approximately 

1.5 � 1010 cm�3. This discrepancy may arise from several sources. First, the values 

of the effective masses are determined at a low temperature where the cyclotron 

resonance experiments are performed. Since the effective mass is an experimen-

tally determined parameter, and since the effective mass is a measure of how well a 

particle moves in a crystal, this parameter may be a slight function of temperature. 

Next, the density of states function for a semiconductor was obtained by general-

izing the model of an electron in a three-dimensional infi nite potential well. This 

theoretical function may also not agree exactly with experiment. However, the dif-

ference between the theoretical value and the experimental value of ni is approxi-

mately a factor of 2, which, in many cases, is not signifi cant. Table 4.2 lists the 

commonly accepted values of ni for silicon, gallium arsenide, and germanium at 

T � 300 K.

 The intrinsic carrier concentration is a very strong function of temperature.

2Various references may list slightly different values of the intrinsic silicon concentration at room 

temperature. In general, they are all between 1 � 1010 and 1.5 � 1010 cm�3. This difference is, in most 

cases, not signifi cant.

Table 4.2 |  Commonly accepted values of 

ni at T � 300 K

Silicon ni � 1.5 � 1010 cm�3

Gallium arsenide ni � 1.8 � 106 cm�3

Germanium ni � 2.4 � 1013 cm�3
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 4.1   Charge Carriers in Semiconductors 115

   EXAMPLE 4.3Objective: Calculate the intrinsic carrier concentration in silicon at T � 250 K and 

at T � 400 K.

 The values of Nc and Nv for silicon at T � 300 K are 2.8 � 1019 cm�3 and 1.04 � 1019 

cm�3, respectively. Both Nc and Nv vary as T 3�2. Assume the bandgap energy of silicon is 

1.12 eV and does not vary over this temperature range.

■ Solution
Using Equation (4.23), we fi nd, at T � 250 K

  n i  
2  � (2.8 � 1019)(1.04 � 1019)  �   250

 _ 
300

   �  3  exp  �   �1.12 ___  
(0.0259)(250�300)

   � 
 � 4.90 � 1015

or

 ni � 7.0 � 107 cm�3

At T � 400 K, we fi nd

  n i  
2  � (2.8 � 1019)(1.04 � 1019)  �   400 _ 

300
   �  3  exp  �   �1.12 ____  

(0.0259)(400�300)
   � 

 � 5.67 � 1024

or

 ni � 2.38 � 1012 cm�3

■ Comment
We may note from this example that the intrinsic carrier concentration increased by over 4 

orders of magnitude as the temperature increased by 150°C.

■ EXERCISE PROBLEM
Ex 4.3  (a) Calculate the intrinsic carrier concentration in GaAs at T � 400 K and at 

T � 250 K. Assume that Eg � 1.42 eV is constant over this temperature range. 

(b) What is the ratio of ni at T � 400 K to that at T � 250 K? 

[Ans. (a) ni(400) � 3.29 � 10
9
 cm

�3
, ni(250) � 7.13 � 10

3
 cm

�3
; (b) 4.61 � 10

5
]

 Figure 4.2 is a plot of ni from Equation (4.23) for silicon, gallium arsenide, 

and germanium as a function of temperature. As seen in the fi gure, the value of ni 

for these semiconductors may easily vary over several orders of magnitude as the 

 temperature changes over a reasonable range.

TYU 4.3  Calculate the intrinsic concentration in silicon at (a) T � 200 K and (b) T � 

450 K. (c) Determine the ratio of ni at T � 450 K to that at T � 200 K. 

[Ans. (a) ni � 7.63 � 10
4
 cm

�3
; (b) ni � 1.72 � 10

13
 cm

�3
; (c) 2.26 � 10

8
]

TYU 4.4  Repeat TYU 4.3 for GaAs. 

[Ans. (a) ni � 1.37 cm
�3

; (b) ni � 3.85 � 10
10

 cm
�3

; (c) 2.81 � 10
10

]

 

TYU 4.5  Repeat TYU 4.3 for Ge. 

[Ans. (a) ni � 2.15 � 10
10

 cm
�3

; (b) ni � 2.97 � 10
15

 cm
�3

; (c) 1.38 � 10
5
]

 

TEST YOUR UNDERSTANDING
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116 CHAPTER 4   The Semiconductor in Equilibrium

4.1.4   The Intrinsic Fermi-Level Position

We have qualitatively argued that the Fermi energy level is located near the center 

of the forbidden bandgap for the intrinsic semiconductor. We can specifi cally calcu-

late the intrinsic Fermi-level position. Since the electron and hole concentrations are 

equal, setting Equations (4.20) and (4.21) equal to each other, we have

 Nc exp  �   �(Ec � EFi)
 __ 

kT
   �  � Nv exp  �   �(EFi � Ev)

 __ 
kT

   �  (4.24)

Figure 4.2 | The intrinsic carrier 

concentration of Ge, Si, and GaAs as a 

function of temperature.

(From Sze [14].)
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If we take the natural log of both sides of this equation and solve for EFi, we obtain

 EFi �   1 _ 
2
   (Ec � Ev) �   1 _ 

2
   kT ln  �   Nv _ 

Nc 
   �  (4.25)

From the defi nitions for Nc and Nv given by Equations (4.10) and (4.18), respectively, 

Equation (4.25) may be written as

 EFi �   1 _ 
2
   (Ec � Ev) �   3 _ 

4
   kT ln  �    m p  * 

 _ 
 m n  * 

   �  (4.26a)

The fi rst term,   1 _ 
2
   (Ec � Ev), is the energy exactly midway between Ec and Ev, or the 

midgap energy. We can defi ne

   1 _ 
2
   (Ec � Ev) � Emidgap

so that

 EFi � Emidgap �   3 _ 
4
   kT ln  �    m p 

 * 
 _ 

 m n 
 * 
   �    (4.26b)

If the electron and hole effective masses are equal so that  m p  *  �  m n  * , then the intrinsic 

Fermi level is exactly in the center of the bandgap. If  m p  *  �  m n  * , the intrinsic Fermi 

level is slightly above the center, and if  m p  *  �  m n  * , it is slightly below the center of 

the bandgap. The density of states function is directly related to the carrier effective 

mass; thus, a larger effective mass means a larger density of states function. The 

intrinsic Fermi level must shift away from the band with the larger density of states 

in order to maintain equal numbers of electrons and holes.

 4.1   Charge Carriers in Semiconductors 117

   EXAMPLE 4.4Objective: Calculate the position of the intrinsic Fermi level with respect to the center of 

the bandgap in silicon at T � 300 K.

 The density of states effective carrier masses in silicon are  m n  *  � 1.08m0 and  m p  *  � 0.56m0.

■ Solution
The intrinsic Fermi level with respect to the center of the bandgap is

 EFi � Emidgap �   3 _ 
4
   kT ln �     m p  * 

 _ 
 m n  * 

   �  �   3 _ 
4
   (0.0259) ln  �   0.56 _ 

1.08
   � 

or

 EFi � Emidgap � �0.0128 eV � �12.8 meV

■ Comment
The intrinsic Fermi level in silicon is 12.8 meV below the midgap energy. If we compare 

12.8 meV to 560 meV, which is one-half of the bandgap energy of silicon, we can, in many 

applications, simply approximate the intrinsic Fermi level to be in the center of the bandgap.

■ EXERCISE PROBLEM
Ex 4.4 Determine the position of the intrinsic Fermi level at T � 300 K with respect to the cen-

ter of the bandgap for (a) GaAs and (b) Ge. 

[Ans. (a) �38.25 meV; (b) �7.70 meV]
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118 CHAPTER 4   The Semiconductor in Equilibrium

4.2 | DOPANT ATOMS AND ENERGY LEVELS
The intrinsic semiconductor may be an interesting material, but the real power of 

semiconductors is realized by adding small, controlled amounts of specifi c dopant, 

or impurity, atoms. This doping process, described briefl y in Chapter 1, can greatly 

alter the electrical characteristics of the semiconductor. The doped semiconductor, 

called an extrinsic material, is the primary reason we can fabricate the various semi-

conductor devices that we will consider in later chapters.

4.2.1   Qualitative Description

In Chapter 3, we discussed the covalent bonding of silicon and considered the sim-

ple two-dimensional representation of the single-crystal silicon lattice as shown in 

 Figure 4.3. Now consider adding a group V element, such as phosphorus, as a sub-

stitutional impurity. The group V element has fi ve valence electrons. Four of these 

will contribute to the covalent bonding with the silicon atoms, leaving the fi fth more 

loosely bound to the phosphorus atom. This effect is schematically shown in Fig-

ure 4.4. We refer to the fi fth valence electron as a donor electron.

 The phosphorus atom without the donor electron is positively charged. At very 

low temperatures, the donor electron is bound to the phosphorus atom. However, 

by intuition, it should seem clear that the energy required to elevate the donor elec-

tron into the conduction band is considerably less than that for the electrons involved 

in the covalent bonding. Figure 4.5 shows the energy-band diagram that we would 

expect. The energy level, Ed, is the energy state of the donor electron.

  TEST YOUR UNDERSTANDING

TYU 4.6 Determine the position of the intrinsic Fermi level with respect to the center of the 

bandgap in silicon at (a) T � 200 K and (b) T � 400 K. Assume the  effective masses 

are constant over this temperature range.

[Ans. (a) �8.505 meV; (b) �17.01meV]

Figure 4.3 | Two-dimensional 

representation of the intrinsic silicon 

lattice.

Si Si Si Si Si Si

Si Si Si Si Si Si

Si Si Si Si Si Si

Si Si Si Si Si Si

Figure 4.4 | Two-dimensional 

representation of the silicon lattice doped 

with a phosphorus atom.
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Si Si Si Si Si Si

Si Si Si Si Si Si
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 4.2   Dopant Atoms and Energy Levels 119

 If a small amount of energy, such as thermal energy, is added to the donor elec-

tron, it can be elevated into the conduction band, leaving behind a positively charged 

phosphorus ion. The electron in the conduction band can now move through the crys-

tal generating a current, while the positively charged ion is fi xed in the crystal. This 

type of impurity atom donates an electron to the conduction band and so is called a 

donor impurity atom. The donor impurity atoms add electrons to the conduction band 

without creating holes in the valence band. The resulting material is referred to as an 

n-type semiconductor (n for the negatively charged electron).

 Now consider adding a group III element, such as boron, as a substitutional 

impurity to silicon. The group III element has three valence electrons, which are all 

taken up in the covalent bonding. As shown in Figure 4.6a, one covalent bonding 

position appears to be empty. If an electron were to occupy this “empty” position, 

its energy would have to be greater than that of the valence electrons, since the net 

charge state of the boron atom would now be negative. However, the electron occu-

pying this “empty” position does not have suffi cient energy to be in the conduction 

band, so its energy is far smaller than the conduction-band energy. Figure 4.6b shows 

how valence electrons may gain a small amount of thermal energy and move about in 

Figure 4.5 | The energy-band diagram showing (a) the discrete donor energy state 

and (b) the effect of a donor state being ionized.
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Figure 4.6 | Two-dimensional representation of a silicon lattice (a) doped with a boron atom 

and (b) showing the ionization of the boron atom resulting in a hole.
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120 CHAPTER 4   The Semiconductor in Equilibrium

the crystal. The “empty” position associated with the boron atom becomes occupied, 

and other valence electron positions become vacated. These other vacated electron 

positions can be thought of as holes in the semiconductor material.

 Figure 4.7 shows the expected energy state of the “empty” position and also 

the formation of a hole in the valence band. The hole can move through the crys-

tal generating a current, while the negatively charged boron atom is fi xed in the 

crystal. The group III atom accepts an electron from the valence band and so is 

referred to as an acceptor impurity atom. The acceptor atom can generate holes in 

the valence band without generating electrons in the conduction band. This type 

of semiconductor material is referred to as a p type material (p for the positively 

charged hole).

 The pure single-crystal semiconductor material is called an intrinsic material. 

Adding controlled amounts of dopant atoms, either donors or acceptors, creates a 

material called an extrinsic semiconductor. An extrinsic semiconductor will have 

either a preponderance of electrons (n type) or a preponderance of holes (p type).

4.2.2   Ionization Energy

We can calculate the approximate distance of the donor electron from the donor 

impurity ion, and also the approximate energy required to elevate the donor electron 

into the conduction band. This energy is referred to as the ionization energy. We will 

use the Bohr model of the atom for these calculations. The justifi cation for using this 

model is that the most probable distance of an electron from the nucleus in a hydro-

gen atom, determined from quantum mechanics, is the same as the Bohr radius. The 

energy levels in the hydrogen atom determined from quantum mechanics are also the 

same as obtained from the Bohr theory.

 In the case of the donor impurity atom, we may visualize the donor electron 

orbiting the donor ion, which is embedded in the semiconductor material. We will 

need to use the permittivity of the semiconductor material in the calculations rather 

than the permittivity of free space as is used in the case of the hydrogen atom. We 

will also use the effective mass of the electron in the calculations.
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Figure 4.7 | The energy-band diagram showing (a) the discrete acceptor energy state 

and (b) the effect of an acceptor state being ionized.
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 4.2   Dopant Atoms and Energy Levels 121

 The analysis begins by setting the coulomb force of attraction between the elec-

tron and ion equal to the centripetal force of the orbiting electron. This condition will 

give a steady orbit. We have

   e2

 __ 
4� �  r n  2 

   �   m*v2

 _ rn
   (4.27)

where v is the magnitude of the velocity and rn is the radius of the orbit. If we assume 

the angular momentum is also quantized, then we can write

 m* rnv � n � (4.28)

where n is a positive integer. Solving for v from Equation (4.28), substituting into 

Equation (4.27), and solving for the radius, we obtain

 rn �   n
2 �2 4� � __ 
m*e2

   (4.29)

The assumption of the angular momentum being quantized leads to the radius also 

being quantized.

 The Bohr radius is defi ned as

 a0 �   
4��0�2

 __ 
m0e2

   � 0.53 Å (4.30)

We can normalize the radius of the donor orbital to that of the Bohr radius, which gives

   
rn  _ a0

    � n2�r  �   m0 _ 
m*

   �  (4.31)

where �r is the relative dielectric constant of the semiconductor material, m0 is the 

rest mass of an electron, and m* is the conductivity effective mass of the electron in 

the semiconductor.3

 If we consider the lowest energy state in which n � 1, and if we consider silicon 

in which �r � 11.7 and the conductivity effective mass is m*�m0 � 0.26, then we 

have that

   
r1 _ a0

   � 45 (4.32)

or r1 � 23.9 Å. This radius corresponds to approximately four lattice constants of 

silicon. Recall that one unit cell in silicon effectively contains eight atoms, so the 

radius of the orbiting donor electron encompasses many silicon atoms. The donor 

electron is not tightly bound to the donor atom.

 The total energy of the orbiting electron is given by

 E � T � V (4.33)

where T is the kinetic energy and V is the potential energy of the electron. The kinetic 

energy is

 T �   1 _ 
2
   m*v2 (4.34)

3The conductivity effective mass is used when electrons and holes are in motion. See Appendix F for a 

discussion of effective mass concepts.
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122 CHAPTER 4   The Semiconductor in Equilibrium

Using the velocity v from Equation (4.28) and the radius rn from Equation (4.29), the 

kinetic energy becomes

 T �   m*e4

 ___ 
2(n�)2(4��)2

   (4.35)

The potential energy is

 V �   �e2

 _ 
4��rn

   �   �m*e4

 __ 
(n�)2(4��)2

   (4.36)

 The total energy is the sum of the kinetic and potential energies, so that

 E � T � V �   �m*e4

 ___ 
2(n�)2(4��)2

   (4.37)

For the hydrogen atom, m* � m0 and � � �0. The ionization energy of the hydrogen 

atom in the lowest energy state is then E � �13.6 eV. If we consider silicon, the 

ionization energy is E � �25.8 meV, much less than the bandgap energy of silicon. 

This energy is the approximate ionization energy of the donor atom, or the energy 

required to elevate the donor electron into the conduction band.

 For ordinary donor impurities such as phosphorus or arsenic in silicon or germa-

nium, this hydrogenic model works quite well and gives some indication of the mag-

nitudes of the ionization energies involved. Table 4.3 lists the actual experimentally 

measured ionization energies for a few impurities in silicon and germanium. Ger-

manium and silicon have different relative dielectric constants and effective masses; 

thus, we expect the ionization energies to differ.

4.2.3   Group III–V Semiconductors

In the previous sections, we have discussed the donor and acceptor impurities in 

a group IV semiconductor, such as silicon. The situation in the group III–V com-

pound semiconductors, such as gallium arsenide, is more complicated. Group II ele-

ments, such as beryllium, zinc, and cadmium, can enter the lattice as substitutional 

impurities, replacing the group III gallium element to become acceptor impurities. 

Similarly, group VI elements, such as selenium and tellurium, can enter the lattice 

substitutionally, replacing the group V arsenic element to become donor impurities. 

The corresponding ionization energies for these impurities are smaller than those for 

the impurities in silicon. The ionization energies for the donors in gallium arsenide 

Table 4.3 |  Impurity ionization energies in silicon 

and germanium

 Ionization energy (eV)

Impurity Si Ge

Donors
Phosphorus 0.045 0.012
Arsenic 0.05 0.0127

Acceptors
Boron 0.045 0.0104
Aluminum 0.06 0.0102
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 4.3   The Extrinsic Semiconductor 123

are also smaller than those for the acceptors, because of the smaller effective mass of 

the electron compared to that of the hole.

 Group IV elements, such as silicon and germanium, can also be impurity atoms 

in gallium arsenide. If a silicon atom replaces a gallium atom, the silicon impurity will 

act as a donor, but if the silicon atom replaces an arsenic atom, then the silicon impu-

rity will act as an acceptor. The same is true for germanium as an impurity atom. Such 

impurities are called amphoteric. Experimentally in gallium arsenide, it is found that 

germanium is predominantly an acceptor and silicon is predominantly a donor. Table 

4.4 lists the ionization energies for the various impurity atoms in gallium arsenide.

Table 4.4 |  Impurity ionization energies 

in gallium arsenide

Impurity Ionization energy (eV)

Donors
Selenium 0.0059
Tellurium 0.0058
Silicon 0.0058
Germanium 0.0061

Acceptors
Beryllium 0.028
Zinc 0.0307
Cadmium 0.0347
Silicon 0.0345
Germanium 0.0404

TYU 4.7 (a) Calculate the ionization energy and the radius (normalized to the Bohr radius) 

of a donor electron in its lowest energy state in GaAs. (b) Repeat part (a) for Ge. 

TEST YOUR UNDERSTANDING

4.3 | THE EXTRINSIC SEMICONDUCTOR
We defi ned an intrinsic semiconductor as a material with no impurity atoms present 

in the crystal. An extrinsic semiconductor is defi ned as a semiconductor in which 

controlled amounts of specifi c dopant or impurity atoms have been added so that 

the thermal-equilibrium electron and hole concentrations are different from the in-

trinsic carrier concentration. One type of carrier will predominate in an extrinsic 

semiconductor.

4.3.1   Equilibrium Distribution of Electrons and Holes

Adding donor or acceptor impurity atoms to a semiconductor will change the dis-

tribution of electrons and holes in the material. Since the Fermi energy is related to 

the distribution function, the Fermi energy will change as dopant atoms are added. 

[Ans. (a) �5.30 meV, r1�a0 � 195.5; (b) �6.37 meV, r1�a0 133.3]
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124 CHAPTER 4   The Semiconductor in Equilibrium

If the Fermi energy changes from near the midgap value, the density of electrons in 

the conduction band and the density of holes in the valence band will change. These 

effects are shown in Figures 4.8 and 4.9. Figure 4.8 shows the case for EF � EFi and 

Figure 4.9 shows the case for EF � EFi. When EF � EFi, the electron concentration 

is larger than the hole concentration, and when EF � EFi, the hole concentration is 

larger than the electron concentration. When the density of electrons is greater than the 

density of holes, the semiconductor is n type; donor impurity atoms have been added. 

When the density of holes is greater than the density of electrons, the semiconduc-

tor is p type; acceptor impurity atoms have been added. The Fermi energy level in 

a semiconductor changes as the electron and hole concentrations change and, again, 

the Fermi energy changes as donor or acceptor impurities are added. The change in 

the Fermi level as a function of impurity concentrations is considered in Section 4.6.

Area � n0 �
electron

concentration

Area � p0 �
hole concentration

gc(E)

gv(E)

Ev

Ec

EF

EFi

fF(E) � 0

fF(E)

fF(E) � 1

E

Figure 4.8 | Density of states functions, Fermi–Dirac 

probability function, and areas representing electron 

and hole concentrations for the case when EF is above 

the intrinsic Fermi energy.
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 4.3   The Extrinsic Semiconductor 125

 The expressions previously derived for the thermal-equilibrium concentration of 

electrons and holes, given by Equations (4.11) and (4.19), are general equations for 

n0 and p0 in terms of the Fermi energy. These equations are again given as

 n0 � Nc exp  �   �(Ec � EF)
 __ 

kT
   � 

and

 p0 � Nv exp  �   �(EF � Ev)
 __ 

kT
   � 

As we just discussed, the Fermi energy may vary through the bandgap energy, which 

will then change the values of n0 and p0.

Area � n0 �
electron

concentration

gc(E)

gv(E)

Ev

Ec

EF

EFi

fF(E) � 0

fF(E)

fF(E) � 1

Area � p0 �
hole concentration

E

Figure 4.9 | Density of states functions, Fermi–Dirac 

probability function, and areas representing electron and 

hole concentrations for the case when EF is below the 

intrinsic Fermi energy.
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126 CHAPTER 4   The Semiconductor in Equilibrium

 In the previous example, since n0 � p0, the semiconductor is n type. In an n-type 

semiconductor, electrons are referred to as the majority carrier and holes as the mi-

nority carrier. By comparing the relative values of n0 and p0 in the example, it is easy 

to see how this designation came about. Similarly, in a p-type semiconductor where 

p0 � n0, holes are the majority carrier and electrons are the minority carrier.

 We may derive another form of the equations for the thermal-equilibrium con-

centrations of electrons and holes. If we add and subtract an intrinsic Fermi energy 

in the exponent of Equation (4.11), we can write

 n0 � Nc exp  �   �(Ec � EFi) � (EF � EFi)
  _____  

kT
   �  (4.38a)

or

 n0 � Nc exp  �   �(Ec � EFi)
 __ 

kT
   �  exp  �   (EF � EFi)

 __ 
kT

   �  (4.38b)

The intrinsic carrier concentration is given by Equation (4.20) as

 ni � Nc exp  �   �(Ec � EFi)
 __ 

kT
   � 

EXAMPLE 4.5 Objective: Calculate the thermal equilibrium concentrations of electrons and holes for a 

given Fermi energy.

 Consider silicon at T � 300 K so that Nc � 2.8 � 1019 cm�3 and Nv � 1.04 � 1019 cm�3. 
Assume that the Fermi energy is 0.25 eV below the conduction band. If we assume that the 

bandgap energy of silicon is 1.12 eV, then the Fermi energy will be 0.87 eV above the valence 

band.

■ Solution
Using Equation (4.11), we have

 n0 � (2.8 � 1019) exp  �   �0.25 __ 
0.0259

   �  � 1.8 � 1015 cm�3

From Equation (4.19), we can write

 p0 � (1.04 � 1019) exp  �   �0.87 __ 
0.0259

   �  � 2.7 � 104 cm�3

■ Comment
The change in the Fermi level is actually a function of the donor or acceptor impurity concen-

trations that are added to the semiconductor. However, this example shows that electron and 

hole concentrations change by orders of magnitude from the intrinsic carrier concentration as 

the Fermi energy changes by a few tenths of an electron-volt.

■ EXERCISE PROBLEM
Ex 4.5  Determine the thermal-equilibrium concentrations of electrons and holes in silicon 

at T � 300 K if the Fermi energy level is 0.215 eV above the valence-band energy 

Ev. 

(Ans. p0 � 2.58 � l0
 l5

 cm
�3

, n0 � 1.87 � 10
 4
 cm

�3
)
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 4.3   The Extrinsic Semiconductor 127

so that the thermal-equilibrium electron concentration can be written as

 n0 � ni exp  �    E F  �  E Fi  __ 
kT

   �   (4.39)

Similarly, if we add and subtract an intrinsic Fermi energy in the exponent of 

 Equation (4.19), we will obtain

 p0 � ni exp  �   �(EF � EFi)
 ___ 

kT
   � 

 

 (4.40)

 As we will see, the Fermi level changes when donors and acceptors are added, 

but Equations (4.39) and (4.40) show that, as the Fermi level changes from the 

 intrinsic Fermi level, n0 and p0 change from the ni value. If EF � EFi, then we will 

have n0 � ni and p0 � ni. One characteristic of an n-type semiconductor is that 

EF � EFi so that n0 � p0. Similarly, in a p-type semiconductor, EF � EFi so that p0 � ni 

and n0 � ni; thus, p0 � n0.
 We can see the functional dependence of n0 and p0 with EF in Figures 4.8 and 

4.9. As EF moves above or below EFi, the overlapping probability function with the 

density of states functions in the conduction band and valence band changes. As EF 

moves above EFi, the probability function in the conduction band increases, while the 

probability, 1 � fF (E ), of an empty state (hole) in the valence band decreases. As EF 

moves below EFi, the opposite occurs.

4.3.2 The n0 p0 Product

We may take the product of the general expressions for n0 and p0 as given in Equa-

tions (4.11) and (4.19), respectively. The result is

 n0 p0 � Nc Nv exp  �   �(Ec � EF)
 __ 

kT
   �  exp  �   �(EF � Ev)

 __ 
kT

   �  (4.41)

which may be written as

 n0 p0 � Nc Nv exp  �   � E g  _ 
kT

   �  (4.42)

 As Equation (4.42) was derived for a general value of Fermi energy, the values 

of n0 and p0 are not necessarily equal. However, Equation (4.42) is exactly the same 

as Equation (4.23), which we derived for the case of an intrinsic semiconductor. We 

then have that, for the semiconductor in thermal equilibrium,

 n0 p0 �  n i  
2  

 (4.43)

 Equation (4.43) states that the product of n0 and p0 is always a constant for a 

given semiconductor material at a given temperature. Although this equation seems 
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128 CHAPTER 4   The Semiconductor in Equilibrium

very simple, it is one of the fundamental principles of semiconductors in thermal 

equilibrium. The signifi cance of this relation will become more apparent in the chap-

ters that follow. It is important to keep in mind that Equation (4.43) was derived 

using the Boltzmann approximation. If the Boltzmann approximation is not valid, 

then likewise, Equation (4.43) is not valid.

 An extrinsic semiconductor in thermal equilibrium does not, strictly speaking, 

contain an intrinsic carrier concentration, although some thermally generated carriers 

are present. The intrinsic electron and hole carrier concentrations are modifi ed by the 

donor or acceptor impurities. However, we may think of the intrinsic concentration 

ni in Equation (4.43) simply as a parameter of the semiconductor material.

*4.3.3 The Fermi–Dirac Integral

In the derivation of the Equations (4.11) and (4.19) for the thermal equilibrium elec-

tron and hole concentrations, we assumed that the Boltzmann approximation was 

valid. If the Boltzmann approximation does not hold, the thermal equilibrium elec-

tron concentration is written from Equation (4.3) as

 n0 �   4� _ 
h3

   (2 m n  * )3�2  
∫

 Ec 

 
 

�  
    

(E � Ec)
1�2 dE

  ___  

1 � exp  �   E �  E F 
 __ 

kT
   � 

   (4.44)

If we again make a change of variable and let

  � �   
E �  E c  __ 

kT
   (4.45a)

and also defi ne

  �F �   
 E F  �  E c  __ 

kT
   (4.45b)

then we can rewrite Equation (4.44) as

 n0 � 4�   �   2 m n  * kT
 __ 

h2
   �  3�2

   
∫

0

 
 
� 
    

�1�2 d�
 ___  

1 � exp (� � �F)
   (4.46)

The integral is defi ned as

 F1�2 (�F) �  
∫

0

 
 
� 
    

�1�2 d�
 ___  

1 � exp (� � �F)
   (4.47)

This function, called the Fermi–Dirac integral, is a tabulated function of the variable 

�F. Figure 4.10 is a plot of the Fermi–Dirac integral. Note that if �F � 0, then EF � 

Ec; thus, the Fermi energy is actually in the conduction band.

EXAMPLE 4.6 Objective: Calculate the electron concentration using the Fermi–Dirac integral.

 Let �F � 2 so that the Fermi energy is above the conduction band by approximately 

52 meV at T � 300 K.

■ Solution
Equation (4.46) can be written as

 n0 �   2 _ 
 �

__
 �  
   NcF1�2 (�F)
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 4.3   The Extrinsic Semiconductor 129

 We may use the same general method to calculate the thermal equilibrium con-

centration of holes. We obtain

 p0 � 4�   �   2 m p  * kT
 __ 

h2
   �  3�2

   
∫

0

 
 
� 
    

(�	)1�2 d �	
  ____  

1 � exp ( �	 � �	F)
   (4.48)

For silicon at T � 300 K, Nc � 2.8 � 1019 cm�3 and, from Figure 4.10, the Fermi–Dirac 

integral has a value or F1�2 (2) � 2.7. Then

 n0 �   2 _ 
 �

__
 �  
    � 2.8 � 1019 �  � 2.7 �  � 8.53 � 1019 cm�3

■ Comment
Note that if we had used Equation (4.11), the thermal equilibrium value of n0 would be n0 � 

2.08 � 1020 cm�3, which is incorrect since the Boltzmann approximation is not valid for this 

case.

■ EXERCISE PROBLEM
Ex 4.6  If n0 � 1.5 � 1020 cm�3 in silicon at T � 300 K, determine the position of the Fermi 

level relative to the conduction-band energy Ec. 

(Ans. EF � Ec 	 0.08288 eV)

10
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l 
(F

1
�2

)

(EF � Ec)�kT � �F

F1�2(�F) �� x

0

�
1�2d�

1 � exp(� � �F)

��2   exp(�F)���� �

Figure 4.10 | The Fermi–Dirac integral F1�2 as a function 

of the Fermi energy.

(From Sze [14].)
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130 CHAPTER 4   The Semiconductor in Equilibrium

where

  �	 �   
Ev � E

 __ 
kT

   (4.49a)

and

  �	F �   
Ev �  E F 

 __ 
kT

   (4.49b)

The integral in Equation (4.48) is the same Fermi–Dirac integral defi ned by Equa-

tion (4.47), although the variables have slightly different defi nitions. We may note 

that if �	F � 0, then the Fermi level is in the valence band.

  TEST YOUR UNDERSTANDING

TYU 4.8 (a) Calculate the thermal-equilibrium electron concentration in silicon at 

T � 300 K for the case when EF � Ec. (b) Calculate the thermal-equilibrium hole 

concentration in silicon at T � 300 K for the case when EF � Ev.

 

[Ans. (a) n0 � 2.05 � 10
 19

 cm
�3

; (b) p0 � 7.63 � 10
 18

 cm
�3

]

4.3.4 Degenerate and Nondegenerate Semiconductors

In our discussion of adding dopant atoms to a semiconductor, we have implicitly 

assumed that the concentration of dopant atoms added is small when compared to 

the density of host or semiconductor atoms. The small number of impurity atoms are 

spread far enough apart so that there is no interaction between donor electrons, for 

example, in an n-type material. We have assumed that the impurities introduce dis-

crete, noninteracting donor energy states in the n-type semiconductor and discrete, 

noninteracting acceptor states in the p-type semiconductor. These types of semicon-

ductors are referred to as nondegenerate semiconductors.

 If the impurity concentration increases, the distance between the impurity atoms 

decreases and a point will be reached when donor electrons, for example, will begin 

to interact with each other. When this occurs, the single discrete donor energy will 

split into a band of energies. As the donor concentration further increases, the band 

of donor states widens and may overlap the bottom of the conduction band. This 

overlap occurs when the donor concentration becomes comparable with the effec-

tive density of states. When the concentration of electrons in the conduction band 

exceeds the density of states Nc, the Fermi energy lies within the conduction band. 

This type of semiconductor is called a degenerate n-type semiconductor.

 In a similar way, as the acceptor doping concentration increases in a p-type 

semiconductor, the discrete acceptor energy states will split into a band of energies 

and may overlap the top of the valence band. The Fermi energy will lie in the valence 

band when the concentration of holes exceeds the density of states Nv. This type of 

semiconductor is called a degenerate p-type semiconductor.

 Schematic models of the energy-band diagrams for a degenerate n-type and de-

generate p-type semiconductor are shown in Figure 4.11. The energy states below EF 
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 4.4   Statistics of Donors and Acceptors 131

are mostly fi lled with electrons and the energy states above EF are mostly empty. In 

the degenerate n-type semiconductor, the states between EF and Ec are mostly fi lled 

with electrons; thus, the electron concentration in the conduction band is very large. 

Similarly, in the degenerate p-type semiconductor, the energy states between Ev and 

EF are mostly empty; thus, the hole concentration in the valence band is very large.

4.4 | STATISTICS OF DONORS AND ACCEPTORS
In the previous chapter, we discussed the Fermi–Dirac distribution function, which 

gives the probability that a particular energy state will be occupied by an electron. 

We need to reconsider this function and apply the probability statistics to the donor 

and acceptor energy states.

4.4.1   Probability Function

One postulate used in the derivation of the Fermi–Dirac probability function was 

the Pauli exclusion principle, which states that only one particle is permitted in each 

quantum state. The Pauli exclusion principle also applies to the donor and acceptor 

states.

 Suppose we have Ni electrons and gi quantum states, where the subscript i in-

dicates the ith energy level. There are gi ways of choosing where to put the fi rst 

particle. Each donor level has two possible spin orientations for the donor electron; 

thus, each donor level has two quantum states. The insertion of an electron into one 

quantum state, however, precludes putting an electron into the second quantum state. 

By adding one electron, the vacancy requirement of the atom is satisfi ed, and the 

addition of a second electron in the donor level is not possible. The distribution func-

tion of donor electrons in the donor energy states is then slightly different than the 

Fermi–Dirac function.

 The probability function of electrons occupying the donor state is

 nd �   
 N d  ____  

1 �   1 _ 
2
   exp  �   Ed �  E F 

 __ 
kT

   � 
    (4.50)

(a)

Conduction band

Filled
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(electrons)

Valence band
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Conduction band
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(holes)

Valence band
EF
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Figure 4.11 | Simplifi ed energy-band diagrams for degenerately doped (a) n-type and 

(b) p-type semiconductors.
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132 CHAPTER 4   The Semiconductor in Equilibrium

where nd is the density of electrons occupying the donor level and Ed is the energy of 

the donor level. The factor   1 _ 
2
   in this equation is a direct result of the spin factor just 

mentioned. The   1 _ 
2
   factor is sometimes written as 1�g, where g is called a degeneracy 

factor.

 Equation (4.50) can also be written in the form

 nd � Nd �  N  d  
�  (4.51)

where  N  d  
�  is the concentration of ionized donors. In many applications, we will be 

interested more in the concentration of ionized donors than in the concentration of 

electrons remaining in the donor states.

 If we do the same type of analysis for acceptor atoms, we obtain the expression

 pa �   
  N a  ____  

1 �   1 _ g   exp  �   EF �  E a  __ 
kT

   � 
   � Na �  N  a  

�  (4.52)

where Na is the concentration of acceptor atoms, Ea is the acceptor energy level, pa 

is the concentration of holes in the acceptor states, and  N  a  
�  is the concentration of 

ionized acceptors. A hole in an acceptor state corresponds to an acceptor atom that 

is neutrally charged and still has an “empty” bonding position as we have discussed 

in Section 4.2.1. The parameter g is, again, a degeneracy factor. The ground state de-

generacy factor g is normally taken as 4 for the acceptor level in silicon and gallium 

arsenide because of the detailed band structure.

4.4.2 Complete Ionization and Freeze-Out

The probability function for electrons in the donor energy state was just given by 

Equation (4.50). If we assume that (Ed � EF) � kT, then

 nd 
   
 N d  ___  

  1 _ 
2
   exp  �   Ed �  E F 

 __ 
kT

   � 
   � 2Nd exp  �   �(Ed �  E F )

 __ 
kT

   �  (4.53)

If (Ed � EF) � kT, then the Boltzmann approximation is also valid for the electrons 

in the conduction band so that, from Equation (4.11),

 n0 � Nc exp  �   �(Ec � EF)
 __ 

kT
   � 

 We can determine the relative number of electrons in the donor state compared 

with the total number of electrons; therefore, we can consider the ratio of electrons 

in the donor state to the total number of electrons in the conduction band plus donor 

state. Using the expressions of Equations (4.53) and (4.11), we write

   
nd  __ nd � n0

   �   
2Nd exp  �   �(Ed � EF)

 __ 
kT

   � 
   ________    

2Nd exp  �   �(Ed�EF)
 __ 

kT
   �  � Nc exp  �   �(Ec � EF)

 __ 
kT

   � 
   (4.54)
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 4.4   Statistics of Donors and Acceptors 133

The Fermi energy cancels out of this expression. Dividing by the numerator term, 

we obtain

   
nd  __ nd � n0

   �   1  _____   

1 �   
Nc  _ 
2Nd

   exp  �   �(Ec � Ed)
 __ 

kT
   � 

   (4.55)

The factor (Ec � Ed) is just the ionization energy of the donor electrons.

   EXAMPLE 4.7Objective: Determine the fraction of total electrons still in the donor states at T � 300 K.

 Consider phosphorus doping in silicon, for T � 300 K, at a concentration of Nd � 

1016 cm�3.

■ Solution
Using Equation (4.55), we fi nd

  
nd  __ n0 � nd

   �   1  _____   

1 �   2.8 � 1019  __ 
2(1016)

   exp  �   �0.045 __ 
0.0259

   � 
   � 0.0041 � 0.41%

■ Comment
This example shows that there are very few electrons in the donor state compared with the 

conduction band. Essentially all of the electrons from the donor states are in the conduction 

band and, since only about 0.4 percent of the donor states contain electrons, the donor states 

are said to be completely ionized.

■ EXERCISE PROBLEM
Ex 4.7  Repeat Example 4.7 for (a) T � 250 K and (b) T � 200 K. (c) What can be said 

about the fraction as the temperature decreases?

 [Ans. (a) 7.50 � 10
�3

; (b) 1.75 � 10
�2

; (c) Fraction increases as temperature decreases.]

 At room temperature, then, the donor states are essentially completely ionized 

and, for a typical doping of 1016 cm�3, almost all donor impurity atoms have donated 

an electron to the conduction band.

 At room temperature, there is also essentially complete ionization of the accep-

tor atoms. This means that each acceptor atom has accepted an electron from the 

valence band so that pa is zero. At typical acceptor doping concentrations, a hole is 

created in the valence band for each acceptor atom. This ionization effect and the cre-

ation of electrons and holes in the conduction band and valence band, respectively, 

are shown in Figure 4.12.

 The opposite of complete ionization occurs at T � 0 K. At absolute zero degrees, all 

electrons are in their lowest possible energy state; that is, for an n-type semiconductor, 

each donor state must contain an electron, therefore nd � Nd or  N d  
�  � 0. We must have, 

then, from Equation (4.50) that exp [(Ed � EF)�kT] � 0. Since T � 0 K, this will occur 

for exp (��) � 0, which means that EF � Ed. The Fermi energy level must be above the 

donor energy level at absolute zero. In the case of a p-type semiconductor at absolute 

zero temperature, the impurity atoms will not contain any electrons, so that the Fermi en-

ergy level must be below the acceptor energy state. The distribution of electrons among 

the various energy states, and hence the Fermi energy, is a function of temperature.
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134 CHAPTER 4   The Semiconductor in Equilibrium

 A detailed analysis, not given in this text, shows that at T � 0 K, the Fermi en-

ergy is halfway between Ec and Ed for the n-type material and halfway between Ea 

and Ev for the p-type material. Figure 4.13 shows these effects. No electrons from 

the donor state are thermally elevated into the conduction band; this effect is called 

freeze-out. Similarly, when no electrons from the valance band are elevated into the 

acceptor states, the effect is also called freeze-out.

 Between T � 0 K, freeze-out, and T � 300 K, complete ionization, we have 

partial ionization of donor or acceptor atoms.
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� � � � � � �

Figure 4.12 | Energy-band diagrams showing complete ionization of (a) donor states 

and (b) acceptor states.

(a)

Ec

Ed
EF

EFi

EvE
le

ct
ro

n
 e

n
er

g
y

Conduction band

Valence band

(b)

Ec

EaEF

EFi

EvE
le

ct
ro

n
 e

n
er

g
y

Conduction band

Valence band

Figure 4.13 | Energy-band diagram at T � 0 K for (a) n-type and (b) p-type 

semiconductors.

EXAMPLE 4.8 Objective: Determine the temperature at which 90 percent of acceptor atoms are ionized.

 Consider p-type silicon doped with boron at a concentration of Na � 1016 cm�3.

■ Solution
Find the ratio of holes in the acceptor state to the total number of holes in the valence band 

plus acceptor state. Taking into account the Boltzmann approximation and assuming the de-

generacy factor is g � 4, we write

   
pa 
 __ p0 � pa

   �   1  _____   

1 �   
Nv  _ 
4Na

   
 exp  �   �(Ea � Ev)
 __ 

kT
   � 

  

nea29583_ch04_106-155.indd   134nea29583_ch04_106-155.indd   134 12/11/10   10:10 AM12/11/10   10:10 AM

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight



 4.5   Charge Neutrality 135

4.5 | CHARGE NEUTRALITY
In thermal equilibrium, the semiconductor crystal is electrically neutral. The elec-

trons are distributed among the various energy states, creating negative and positive 

charges, but the net charge density is zero. This charge-neutrality condition is used 

to determine the thermal-equilibrium electron and hole concentrations as a function 

of the impurity doping concentration. We will defi ne a compensated semiconductor 

and then determine the electron and hole concentrations as a function of the donor 

and acceptor concentrations.

4.5.1  Compensated Semiconductors

A compensated semiconductor is one that contains both donor and acceptor impurity 

atoms in the same region. A compensated semiconductor can be formed, for ex-

ample, by diffusing acceptor impurities into an n-type material or by diffusing donor 

impurities into a p-type material. An n-type compensated semiconductor occurs 

when Nd � Na, and a p-type compensated semiconductor occurs when Na � Nd. 

If Na � Nd, we have a completely compensated semiconductor that has, as we will 

show, the characteristics of an intrinsic material. Compensated semiconductors are 

created quite naturally during device fabrication as we will see later.

For 90 percent ionization,

   
pa 
 __ p0 � pa

   � 0.10 �   1  ________    

1 �   
(1.04 � 1019)   �   T _ 

300
   �  3�2

  
  ____  

4(1016)
   � exp  �   �0.045 ___  

0.0259  �   T _ 
300

   � 
   � 
  

Using trial and error, we fi nd that T � 193 K.

■ Comment
This example shows that at approximately 100�C below room temperature, we still have 

90 percent of the acceptor atoms ionized; in other words, 90 percent of the acceptor atoms 

have “donated” a hole to the valence band.

■ EXERCISE PROBLEM
Ex 4.8  Determine the fraction of total holes still in the acceptor states in silicon for 

Na � 1016 cm�3 at (a) T � 250 K and (b) T � 200 K. 

[Ans. (a) 3.91 � 10
�2

; (b) 8.736 � 10
�2

]

TYU 4.9 Determine the fraction of total holes still in the acceptor states in silicon at 

T � 300 K for a boron impurity concentration of Na � 1017 cm�3. 

(Ans. 0.179)

TYU 4.10 Consider silicon with a phosphorus impurity concentration of Nd � 1015 cm�3. 

Determine the percent of ionized phosphorus atoms at (a) T � 100 K, 

(b) T � 200 K, (c) T � 300 K, and (d) T � 400 K.

 

 [Ans. (a) 93.62%; (b) 99.82%; (c) 99.96%; (d) 99.98%]

TEST YOUR UNDERSTANDING
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136 CHAPTER 4   The Semiconductor in Equilibrium

4.5.2  Equilibrium Electron and Hole Concentrations

Figure 4.14 shows the energy-band diagram of a semiconductor when both donor 

and acceptor impurity atoms are added to the same region to form a compensated 

semiconductor. The fi gure shows how the electrons and holes can be distributed 

among the various states.

 The charge neutrality condition is expressed by equating the density of negative 

charges to the density of positive charges. We then have

 n0 �  N  a  
�  � p0 �  N  d  

�  (4.56)

or

 n0 � (Na � pa) � p0 � (Nd � nd) (4.57)

where n0 and p0 are the thermal-equilibrium concentrations of electrons and holes in 

the conduction band and valence band, respectively. The parameter nd is the concen-

tration of electrons in the donor energy states, so  N  d  
�  � Nd � nd is the concentration 

of positively charged donor states. Similarly, pa is the concentration of holes in the 

acceptor states, so  N   a  
�  � Na � pa is the concentration of negatively charged acceptor 

states. We have expressions for n0, p0, nd, and pa in terms of the Fermi energy and 

temperature.

Total electron

concentration
Thermal

electrons

� � �

� �
� � � �

� � � �

� � � � � � �

� �
� �

� �

Un-ionized

donors

Un-ionized

acceptors

Donor

electrons

Thermal

holes

Acceptor

holes

n0

Ec

Ed

Ea

Ev

EFi

Nd
� � (Nd � nd)

Ionized donors

Na
� � (Na � pa)

Ionized acceptors

Total hole

concentration

p0

Figure 4.14 | Energy-band diagram of a compensated 

semiconductor showing ionized and un-ionized donors 

and acceptors.

nea29583_ch04_106-155.indd   136nea29583_ch04_106-155.indd   136 12/11/10   10:10 AM12/11/10   10:10 AM

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight



Thermal-Equilibrium Electron Concentration  If we assume complete ioniza-

tion, nd and pa are both zero, and Equation (4.57) becomes

 n0 � Na � p0 � nd (4.58)

 If we express p0 as  n i  
2 �n0, then Equation (4.58) can be written as

 n0 � Na �   
 n i  

2 
 _ n0

   � Nd (4.59a)

which in turn can be written as

  n 0  
2  � (Nd � Na)n0 �  n i  

2  � 0 (4.59b)

The electron concentration n0 can be determined using the quadratic formula, or

 n0 �   
(Nd � Na)

 __ 
2
   �  �

______________

    �   Nd � Na  __ 
2
   �  2  �  n i  

2    (4.60)

The positive sign in the quadratic formula must be used, since, in the limit of an 

intrinsic semiconductor when Na � Nd � 0, the electron concentration must be a 

positive quantity, or n0 � ni.

 Equation (4.60) is used to calculate the electron concentration in an n-type semi-

conductor, or when Nd � Na. Although Equation (4.60) was derived for a compen-

sated semiconductor, the equation is also valid for Na � 0.

   EXAMPLE 4.9Objective: Determine the thermal-equilibrium electron and hole concentrations 

in silicon at T � 300 K for given doping concentrations. (a) Let Nd � 1016 cm�3 and 

Na � 0. (b) Let Nd � 5 � 1015 cm�3 and Na � 2 � 1015 cm�3.

 Recall that ni � 1.5 � 1010 cm�3 in silicon at T � 300 K.

■ Solution
(a) From Equation (4.60), the majority carrier electron concentration is

 n0 �   1016  _ 
2
   �  �

____________________

    �   1016

 _ 
2
   �  2  �   � 1.5 � 1010 �  2    	 1016 cm�3

 The minority carrier hole concentration is found to be

 p0 �   
 n i  

2 
 _ n0

   �    
(1.5 � 1010)

 __ 
1016

   
2

  � 2.25 � 104 cm�3

(b) Again, from Equation (4.60), the majority carrier electron concentration is

n0 �   5 � 1015 � 2 � 1015

  ____ 
2
   �  �

________________________________

      �   5 � 1015 � 2 � 1015

  ____ 
2

   �  2  �  (1.5 � 1010) 2    	 3 � 1015 cm�3

 The minority carrier hole concentration is

 p0 �   
 n i  

2
 
 _ n0

   �    
(1.5 � 1010)

 ___ 
3 � 1015

   
2

  � 7.5 � 104 cm�3
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138 CHAPTER 4   The Semiconductor in Equilibrium

 We have argued in our discussion and we may note from the results of Ex-

ample 4.9 that the concentration of electrons in the conduction band increases above 

the intrinsic carrier concentration as we add donor impurity atoms. At the same time, 

the minority carrier hole concentration decreases below the intrinsic carrier concen-

tration as we add donor atoms. We must keep in mind that as we add donor impurity 

atoms and the corresponding donor electrons, there is a redistribution of electrons 

among available energy states. Figure 4.15 shows a schematic of this physical redis-

tribution. A few of the donor electrons will fall into the empty states in the valence 

band and, in doing so, will annihilate some of the intrinsic holes. The minority carrier 

hole concentration will therefore decrease as we have seen in Example 4.9. At the 

■ Comment
In both parts of this example, (Nd � Na) � ni, so the thermal-equilibrium majority carrier 

electron concentration is essentially equal to the difference between the donor and acceptor 

concentrations. Also, in both cases, the majority carrier electron concentration is orders of 

magnitude larger than the minority carrier hole concentration.

■ EXERCISE PROBLEM
Ex 4.9  Find the thermal-equilibrium electron and hole concentrations in silicon with 

doping concentrations of Na � 7 � 1015 cm�3 and Na � 3 � 1015 cm�3 

for (a) T � 250 K and (b) T � 400 K.

[Ans. (a) n0 � 4 � 10
15

 cm
�3

, p0 � 1.225 cm
�3

; (b) n0 � 4 � 10
15

 cm
�3

, p0 � 

1.416 � 10
9
 cm

�3
]

  

�

� � � � � � � � �

� � � � �

� � � �

Ionized donors

Intrinsic

electrons

Intrinsic holes

Un-ionized donors

Net p0 �

Ec

Ed

Ev

EFi

ni
2

n0

A few donor electrons

annihilate some

intrinsic holes

�����

Figure 4.15 | Energy-band diagram showing the 

redistribution of electrons when donors are added.
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same time, because of this redistribution, the net electron concentration in the con-

duction band is not simply equal to the donor concentration plus the intrinsic electron 

concentration.

   EXAMPLE 4.10Objective: Calculate the thermal-equilibrium electron and hole concentrations in 

germanium for a given doping concentration.

 Consider a germanium sample at T � 300 K in which Nd � 2 � 1014 cm�3 and Na � 0.  

Assume that ni � 2.4 � 1013 cm�3.

■ Solution
Again, from Equation (4.60), the majority carrier electron concentration is

 n0 �   2 � 1014

 __ 
2
   �  �

________________________

     �   2 � 1014

 __ 
2
   �  2  �   � 2.4 � 1013 �  2     	 2.028 � 1014 cm�3

The minority carrier hole concentration is

 p0 �   
 n i  

2 
 _ n0

   �   
 � 2.4 � 1013 � 2

  ___  
2.028 � 1014

   � 2.84 � 1012 cm�3

■ Comment
If the donor impurity concentration is not too different in magnitude from the intrinsic carrier 

concentration, then the thermal-equilibrium majority carrier electron concentration is infl u-

enced by the intrinsic concentration.

■ EXERCISE PROBLEM
Ex 4.10  Repeat Example 4.10 for (a) T � 250 K and (b) T � 350 K. (c) What can 

be said about a very low-doped material as the temperature increases? 

p0 � 1.059 � 10
14

 cm
�3

; (c) Material approaches an intrinsic semiconductor]

 

[Ans. (a) n0 	 2 � 10
14

 cm
�3

, p0 � 9.47 � 10
9
 cm

�3
; (b) n0 � 3.059 � 10

14
 cm

�3
,

 We have seen that the intrinsic carrier concentration ni is a very strong function 

of temperature. As the temperature increases, additional electron–hole pairs are ther-

mally generated so that the  n i  
2  term in Equation (4.60) may begin to dominate. The 

semiconductor will eventually lose its extrinsic characteristics. Figure 4.16 shows 

the electron concentration versus temperature in silicon doped with 5 � 1014 donors 

per cm3 . As the temperature increases, we can see where the intrinsic concentration 

begins to dominate. Also shown is the partial ionization, or the onset of freeze-out, at 

the low temperature.

Thermal-Equilibrium Hole Concentration If we reconsider Equation (4.58) and 

express n0 as  n i  
2  �p0, then we have

   
 n i  

2 
 _ p0

   � Na � p0 � Nd (4.61a)

which we can write as

  p 0  
2  � (Na � Nd)p0 �  n i  

2  � 0 (4.61b)

 4.5   Charge Neutrality 139
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140 CHAPTER 4   The Semiconductor in Equilibrium

Using the quadratic formula, the hole concentration is given by

 p0 �   
Na � Nd  __ 

2
   �  �

______________

    �   Na � Nd  __ 
2
   �  2  �  n i  

2    (4.62)

where the positive sign, again, must be used. Equation (4.62) is used to calculate the 

thermal-equilibrium majority carrier hole concentration in a p-type semiconductor, 

or when Na � Nd. This equation also applies for Nd � 0.

EXAMPLE 4.11 Objective: Calculate the thermal-equilibrium electron and hole concentrations in a 

compensated p-type semiconductor.

 Consider a silicon semiconductor at T � 300 K in which Na � 1016 cm�3 and Nd � 3 � 

1015 cm�3. Assume ni � 1.5 � 1010 cm�3.

■ Solution
Since Na � Nd, the compensated semiconductor is p-type and the thermal-equilibrium majority 

carrier hole concentration is given by Equation (4.62) as

 p0 �   1016 � 3 � 1015

  ___ 
2
   �  �

_____________________________

     �   1016 � 3 � 1015

  ___ 
2
   �  2  � (1.5 � 1010)2  

so that

 p0 � 7 � 1015 cm�3

The minority carrier electron concentration is

 n0 �   
 n i  

2 
 _ p0

   �   
(1.5 � 1010)2 

  ___ 
7 � 1015

   � 3.21 � 104 cm�3

■ Comment
If we assume complete ionization and if (Na � Nd) � ni, then the majority carrier hole concen-

tration is, to a very good approximation, just the difference between the acceptor and donor 

concentrations.

Figure 4.16 | Electron concentration versus temperature showing 

the three regions: partial ionization, extrinsic, and intrinsic.
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4.6 | POSITION OF FERMI ENERGY LEVEL
We have discussed qualitatively in Section 4.3.1 how the electron and hole concen-

trations change as the Fermi energy level moves through the bandgap energy. Then, 

in Sec tion 4.5, we calculated the electron and hole concentrations as a function of 

donor and acceptor impurity concentrations. We can now determine the position 

of the Fermi energy level as a function of the doping concentrations and as a func-

tion of temperature. The relevance of the Fermi energy level will be further discussed 

after the mathematical derivations.

 We may note that, for a compensated p-type semiconductor, the minority carrier 

electron concentration is determined from

 n0 �   
 n i  

2 
 _ p0

   �   
 n i  

2 
 __ 

(Na � Nd)
  

 Equations (4.60) and (4.62) are used to calculate the majority carrier electron 

concentration in an n-type semiconductor and majority carrier hole concentration in 

a p-type semiconductor, respectively. The minority carrier hole concentration in an 

n-type semiconductor could, theoretically, be calculated from Equation (4.62). How-

ever, we would be subtracting two numbers on the order of 1016 cm�3, for example, 

to obtain a number on the order of 104 cm�3, which from a practical point of view is 

not possible. The minority carrier concentrations are calculated from n0p0 �  n i  
2  once 

the majority carrier concentration has been determined.

TYU 4.11  Consider a compensated GaAs semiconductor at T � 300 K doped at Nd � 5 � 

1015 cm�3 and Na � 2 � 1016 cm�3. Calculate the thermal equilibrium electron 

and hole concentrations. 

(Ans. p0 � 1.5 � 10
16

 cm
�3

, n0 � 2.16 � 10
�4

 cm
�3

)

TYU 4.12  Silicon is doped at Nd � 1015 cm�3 and Na � 0. (a) Plot the concentration of 

 electrons versus temperature over the range 300  T  600 K. (b) Calculate the 

temperature at which the electron concentration is equal to 1.1 � 1015 cm�3.(Ans. T � 552 K)

TYU 4.13  A silicon device with n-type material is to be operated at T � 550 K. At this 

temperature, the intrinsic carrier concentration must contribute no more than 

5 percent of the total electron concentration. Determine the minimum donor 

concentration required to meet this specifi cation. 

(Ans. Nd � 1.40 � 10
 15

 cm
�3

)

TEST YOUR UNDERSTANDING

■ EXERCISE PROBLEM
Ex 4.11  Consider silicon at T � 300 K. Calculate the thermal-equilibrium electron and 

hole concentrations for impurity concentrations of (a) Na � 4 � 1016 cm�3, 

Nd � 8 � 1015 cm�3 and (b) Na � Nd � 3 � 1015 cm�3.  

[Ans. (a) p0 � 3.2 � 10
16

 cm
�3

, n0 � 7.03 � 10
3
 cm

�3
; (b) p0 � n0 � 1.5 � 10

10
 cm

�3
]
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142 CHAPTER 4   The Semiconductor in Equilibrium

DESIGN 
EXAMPLE 4.12 

Objective: Determine the required donor impurity concentration to obtain a specifi ed Fermi 

energy.

 Silicon at T � 300  K contains an acceptor impurity concentration of Na � 1016 cm�3. 

Determine the concentration of donor impurity atoms that must be added so that the silicon is 

n type and the Fermi energy is 0.20 eV below the conduction-band edge.

■ Solution
From Equation (4.64), we have

 Ec � EF � kT  ln  �   Nc  __ 
Nd � Na 

   � 
which can be rewritten as

 Nd � Na � Nc exp  �   �(Ec � EF)
 __ 

kT
   � 

Then

 Nd � Na � 2.8 � 1019 exp  �   �0.20 __ 
0.0259

   �  � 1.24 � 1016 cm�3

or

 Nd � 1.24 � 1016 � Na � 2.24 � 1016 cm�3

■ Comment
A compensated semiconductor can be fabricated to provide a specifi c Fermi energy level.

4.6.1  Mathematical Derivation

The position of the Fermi energy level within the bandgap can be determined by 

using the equations already developed for the thermal-equilibrium electron and hole 

concentrations. If we assume the Boltzmann approximation to be valid, then from 

Equa tion (4.11) we have n0 � Nc exp [�(Ec � EF)�kT]. We can solve for Ec � EF 

from this equation and obtain

 Ec � EF � kT ln  �   Nc  _ n0 
   �  (4.63)

where n0 is given by Equation (4.60). If we consider an n-type semiconductor in 

which Nd � ni, then n0 � Nd, so that

 Ec � EF � kT ln  �   Nc  _ 
Nd 

   �  (4.64)

 The distance between the bottom of the conduction band and the Fermi energy 

is a logarithmic function of the donor concentration. As the donor concentration 

increases, the Fermi level moves closer to the conduction band. Conversely, if the 

Fermi level moves closer to the conduction band, then the electron concentration in 

the conduction band is increasing. We may note that if we have a compensated semi-

conductor, then the Nd term in Equation (4.64) is simply replaced by Nd � Na, or- the 

net effective donor concentration.
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 We may develop a slightly different expression for the position of the Fermi 

level. We had from Equation (4.39) that n0 � ni exp [(EF � EFi)�kT]. We can solve 

for EF � EFi as

 EF � EFi � kT ln  �   n0  _ ni 
   �  (4.65)

Equation (4.65) can be used specifi cally for an n-type semiconductor, where n0 is 

given by Equation (4.60), to fi nd the difference between the Fermi level and the 

intrinsic Fermi level as a function of the donor concentration. We may note that, if 

the net effective donor concentration is zero, that is, Nd � Na � 0, then n0 � ni and 

EF � EFi. A completely compensated semiconductor has the characteristics of an 

intrinsic material in terms of carrier concentration and Fermi-level position.

 We can derive the same types of equations for a p-type semiconductor. From 

Equation (4.19), we have p0 � Nv exp [�(EF � Ev)�kT], so that

 EF � Ev � kT ln  �   Nv  _ p0 
   �  (4.66)

If we assume that Na � ni, then Equation (4.66) can be written as

 EF � Ev � kT ln  �   Nv  _ 
Na 

   �  (4.67)

 The distance between the Fermi level and the top of the valence-band energy for 

a p-type semiconductor is a logarithmic function of the acceptor concentration: as the 

acceptor concentration increases, the Fermi level moves closer to the valence band. 

Equation (4.67) still assumes that the Boltzmann approximation is valid. Again, if 

we have a compensated p-type semiconductor, then the Na term in Equation (4.67) is 

replaced by Na � Nd, or the net effective acceptor concentration.

 We can also derive an expression for the relationship between the Fermi level 

and the intrinsic Fermi level in terms of the hole concentration. We have from Equa-

tion (4.40) that p0 � ni exp [�(EF � EFi)�kT], which yields

 EFi � EF � kT ln  �   p0 
 _ ni 
   �  (4.68)

Equation (4.68) can be used to fi nd the difference between the intrinsic Fermi level 

and the Fermi energy in terms of the acceptor concentration. The hole concentration 

p0 in Equation (4.68) is given by Equation (4.62).

■ EXERCISE PROBLEM
Ex 4.12  Consider silicon at T � 300 K with doping concentrations of Nd � 8 � 1015 cm�3 

and Na � 5 � 1015 cm�3. Determine the position of the Fermi energy level with 

respect to Ec. 

(Ans. Ec � EF � 0.2368 eV)

 4.6   Position of Fermi Energy Level 143
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144 CHAPTER 4   The Semiconductor in Equilibrium

 We may again note from Equation (4.65) that, for an n-type semiconductor, 

n0 � ni and EF � EFi. The Fermi level for an n-type semiconductor is above EFi. For 

a p-type semiconductor, p0 � ni, and from Equation (4.68) we see that EFi � EF. 

The Fermi level for a p-type semiconductor is below EFi. These results are shown in 

Figure 4.17.

4.6.2   Variation of EF with Doping Concentration 
and Temperature

We may plot the position of the Fermi energy level as a function of the doping 

concentration. Figure 4.18 shows the Fermi energy level as a function of donor con-

centration (n type) and as a function of acceptor concentration (p type) for silicon at 

T � 300 K. As the doping levels increase, the Fermi energy level moves closer to the 

conduction band for the n-type material and closer to the valence band for the p-type 

material. Keep in mind that the equations for the Fermi energy level that we have 

derived assume that the Boltzmann approximation is valid.

Figure 4.17 | Position of Fermi level for an (a) n-type (Nd � Na) and (b) p-type (Nd � Na) 

semiconductor.
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Figure 4.18 | Position of Fermi level as a function of donor 

concentration (n type) and acceptor concentration (p type).
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   EXAMPLE 4.13Objective: Determine the Fermi energy level and the maximum doping concentration at 

which the Boltzmann approximation is still valid.

 Consider p-type silicon, at T � 300 K, doped with boron. We may assume that the limit 

of the Boltzmann approximation occurs when EF � Ea � 3kT. (See Section 4.1.2.)

■ Solution
From Table 4.3, we fi nd the ionization energy is Ea � Ev � 0.045 eV for boron in silicon. If 

we assume that EFi � Emidgap, then from Equation (4.68), the position of the Fermi level at the 

maximum doping is given by

 EFi � EF �   
Eg 

 _ 
2
   � (Ea � Ev) � (EF � Ea) � kT ln  �   Na  _ ni 

   � 
or

 0.56 � 0.045 � 3(0.0259) � 0.437 � (0.0259) ln  �   Na  _ ni 
   � 

We can then solve for the doping as

 Na � ni exp  �   0.437 __ 
0.0259

   �  � 3.2 � 1017 cm�3

■ Comment
If the acceptor (or donor) concentration in silicon is greater than approximately 3 � 1017 cm�3, 

then the Boltzmann approximation of the distribution function becomes less valid and the 

equations for the Fermi-level position are no longer quite as accurate.

■ EXERCISE PROBLEM
Ex 4.13 Consider n-type silicon at T � 300 K doped with arsenic. Determine the 

maximum doping at which the Boltzmann approximation is still valid. Assume 

the limit is such that Ed � EF � 3kT.  

(Ans. n0 � 2.02 � 10
17

 cm
�3

)

 The intrinsic carrier concentration ni, in Equations (4.65) and (4.68), is a strong 

function of temperature, so that EF is a function of temperature also. Figure 4.19 shows 

the variation of the Fermi energy level in silicon with temperature for several donor 

and acceptor concentrations. As the temperature increases, ni increases, and EF moves 

closer to the intrinsic Fermi level. At high temperature, the semiconductor material 

begins to lose its extrinsic characteristics and begins to behave more like an intrinsic 

semiconductor. At the very low temperature, freeze-out occurs; the Boltzmann approx-

imation is no longer valid and the equations we derived for the Fermi-level position 

no longer apply. At the low temperature where freeze-out occurs, the Fermi level goes 

above Ed for the n-type material and below Ea for the p-type material. At absolute zero 

degrees, all energy states below EF are full and all energy states above EF are empty.

4.6.3  Relevance of the Fermi Energy

We have been calculating the position of the Fermi energy level as a function of 

doping concentrations and temperature. This analysis may seem somewhat arbitrary 

and fi ctitious. However, these relations do become signifi cant later in our discus-

sion of pn junctions and the other semiconductor devices we consider. An important 
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146 CHAPTER 4   The Semiconductor in Equilibrium

point is that, in thermal equilibrium, the Fermi energy level is a constant throughout 

a system. We will not prove this statement, but we can intuitively see its validity by 

considering the following example.

 Suppose we have a particular material, A, whose electrons are distributed in the 

energy states of an allowed band as shown in Figure 4.20a. Most of the energy states 

below EFA contain electrons and most of the energy states above EFA are empty of 

electrons. Consider another material, B, whose electrons are distributed in the energy 

states of an allowed band as shown in Figure 4.20b. The energy states below EFB are 

mostly full and the energy states above EFB are mostly empty. If these two materi-

als are brought into intimate contact, the electrons in the entire system will tend to 

seek the lowest possible energy. Electrons from material A will fl ow into the lower 

energy states of material B, as indicated in Figure 4.20c, until thermal equilibrium is 

reached. Thermal equilibrium occurs when the distribution of electrons, as a function 

of energy, is the same in the two materials. This equilibrium state occurs when the 

Fermi energy is the same in the two materials as shown in Figure 4.20d. The Fermi 

energy, important in the physics of the semiconductor, also provides a good pictorial 

representation of the characteristics of the semiconductor materials and devices.

Figure 4.19 | Position of Fermi level as a function of 

temperature for various doping concentrations. 
(From Sze [14].)
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  TEST YOUR UNDERSTANDING

TYU 4.14  Determine the position of the Fermi level with respect to the valence-band 

energy in p-type GaAs at T � 300 K. The doping concentrations are 

Na � 5 � 1016 cm�3 and Nd � 4 � 1015 cm�3. 

(Ans. EF � Ev � 0.130 eV)

TYU 4.15  Calculate the position of the Fermi energy level in n-type silicon at T � 300 K 

with respect to the intrinsic Fermi energy level. The doping concentrations are 

Nd � 2 � 1017 cm�3 and Na � 3 � 1016 cm�3. 

(Ans. EF � EFi � 0.421 eV)
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4.7 | SUMMARY
■ The concentration of electrons in the conduction band is the integral over the 

conduction-band energy of the product of the density of states function in the 

conduction band and the Fermi–Dirac probability function.

■ The concentration of holes in the valence band is the integral over the valence-band 

energy of the product of the density of states function in the valence band and the prob-

ability of a state being empty, which is [1 � fF (E)].

■ Using the Maxwell–Boltzmann approximation, the thermal-equilibrium concentration 

of electrons in the conduction band is given by

 n0 � Nc exp  �   �(Ec � EF) 
 __ 

 kT
   � 

 where Nc is the effective density of states in the conduction band.

■ Using the Maxwell–Boltzmann approximation, the thermal-equilibrium concentration 

of holes in the valence band is given by

 p0 � Nv exp  �   �(EF � Ev) 
 __ 

 kT
   � 

 where Nv is the effective density of states in the valence band.

■ The intrinsic carrier concentration is found from

  n i  
2  � NcNv exp  �   �Eg 

 _ 
kT

   � 

Figure 4.20 | The Fermi energy of (a) material A in thermal equilibrium, (b) material B 

in thermal equilibrium, (c) materials A and B at the instant they are placed in contact, and 

(d) materials A and B in contact at thermal equilibrium.
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148 CHAPTER 4   The Semiconductor in Equilibrium

■ The concept of doping the semiconductor with donor (group V elements) impurities 

and acceptor (group III elements) impurities to form n-type and p-type extrinsic semi-

conductors was discussed.

■ The fundamental relationship of n0p0 �  n i  
2  was derived.

■ Using the concepts of complete ionization and charge neutrality, equations for the 

electron and hole concentrations as a function of impurity doping concentrations were 

derived.

■ The position of the Fermi energy level as a function of impurity doping concentrations 

was derived.

■ The relevance of the Fermi energy was discussed. The Fermi energy is a constant 

throughout a semiconductor that is in thermal equilibrium.

GLOSSARY OF IMPORTANT TERMS

acceptor atoms  Impurity atoms added to a semiconductor to create a p-type material.

charge carrier  The electron and/or hole that moves inside the semiconductor and gives rise 

to electrical currents.

compensated semiconductor  A semiconductor that contains both donors and acceptors in 

the same semiconductor region.

complete ionization  The condition when all donor atoms are positively charged by giv-

ing up their donor electrons and all acceptor atoms are negatively charged by accepting 

electrons.

degenerate semiconductor  A semiconductor whose electron concentration or hole concen-

tration is greater than the effective density of states, so that the Fermi level is in the conduc-

tion band (n type) or in the valence band (p type).

donor atoms  Impurity atoms added to a semiconductor to create an n-type material.

effective density of states  The parameter Nc, which results from integrating the density of 

quantum states gc (E ) times the Fermi function fF (E ) over the conduction-band energy, and 

the parameter Nv, which results from integrating the density of quantum states gv (E ) times 

[1 � fF (E)] over the valence-band energy.

extrinsic semiconductor  A semiconductor in which controlled amounts of donors and/or 

acceptors have been added so that the electron and hole concentrations change from the 

intrinsic carrier concentration and a preponderance of either electrons (n type) or holes 

(p type) is created.

freeze-out  The condition that occurs in a semiconductor when the temperature is lowered 

and the donors and acceptors become neutrally charged. The electron and hole concentra-

tions become very small.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Derive the equations for the thermal equilibrium concentrations of electrons and holes 

in terms of the Fermi energy.

■ Derive the equation for the intrinsic carrier concentration.

■ Disscuss what is meant by the effective density of states for electrons and holes.

■ Describe the effect of adding donor and acceptor impurity atoms to a semiconductor.
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■ Understand the concept of complete ionization.

■ Derive the fundamental relationship n0 p0 �  n i  
2 . 

■ Describe the meaning of degenerate and nondegenerate semiconductor materials.

■ Discuss the concept of charge neutrality.

■ Derive the equations for n0 and p0 in terms of impurity doping concentrations.

■ Derive the equations for the Fermi energy in terms of the impurity doping concentrations.

■ Discuss the variation of the Fermi energy with doping concentration and temperature.

REVIEW QUESTIONS
 1. How does the electron concentration in the conduction band change with energy E for 

E � Ec?

 2. In deriving the equation for n0 in terms of the Fermi function, the upper limit of the 

 integral should be the energy at the top of the conduction band. Justify using infi nity 

 instead.

 3. Assuming the Boltzmann approximation applies, write the equations for n0 and p0 in 

terms of the Fermi energy.

 4. What is the source of electrons and holes in an intrinsic semiconductor?

 5. Under what condition would the intrinsic Fermi level be at the midgap energy?

 6. What is a donor impurity? What is an acceptor impurity?

 7. What is meant by complete ionization? What is meant by freeze-out?

 8. What is the product of n0 and p0 equal to?

 9. Write the equation for charge neutrality for the condition of complete ionization.

 10. Sketch a graph of n0 versus temperature for an n-type material.

 11. Sketch graphs of the Fermi energy versus donor impurity concentration and versus 

 temperature.

 12. What is the relevance of the Fermi energy?

PROBLEMS

Section 4.1  Charge Carriers in Semiconductors

4.1 Calculate the intrinsic carrier concentration, ni, at T � 200, 400, and 600 K for 

(a)  silicon, (b) germanium, and (c) gallium arsenide.

4.2 Plot the intrinsic carrier concentration, ni, for a temperature range of 200 � T � 600 K 

for (a) silicon, (b) germanium, and (c) gallium arsenide. (Use a log scale for ni. )

4.3 (a) The maximum intrinsic carrier concentration in a silicon device must be limited to 

5 � 1011 cm�3. Assume Eg � 1.12 eV. Determine the maximum temperature allowed 

for the device. (b) Repeat part (a) if the maximum intrinsic carrier concentration is 

limited to 5 � 1012 cm�3.

4.4 In a particular semiconductor material, the effective density of states functions 

are given by Nc � Nc0· (T�300)3�2 and Nv � Nv0· (T�300)3�2 where Nc0 and Nv0 are 

constants independent of temperature. Experimentally determined intrinsic carrier 

concentrations are found to be ni � 1.40 � 102 cm�3 at T � 200 K and ni � 7.70 � 

1010 cm�2 at T � 400 K. Determine the product Nc0 � Nv0 and the bandgap energy Eg. 

(Assume Eg is constant over this temperature range.)

 Problems 149
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150 CHAPTER 4   The Semiconductor in Equilibrium

4.5 Two semiconductor materials have exactly the same properties except material A 

has a bandgap energy of 0.90 eV and material B has a bandgap energy of 1.10 eV. 

 Determine the ratio of ni of material B to that of material A for (a) T � 200 K, 

(b) T � 300 K, and (c) T � 400 K.

4.6 (a) The magnitude of the product gC(E )fF (E ) in the conduction band is a function 

of  energy as shown in Figure 4.1. Assume the Boltzmann approximation is valid. 

 Determine the energy with respect to Ec at which the maximum occurs. (b) Repeat 

part (a) for the magnitude of the product gv (E ) [1 �  fF (E)] in the valence band.

4.7 Assume the Boltzmann approximation in a semiconductor is valid. Determine the 

ratio of n(E) � gC (E) fF (E ) at E � Ec
 � 4 kT to that at E � Ec

 � kT�2.

4.8 Assume that Ec � EF � 0.20 eV in silicon. Plot n(E ) � gC (E ) fF (E ) over the range 

Ec  E  Ec � 0.10 eV for (a) T � 200 K and (b) T � 400 K.

4.9 (a) Consider silicon at T � 300 K. Plot the thermal equilibrium electron concentration 

n0 (on a log scale) over the energy range 0.2  Ec � EF  0.4 eV. (b) Repeat part 

(a) for the hole concentration over the range 0.2  EF � Ev  0.4 eV.

4.10 Given the effective masses of electrons and holes in silicon, germanium, and gallium 

arsenide, calculate the position of the intrinsic Fermi energy level with respect to the 

center of the bandgap for each semiconductor at T � 300 K.

4.11 Calculate EFi with respect to the center of the bandgap in silicon for T � 200, 400, and 

600 K.

4.12 (a) The carrier effective masses in a semiconductor are  m n  *  � 1.21 m0 and  m p  *  � 0.70 m0. 

Determine the position of the intrinsic Fermi level with respect to the center of the 

bandgap at T � 300 K. (b) Repeat part (a) if  m n  *  � 0.080 m0 and  m p  *  � 0.75 m0.

4.13 If the density of states function in the conduction band of a particular semiconductor 

is a constant equal to K, derive the expression for the thermal-equilibrium concentra-

tion of electrons in the conduction band, assuming Fermi–Dirac statistics and assum-

ing the Boltzmann approximation is valid.

4.14 Repeat Problem 4.13 if the density of states function is given by gc(E) � C1(E � Ec) 

for E � Ec where C1 is a constant.

Section 4.2  Dopant Atoms and Energy Levels

4.15 Calculate the ionization energy and radius of the donor electron in germanium using 

the Bohr theory.

4.16 Repeat Problem 4.15 for gallium arsenide.

Section 4.3  The Extrinsic Semiconductor

4.17 Silicon at T � 300 K is doped with arsenic atoms such that the concentration of elec-

trons is n0 � 7 � 1015 cm�3. (a) Find Ec � EF. (b) Determine EF � Ev. (c) Calculate 

p0. (d) Which carrier is the minority carrier? (e) Find EF � EFi.

4.18 The value of p0 in silicon at T � 300 K is 2 � 1016 cm�3. (a) Determine EF � Ev. 

(b) Calculate the value of Ec � EF. (c) What is the value of n0? (d) Determine EFi � EF.

4.19 The electron concentration in silicon at T � 300 K is n0 � 2 � 105 cm�3. (a) Deter-

mine the position of the Fermi level with respect to the valence band energy level. 

(b) Determine p0. (c) Is this n- or p-type material?
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4.20 (a) If Ec � EF � 0.28 eV in gallium arsenide at T � 375 K, calculate the values of n0 

and p0. (b) Assuming the value of n0 in part (a) remains constant, determine Ec � EF 

and p0 at T � 300 K.

4.21 Repeat Problem 4.20 for silicon.

4.22 The Fermi energy level in silicon at T � 300 K is as close to the top of the valence 

band as to the midgap energy. (a) Is the material n type or p type? (b) Calculate the 

values of n0 and p0 .

4.23 (a) The Fermi energy level in silicon at T � 300 K is 0.22 eV above the intrinsic 

Fermi level. Determine n0 and p0 . (b) Repeat part (a) for GaAs.

4.24 Silicon at T � 300 K is doped with boron atoms such that the concentration of holes 

is p0 � 5 � 1015 cm�3. (a) Find EF � Ev. (b) Determine Ec � EF. (c) Determine n0. 

(d) Which carrier is the majority carrier? (e) Determine EFi � EF.

4.25 Repeat Problem 4.24 for T � 400 K, assuming the hole concentration remains constant.

4.26 (a) Determine the values of n0 and p0 in GaAs at T � 300 K if EF � Ev � 0.25 eV. 

(b) Assuming the value of p0 in part (a) remains constant, determine the values of 

EF � Ev and n0 at T � 400 K.

4.27 Repeat Problem 4.26 for silicon.

4.28 (a) Assume that EF � Ec � kT�2 at T � 300 K in silicon. Determine n0. (b) Repeat 

part (a) for GaAs.

4.29 Consider silicon at T � 300 K in which the hole concentration is p0 � 5 � 1019 cm�3. 

Determine Ev � EF.

4.30 (a) In silicon at T � 300 K, we fi nd that EF � EC � 4 kT. Determine the electron con-

centration. (b) Repeat part (a) for GaAs.

Section 4.4  Statistics of Donors and Acceptors

*4.31 The electron and hole concentrations as a function of energy in the conduction band 

and valence band peak at a particular energy as shown in Figure 4.8. Consider silicon 

and assume Ec � EF � 0.20 eV. Determine the energy, relative to the band edges, at 

which the concentrations peak.

*4.32 For the Boltzmann approximation to be valid for a semiconductor, the Fermi level 

must be at least 3 kT below the donor level in an n-type material and at least 3 kT 

above the acceptor level in a p-type material. If T � 300 K, determine the maximum 

electron concentration in an n-type semiconductor and the maximum hole concen-

tration in a p-type semiconductor for the Boltzmann approximation to be valid in 

(a) silicon and (b) gallium arsenide.

4.33 Plot the ratio of un-ionized donor atoms to the total electron concentration versus 

 temperature for silicon over the range 50  T  200 K.

Section 4.5  Charge Neutrality

4.34 Determine the equilibrium electron and hole concentrations in silicon for the follow-

ing conditions:

 (a) T � 300 K, Nd � 1015 cm�3, Na � 4 � 1015 cm�3

 (b) T � 300 K, Nd � 3 � 1016 cm�3, Na � 0

 Problems 151

*Asterisks next to problems indicate problems that are more diffi cult.
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152 CHAPTER 4   The Semiconductor in Equilibrium

 (c) T � 300 K, Nd � Na � 2 � 1015 cm�3

 (d) T � 375 K, Nd � 0, Na � 4 � 1015 cm�3

 (e) T � 450 K, Nd � 1014 cm�3, Na � 0

4.35 Repeat Problem 4.34 for GaAs.

4.36 (a) Consider a germanium semiconductor at T � 300 K. Calculate the thermal equi-

librium electron and hole concentrations for (i) Nd � 2 � 1015 cm�3, Na � 0, and 

(ii) Na � 1016 cm�3, Nd � 7 � 1015 cm�3. (b) Repeat part (a) for GaAs. (c) For the case 

of GaAs in part (b), the minority carrier concentrations are on the order of 10�3 cm�3. 

What does this result mean physically?

*4.37 The Fermi level in n-type silicon at T � 300 K is 245 meV below the conduction 

band and 200 meV below the donor level. Determine the probability of fi nding an 

electron (a) in the donor level and (b) in a state in the conduction-band kT above the 

conduction-band edge.

4.38 Assume that silicon, germanium, and gallium arsenide each have dopant concen-

trastions of Nd � 1 � 1013 cm�3 and Na � 2.5 � 1013 cm�3 at T � 300 K. For each of 

the three materials: (a) Is this material n type or p type? (b) Calculate n0 and p0.

4.39 A silicon semiconductor material at T � 300 K is doped with arsenic atoms to 

a  concentration of 2 � 1015 cm�3 and with boron atoms to a concentration of 

1.2 � 1015 cm�3. (a) Is the material n type or p type? (b) Determine n0 and p0. 

(c) Additional boron atoms are to be added such that the hole concentration is 

4 � 1015 cm�3. What concentration of boron atoms must be added and what is the 

new value of n0?

4.40 The thermal equilibrium hole concentration in silicon at T � 300 K is p0 � 2 � 105 cm�3. 

Determine the thermal-equilibrium electron concentration. Is the material n type or 

p type?

4.41 In a germanium sample at T � 250 K, it is found that p0 � 
4n0 and that Nd � 

0. Deter-

mine p0, n0, and Na.

4.42 Consider a sample of silicon doped at Nd � 0 and Na � 1014 cm�3. Plot the majority 

carrier concentration versus temperature over the range 200  T  500 K.

4.43 The temperature of a sample of silicon is T � 300 K and the acceptor doping concen-

tration is Na � 0. Plot the minority carrier concentration (on a log–log plot) versus Nd 

over the range 1015  Nd  1018 cm�3. 

4.44 Repeat problem 4.43 for GaAs.

4.45 A particular semiconductor material is doped at Nd � 2 � 1014 cm�3 and Na � 1.2 � 

1014 cm�3. The thermal equilibrium electron concentration is found to be n0 � 1.1 � 

1014 cm�3. Assuming complete ionization, determine the intrinsic carrier concentration 

and the thermal equilibrium hole concentration.

4.46 (a) Silicon at T � 300 K is uniformly doped with boron atoms to a concentration of 

3 � 1016 cm�3 and with arsenic atoms to a concentration of 1.5 � 1016 cm�3. Is the 

material n type or p type? Calculate the thermal equilibrium concentrations of majority 

and minority carriers. (b) Additional impurity atoms are added such that holes are the 

majority carrier and the thermal equilibrium concentration is p0 � 5 � 1016 cm�3. What 

type and concentration of impurity atoms must be added? What is the new value of n0?

4.47 In silicon at T � 300 K, it is found that Na � 7 � 1015 cm�3 and p0 � 2 � 10 4 cm�3. 

(a) Is the material n type or p type? (b) What are the majority and minority  carrier 

concentrations? (c) What must be the concentration of donor impurities?
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Section 4.6  Position of Fermi Energy Level

4.48 Consider germanium with an acceptor concentration of Na � 1015 cm�3 and a donor 

concentration of Nd � 0. Consider temperatures of T � 200, 400, and 600 K. Calcu-

late the position of the Fermi energy with respect to the intrinsic Fermi level at these 

temperatures.

4.49 Consider silicon at T � 300 K with donor concentrations of Nd � 1014, 1015, 1016, and 

1017, cm�3. Assume Na � 0. (a) Calculate the position of the Fermi energy level with 

respect to the conduction band for these donor concentrations. (b) Determine the posi-

tion of the Fermi energy level with respect to the intrinsic Fermi energy level for the 

donor concentrations given in part (a).

4.50 A silicon device is doped with donor impurity atoms at a concentration of 1015 cm�3. 

For the device to operate properly, the intrinsic carriers must contribute no more than 

5 percent to the total electron concentration. (a) What is the maximum temperature 

that the device may operate? (b) What is the change in Ec � EF from the T � 300 K 

value to the maximum temperature value determined in part (a). (c) Is the Fermi level 

closer or further from the intrinsic value at the higher temperature?

4.51 Silicon is doped with acceptor impurity atoms at a concentration of Na � 3 � 1015 cm�3. 

Assume Nd � 0. Plot the position of the Fermi energy level with respect to the intrinsic 

Fermi energy level over the temperature range of 200  T  600 K.

4.52 Consider GaAs at T � 300 K with Nd � 0. (a) Plot the position of the Fermi energy 

level with respect to the intrinsic Fermi energy level as a function of the acceptor im-

purity concentration over the range of 1014  Na  1017 cm�3. (b) Plot the position of 

the Fermi energy level with respect to the valence-band energy over the same acceptor 

impurity concentration as given in part (a).

4.53 For a particular semiconductor, Eg � 1.50 eV,  m p  *  � 10  m n  * , T � 300 K, and 

ni � 1 � 105 cm�3. (a) Determine the position of the intrinsic Fermi energy level with 

respect to the center of the bandgap. (b) Impurity atoms are added so that the Fermi 

energy level is 0.45 eV below the center of the bandgap. (i) Are acceptor or donor 

atoms added? (ii) What is the concentration of impurity atoms added?

4.54 Silicon at T � 300 K contains acceptor atoms at a concentration of Na � 5 � 1015 cm�3. 

Donor atoms are added forming an n-type compensated semiconductor such that 

the Fermi level is 0.215 eV below the conduction-band edge. What concentration of 

donor atoms are added?

4.55 (a) Silicon at T � 300 K is doped with donor impurity atoms at a concentration of 

Nd � 6 � 1015 cm�3. (i) Determine Ec � EF. (ii) Calculate the concentration of 

additional donor impurity atoms that must be added to move the Fermi energy level 

a distance kT closer to the conduction band edge. (b) Repeat part (a) for GaAs if the 

original donor impurity concentration is Nd � 1 � 1015 cm�3.

4.56 (a) Determine the position of the Fermi energy level with respect to the intrinsic Fermi 

level in silicon at T � 300 K that is doped with boron atoms at a concentration of 

Na � 2 � 1016 cm�3. (b) Repeat part (a) if the silicon is doped with phosphorus atoms 

at a concentration of Nd � 2 � 1016 cm�3. (c) Calculate n0 and p0 in parts (a) and (b).

4.57 GaAs at T � 300 K is doped with donor impurity atoms at a concentration of 

7 � 1015 cm�3. Additional impurity atoms are to be added such that the Fermi level is 

0.55 eV above the intrinsic Fermi level. Determine the type (donor or acceptor) and 

concentration of impurity atoms to be added.

 Problems 153
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154 CHAPTER 4   The Semiconductor in Equilibrium

4.58 Determine the Fermi energy level with respect to the intrinsic Fermi level for each 

condition given in Problem 4.34.

4.59 Find the Fermi energy level with respect to the valence-band energy for the conditions 

given in Problem 4.35.

4.60 Calculate the position of the Fermi energy level with respect to the intrinsic Fermi for 

the conditions given in Problem 4.47.

Summary and Review

4.61 A new semiconductor material is to be “designed.” The semiconductor is to be p 

type and doped with 5 � 1015 cm�3 acceptor atoms. Assume complete ionization and 

assume Nd � 0. The effective density of states functions are Nc � 1.2 � 1019 cm�3 and 

Nv � 1.8 � 1019 cm�3 at T � 300 K and vary as T 2. A special semiconductor device 

fabricated with this material requires that the hole concentration be no greater than 

5.08 � 1015 cm�3 at T � 350 K. What is the minimum bandgap energy required in this 

new material?

4.62 Silicon atoms, at a concentration of 7 � 1015 cm�3, are added to gallium arsenide. As-

sume that the silicon atoms act as fully ionized dopant atoms and that 5 percent of the 

concentration added replace gallium atoms and 95 percent replace arsenic atoms. Let 

T � 300 K. (a) Determine the donor and acceptor concentrations. (b) Is the material 

n type or p type? (c) Calculate the electron and hole concentrations. (d) Determine the 

position of the Fermi level with respect to EFi.

4.63 Defects in a semiconductor material introduce allowed energy states within the forbid-

den bandgap. Assume that a particular defect in silicon introduces two discrete levels: 

a donor level 0.25 eV above the top of the valence band and an acceptor level 0.65 eV 

above the top of the valence band. The charge state of each defect is a function of the 

position of the Fermi level. (a) Sketch the charge density of each defect as the Fermi 

level moves from Ev to Ec. Which defect level dominates in (i) heavily doped n type 

material and (ii) in heavily doped p-type material? (b) Determine the electron and 

hole concentrations and the location of the Fermi level in (i) an n type sample doped 

at Nd � 1017 cm�3 and (ii) in a p-type sample doped at Na � 1017 cm�3 . (c) Determine 

the Fermi-level position if no dopant atoms are added. Is the material n type, p type, 

or intrinsic?
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5
Carrier Transport Phenomena

I
n the previous chapter, we considered the semiconductor in equilibrium and de-

termined electron and hole concentrations in the conduction and valence bands, 

respectively. A knowledge of the densities of these charged particles is impor-

tant toward an understanding of the electrical properties of a semiconductor material. 

The net fl ow of the electrons and holes in a semiconductor will generate currents. 

The pro cess by which these charged particles move is called transport. In this chap-

ter we consider two basic transport mechanisms in a semiconductor crystal: drift—

the movement of charge due to electric fi elds, and diffusion—the fl ow of charge due 

to density gradients. 

 The carrier transport phenomena are the foundation for fi nally determining the 

current–voltage characteristics of semiconductor devices. We will implicitly assume 

in this chapter that, although there will be a net fl ow of electrons and holes due to 

the transport processes, thermal equilibrium will not be substantially disturbed. Non-

equilibrium processes are considered in the next chapter. ■

5.0 | PREVIEW
In this chapter, we will:

■ Describe the mechanism of carrier drift and induced drift current due to an ap-

plied electric fi eld.

■ Defi ne and describe the characteristics of carrier mobility.

■ Describe the mechanism of carrier diffusion and induced diffusion current due 

to a gradient in the carrier concentration.

■ Defi ne the carrier diffusion coeffi cient.

■ Describe the effects of a nonuniform impurity doping concentration in a semi-

conductor material.

■ Discuss and analyze the Hall effect in a semiconductor material.

C H A P T E R
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 5.1   Carrier Drift 157

5.1 | CARRIER DRIFT
An electric fi eld applied to a semiconductor will produce a force on electrons and 

holes so that they will experience a net acceleration and net movement, provided 

there are available energy states in the conduction and valence bands. This net move-

ment of charge due to an electric fi eld is called drift. The net drift of charge gives 

rise to a drift current.

5.1.1  Drift Current Density

If we have a positive volume charge density � moving at an average drift velocity vd, 

the drift current density is given by

 Jdrf � �vd (5.1a)

In terms of units, we have

 Jdrf �  �   Coul _ 
cm3

   �  �  �   cm _ s   �  �   Coul __ 
cm2 � s

   �   A _ 
cm2

   (5.1b)

If the volume charge density is due to positively charged holes, then

 Jp � drf � (ep)vdp (5.2)

where Jp � drf is the drift current density due to holes and vdp is the average drift velocity 

of the holes.

 The equation of motion of a positively charged hole in the presence of an electric 

fi eld is

 F �  m cp  *   a � eE (5.3)

where e is the magnitude of the electronic charge, a is the acceleration, E is the 

electric fi eld, and  m cp  *   is the conductivity effective mass of the hole.1 If the electric 

fi eld is constant, then we expect the velocity to increase linearly with time. However, 

charged particles in a semiconductor are involved in collisions with ionized impu-

rity atoms and with thermally vibrating lattice atoms. These collisions, or scattering 

events, alter the velocity characteristics of the particle.

 As the hole accelerates in a crystal due to the electric fi eld, the velocity increases. 

When the charged particle collides with an atom in the crystal, for example, the particle 

loses most, or all, of its energy. The particle will again begin to accelerate and gain 

energy until it is again involved in a scattering process. This continues over and over 

again. Throughout this process, the particle will gain an average drift velocity which, 

for low electric fi elds, is directly proportional to the electric fi eld. We may then write

 vdp � �p E (5.4)

where �p is the proportionality factor and is called the hole mobility. The mobility is 

an important parameter of the semiconductor since it describes how well a particle 

1The conductivity effective mass is used when carriers are in motion. See Appendix F for further 

 discussion of effective mass concepts.
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158 CHAPTER 5   Carrier Transport Phenomena

will move due to an electric fi eld. The unit of mobility is usually expressed in terms 

of cm2�V-s.

 By combining Equations (5.2) and (5.4), we may write the drift current density 

due to holes as

 Jp � drf � (ep)vdp � e�ppE (5.5)

The drift current due to holes is in the same direction as the applied electric fi eld.

 The same discussion of drift applies to electrons. We may write

 Jn � drf � �vdn � (�en)vdn (5.6)

where Jn � drf is the drift current density due to electrons and vdn is the average drift 

velocity of electrons. The net charge density of electrons is negative.

 The average drift velocity of an electron is also proportional to the electric fi eld 

for small fi elds. However, since the electron is negatively charged, the net motion of 

the electron is opposite to the electric fi eld direction. We can then write

 vdn � ��n E (5.7)

where �n is the electron mobility and is a positive quantity. Equation (5.6) may now 

be written as

 Jn � drf � (�en)(��n E) � e�n nE (5.8)

The conventional drift current due to electrons is also in the same direction as the 

 applied electric fi eld even though the electron movement is in the opposite  direction.

 Electron and hole mobilities are functions of temperature and doping concen-

trations, as we will see in the next section. Table 5.1 shows some typical mobility 

values at T � 300 K for low doping concentrations.

 Since both electrons and holes contribute to the drift current, the total drift current 
density is the sum of the individual electron and hole drift current densities, so we may 

write

 Jdrf � e(�n n � �p p)E  (5.9)

Table 5.1 |  Typical mobility values at T � 300 K and low doping 

concentrations

  � n  (cm2/V-s)  � p  (cm2/V-s)

Silicon 1350  480
Gallium arsenide 8500  400
Germanium 3900 1900

EXAMPLE 5.1 Objective: Calculate the drift current density in a semiconductor for a given electric fi eld.

 Consider a gallium arsenide sample at T � 300 K with doping concentrations of Na � 0 

and Nd � 1016 cm�3. Assume complete ionization and assume electron and hole mobilities given 

in Table 5.1. Calculate the drift current density if the applied electric fi eld is E � 10 V/cm.
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 5.1   Carrier Drift 159

5.1.2  Mobility Effects

In the previous section, we defi ned mobility, which relates the average drift velocity 

of a carrier to the electric fi eld. Electron and hole mobilities are important semicon-

ductor parameters in the characterization of carrier drift, as seen in Equation (5.9).

 Equation (5.3) related the acceleration of a hole to a force such as an electric 

fi eld. We may write this equation as

 F �  m cp  *     dv _ 
dt

   � eE (5.10)

where v is the velocity of the particle due to the electric fi eld and does not include 

the random thermal velocity. If we assume that the conductivity effective mass and 

electric fi eld are constants, then we may integrate Equation (5.10) and obtain

 v �   eEt _ 
 m cp  *  

   (5.11)

where we have assumed the initial drift velocity to be zero.

 Figure 5.1a shows a schematic model of the random thermal velocity and mo-

tion of a hole in a semiconductor with zero electric fi eld. There is a mean time 

■ Solution
Since Nd � Na, the semiconductor is n type and the majority carrier electron concentration, 

from Chapter 4 is given by

 n �   
Nd � Na  __ 

2
   �  �

______________

    �   Nd � Na  __ 
2

   �  2  �  n i  
2    � 1016 cm�3

The minority carrier hole concentration is

 p �   
 n i  

2 
 _ n   �   

(1.8 � 106)2

 __ 
1016

   � 3.24 � 10�4 cm�3

For this extrinsic n-type semiconductor, the drift current density is

 Jdrf � e(�n n � �p p)E � e�n Nd E

Then

 Jdrf � (1.6 � 10�19)(8500)(1016)(10) � 136 A /cm2

■ Comment
Signifi cant drift current densities can be obtained in a semiconductor applying relatively small 

electric fi elds. We may note from this example that the drift current will usually be due primar-

ily to the majority carrier in an extrinsic semiconductor.

■ EXERCISE PROBLEM
Ex 5.1  A drift current density of Jdrf � 75 A/cm2 is required in a device using p-type silicon 

when an electric fi eld of E � 120 V/cm is applied. Determine the required impurity 

doping concentration to achieve this specifi cation. Assume that electron and hole 

mobilities given in Table 5.1 apply. 

(Ans. Na � 8.14 � 10
15

 cm
�3

)
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160 CHAPTER 5   Carrier Transport Phenomena

between collisions which may be denoted by �cp. If a small electric fi eld (E-fi eld) 

is  applied as indicated in Figure 5.1b, there will be a net drift of the hole in the 

direction of the E-fi eld, and the net drift velocity will be a small perturbation on 

the random thermal velocity, so the time between collisions will not be altered ap-

preciably. If we use the mean time between collisions �cp in place of the time t in 

Equation (5.11), then the mean peak velocity just prior to a collision or scattering 

event is

 vd�peak �  �   e�cp  _ 
 m cp  *  

   �  E  (5.12a)

The average drift velocity is one half the peak value so that we can write

 〈vd〉 �   1 _ 
2
    �   e�cp  _ 

 m cp  *  
   �  E  (5.12b)

 However, the collision process is not as simple as this model, but is statistical in 

nature. In a more accurate model including the effect of a statistical distribution, the 

factor   1 _ 
2
   in Equation (5.12b) does not appear. The hole mobility is then given by

 �p �   
vdp 

 _ 
E

   �   
e�cp  _ 
 m cp  *  

   (5.13)

The same analysis applies to electrons; thus, we can write the electron mobility as

 �n �   
e�cn  _ 
 m cn  *  

   (5.14)

where �cn is the mean time between collisions for an electron.

 There are two collision or scattering mechanisms that dominate in a semicon-

ductor and affect the carrier mobility: phonon or lattice scattering, and ionized impu-

rity scattering.

 The atoms in a semiconductor crystal have a certain amount of thermal energy 

at temperatures above absolute zero that causes the atoms to randomly vibrate about 

their lattice position within the crystal. The lattice vibrations cause a disruption in 

the perfect periodic potential function. A perfect periodic potential in a solid allows 

1

2 3

4

(a)

1

2
3

4

(b)

E field

Figure 5.1 | Typical random behavior of a hole in a semiconductor (a) without an 

electric fi eld and (b) with an electric fi eld.
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 5.1   Carrier Drift 161

electrons to move unimpeded, or with no scattering, through the crystal. But the ther-

mal vibrations cause a disruption of the potential function, resulting in an interaction 

between the electrons or holes and the vibrating lattice atoms. This lattice scattering 

is also referred to as phonon scattering.
 Since lattice scattering is related to the thermal motion of atoms, the rate at 

which the scattering occurs is a function of temperature. If we denote �L as the 

mobility that would be observed if only lattice scattering existed, then the scattering 

theory states that to fi rst order

 �L � T �3�2 (5.15)

Mobility that is due to lattice scattering increases as the temperature decreases. In-

tuitively, we expect the lattice vibrations to decrease as the temperature decreases, 

which implies that the probability of a scattering event also decreases, thus increas-

ing mobility.

 Figure 5.2 shows the temperature dependence of electron and hole mobilities 

in silicon. In lightly doped semiconductors, lattice scattering dominates and the car-

rier mobility decreases with temperature as we have discussed. The temperature de-

pendence of mobility is proportional to T �n. The inserts in the fi gure show that the 

parameter n is not equal to   3 _ 
2
   as the fi rst-order scattering theory predicted. However, 

mobility does increase as the temperature decreases.

 The second interaction mechanism affecting carrier mobility is called ionized im-
purity scattering. We have seen that impurity atoms are added to the semiconductor 

to control or alter its characteristics. These impurities are ionized at room temperature 

so that a coulomb interaction exists between the electrons or holes and the ionized im-

purities. This coulomb interaction produces scattering or collisions and also alters the 

velocity characteristics of the charge carrier. If we denote �I as the mobility that would 

be observed if only ionized impurity scattering existed, then to fi rst order we have

 �I �   T �3�2

 _ 
NI

   (5.16)

where NI �  N d  
�  �  N a  

�  is the total ionized impurity concentration in the semiconduc-

tor. If temperature increases, the random thermal velocity of a carrier increases, re-

ducing the time the carrier spends in the vicinity of the ionized impurity center. The 

less time spent in the vicinity of a coulomb force, the smaller the scattering effect 

and the larger the expected value of �I. If the number of ionized impurity centers 

 increases, then the probability of a carrier encountering an ionized impurity center 

increases, implying a smaller value of �I.

 Figure 5.3 is a plot of electron and hole mobilities in germanium, silicon, and 

gallium arsenide at T � 300 K as a function of impurity concentration. More ac-

curately, these curves are of mobility versus ionized impurity concentration NI. As 

the impurity concentration increases, the number of impurity scattering centers in-

creases, thus reducing mobility.

 If �L is the mean time between collisions due to lattice scattering, then dt��L is the 

probability of a lattice scattering event occurring in a differential time dt. Likewise, if �I 

is the mean time between collisions due to ionized impurity scattering, then dt��I is the 

probability of an ionized impurity scattering event occurring in the differential time dt. 
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 5.1   Carrier Drift 163

If these two scattering processes are independent, then the total probability of a scatter-

ing event occurring in the differential time dt is the sum of the individual events, or

   dt _ �   �   dt _ �I
   �   dt _ �L

   (5.17)

where � is the mean time between any scattering event.

 Comparing Equation (5.17) with the defi nitions of mobility given by Equation (5.13) 

or (5.14), we can write

   1 _ �   �   1 _ �I
   �   1 _ �L

   (5.18)

where �I is the mobility due to the ionized impurity scattering process and �L is the 

mobility due to the lattice scattering process. The parameter � is the net mobility. 

With two or more independent scattering mechanisms, the inverse mobilities add, 

which means that the net mobility decreases.

10191018101710161015

Impurity concentration (cm�3)
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o
b
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GaAs

Figure 5.3 | Electron and hole mobilities versus impurity 

concentrations for germanium, silicon, and gallium arsenide 

at T � 300 K. 

(From Sze [14].)
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164 CHAPTER 5   Carrier Transport Phenomena

EXAMPLE 5.2 Objective: Determine the electron mobility in silicon at various doping concentrations and 

various temperatures.

 Using Figure 5.2, fi nd the electron mobility in silicon for:

 (a) T � 25°C for (i) Nd � 1016 cm�3 and (ii) Nd � 1017 cm�3.

 (b) Nd � 1016 cm�3 for (i) T � 0°C and (ii) T � 100°C.

■ Solution:
From Figure 5.2, we fi nd the following:

 (a) T � 25°C; (i) Nd � 1016 cm�3 ⇒ �n � 1200 cm2/V-s.

  (ii) Nd � 1017 cm�3 ⇒ �n � 800 cm2/V-s.

 (b) Nd � 1016 cm�3; (i) T � 0°C ⇒ �n � 1400 cm2/V-s.

  (ii) T � 100°C ⇒ �n � 780 cm2/V-s.

■ Comment
The results of this example show that the mobility values are strong functions of the doping 

concentration and temperature. These variations must be taken into account in the design of 

semiconductor devices.

■ EXERCISE PROBLEM
Ex 5.2  Using Figure 5.2, fi nd the hole mobility in silicon for:

  (a) T � 25°C for (i) Na � 1016 cm�3 and (ii) Na � 1018 cm�3, and 

  (b) Na � 1014 cm�3 for (i) T � 0°C and (ii) T � 100°C.

  
[(Ans. (a) (i) �p � 410 cm

2
/V-s, (ii) �p � 130 cm

2
/V-s; 

(b) (i) �p � 550 cm
2
/V-s, (ii) �p � 300 cm

2
/V-s)]

5.1.3 Conductivity

The drift current density, given by Equation (5.9), may be written as

 Jdrf � e(�n n � �p  p)E � �E  (5.19)

where � is the conductivity of the semiconductor material. The conductivity is 

given in units of (
-cm)�1 and is a function of the electron and hole concentra-

tions and mobilities. We have just seen that the mobilities are functions of impurity 

concentrations; conductivity, then is a somewhat complicated function of impurity 

concentration.

 The reciprocal of conductivity is resistivity, which is denoted by � and is given 

in units of ohm-cm. We can write the formula for resistivity as2

 � �   1 _ �   �   1 ___  
e(�n  n � �p

 p)
   (5.20)

Figure 5.4 is a plot of resistivity as a function of impurity concentration in silicon, 

germanium, gallium arsenide, and gallium phosphide at T � 300 K. Obviously, the 

curves are not linear functions of Nd or Na because of mobility effects.

2The symbol � is also used for volume charge density. The context in which � is used should make it 

clear whether it stands for charge density or resistivity.

nea29583_ch05_156-191.indd   164nea29583_ch05_156-191.indd   164 12/11/10   10:15 AM12/11/10   10:15 AM

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight

Cotta
Highlight



 165

1012
10�4

10�3

10�2

10�1

100

101

102

103

104

1013 1014 1015 1016 1017 1018 1019 1020 1021

R
es

is
ti

v
it

y
 (



–

cm
)

Impurity concentration (cm�3)

n type (phosphorus) p type (boron)

Silicon 300 K

10�3

10�4

10�2

10�1

1

101

102

1014 1015 1016 1017 1018 1019 1020 1021

T � 300 K
n type

p type

p-GaAsn-GaAs

p GaP

n GaP

p-Ge

n-Ge

R
es

is
ti

v
it

y
 (



–

cm
)

Impurity concentration (cm�3)

Figure 5.4 | Resistivity versus impurity concentration at T � 300 K in (a) silicon and 

(b) germanium, gallium arsenide, and gallium phosphide.

(From Sze [14].)
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166 CHAPTER 5   Carrier Transport Phenomena

Figure 5.5 | Bar of semiconductor material as a resistor.

�
V

I

L

Area A

�

 If we have a bar of semiconductor material as shown in Figure 5.5 with a voltage 

applied that produces a current I, then we can write

 J �   I _ 
A

   (5.21a)

and

 E �   V _ 
L

   (5.21b)

We can now rewrite Equation (5.19) as

   I _ 
A

   � �  �   V _ 
L

   �  (5.22a)

or

 V �  �   L _ 
�A

   �  I �  �   �L
 _ 

A
   �  I � IR  (5.22b)

Equation (5.22b) is Ohm’s law for a semiconductor. The resistance is a function of 

resistivity, or conductivity, as well as the geometry of the semiconductor.

 If we consider, for example, a p-type semiconductor with an acceptor doping 

Na(Nd � 0) in which Na � ni, and if we assume that the electron and hole mobilities 

are of the same order of magnitude, then the conductivity becomes

 � � e(�n n � �p p) 	 e�p p (5.23)

If we also assume complete ionization, then Equation (5.23) becomes

 � 	 e�� Na 	   1 _ �    (5.24)

The conductivity and resistivity of an extrinsic semiconductor are a function pri-

marily of the majority carrier parameters.
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 5.1   Carrier Drift 167

 We may plot the carrier concentration and conductivity of a semiconductor as 

a function of temperature for a particular doping concentration. Figure 5.6 shows 

the electron concentration and conductivity of silicon as a function of inverse tem-

perature for the case when Nd � 1015 cm�3. In the midtemperature range, or extrinsic 

range, as shown, we have complete ionization—the electron concentration remains 

essentially constant. However, the mobility is a function of temperature so the con-

ductivity varies with temperature in this range. At higher temperatures, the intrinsic 

carrier concentration increases and begins to dominate the electron concentration as 

well as the conductivity. In the lower temperature range, freeze-out begins to occur; 

the electron concentration and conductivity decrease with decreasing temperature.

Figure 5.6 | Electron concentration and conductivity versus 

inverse temperature for silicon.

(After Sze [14].)

E
le

ct
ro

n
 c

o
n
ce

n
tr

at
io

n
 (

cm
�

3
)

C
o
n
d
u
ct

iv
it

y
 (



–

cm
)�

1

1000 300
500

200 100 75
1017

1016 10

1.0

0.1

1015

1014

1013

0

n

ni

�

4 8 12 16 20

T (K)

(K�1)
1000

T

   EXAMPLE 5.3Objective: Determine the doping concentration and majority carrier mobility given the type 

and conductivity of a compensated semiconductor.

 Consider compensated n-type silicon at T � 300 K, with a conductivity of � � 

16 (
-cm)�1 and an acceptor doping concentration of 1017 cm�3. Determine the donor concen-

tration and the electron mobility.

■ Solution
For n-type silicon at T � 300 K, we can assume complete ionization; therefore the conductiv-

ity, assuming Nd � Na � ni, is given by

 � 	 e�n n � e�n (Nd � Na)

We have that

 16 � (1.6 � 10�19)�n(Nd � 1017)
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168 CHAPTER 5   Carrier Transport Phenomena

Since mobility is a function of the ionized impurity concentration, we can use Figure 5.3 along 

with trial and error to determine �n and Nd. For example, if we choose Nd � 2 � 1017, then 

NI � Nd
� � N�

a � 3 � 1017 so that �n 	 510 cm2/V-s which gives � � 8.16 (
-cm)�1. If 
we choose Nd � 5 � 1017, then NI � 6 � 1017 so that �n 	 325 cm2/V-s, which gives � � 

20.8 (
-cm)�1. The doping is bounded between these two values. Further trial and error yields

 Nd 	 3.5 � 1017 cm�3  and  �n 	 400 cm2/V-s

which gives

 � 	 16 (
-cm)�1

■ Comment
We can see from this example that, in a high-conductivity semiconductor material, mobility is 

a strong function of carrier concentration.

■ EXERCISE PROBLEM
Ex 5.3  A compensated p-type silicon material at T � 300 K has impurity doping concen-

trations of Na � 2.8 � 1017 cm�3 and Nd � 8 � 1016 cm�3. Determine the (a) hole 

mobility, (b) conductivity, and (c) resistivity. 

  

[Ans. (a) �p � 200 cm
2
/V-s; (b) � � 6.4 (
-cm)

�1
, (c) � � 0.156 (
-cm)]

DESIGN Objective: Design a semiconductor resistor with a specifi ed resistance to handle a given 

current  density.

 A silicon semiconductor at T � 300 K is initially doped with donors at a concentration 

of Nd � 5 � 1015 cm�3. Acceptors are to be added to form a compensated p-type material. The 

resistor is to have a resistance of 10 k
 and handle a current density of 50 A/cm2 when 5 V is 

applied.

■ Solution
For 5 V applied to a 10-k
 resistor, the total current is

 I �   V _ 
R

   �   5 _ 
10

   � 0.5 mA

If the current density is limited to 50 A/cm2, then the cross-sectional area is

 A �   I _ 
J
   �   0.5 � 10�3

 __ 
50

   � 10�5 cm2

If we, somewhat arbitrarily at this point, limit the electric fi eld to E � 100 V/cm, then the 

length of the resistor is

 L �   V _ 
E

   �   5 _ 
100

   � 5 � 10�2 cm

From Equation (5.22b), the conductivity of the semiconductor is

 � �   L _ 
RA

   �   5 � 10�2

 __ 
(104)(10�5)

   � 0.50 (
-cm)�1

EXAMPLE 5.4
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 5.1   Carrier Drift 169

 For an intrinsic material, the conductivity can be written as

 �i � e(�n � �p) ni (5.25)

The concentrations of electrons and holes are equal in an intrinsic semiconductor, 

so the intrinsic conductivity includes both the electron and hole mobility. Since, in 

general, the electron and hole mobilities are not equal, the intrinsic conductivity is 

not the minimum value possible at a given temperature.

5.1.4  Velocity Saturation

So far in our discussion of drift velocity, we have assumed that mobility is not a 

function of electric fi eld, meaning that the drift velocity will increase linearly with 

applied electric fi eld. The total velocity of a particle is the sum of the random ther-

mal velocity and drift velocity. At T � 300 K, the average random thermal energy 

is given by

   1 _ 
2
    mv th  

2
   �   3 _ 

2
   kT �   3 _ 

2
   (0.0259) � 0.03885 eV (5.26)

This energy translates into a mean thermal velocity of approximately 107 cm /s for 

an electron in silicon. If we assume an electron mobility of �n � 1350 cm2/ V-s in 

low-doped silicon, a drift velocity of 105 cm/s, or 1 percent of the thermal velocity, is 

achieved if the applied electric fi eld is approximately 75 V/cm. This applied electric 

fi eld does not appreciably alter the energy of the electron.

 Figure 5.7 is a plot of average drift velocity as a function of applied electric fi eld 

for electrons and holes in silicon, gallium arsenide, and germanium. At low electric 

fi elds, where there is a linear variation of velocity with electric fi eld, the slope of 

The conductivity of a compensated p-type semiconductor is

 � 	 e�p p � e�p (Na � Nd)

where the mobility is a function of the total ionized impurity concentration Na � Nd.

 Using trial and error, if Na � 1.25 � 1016 cm�3, then Na � Nd � 1.75 � 1016 cm�3, and the 

hole mobility, from Figure 5.3, is approximately �p � 410 cm2/V-s. The conductivity is then

 � � e�p(Na � Nd) � (1.6 � 10�19)(410)(1.25 � 1016 � 5 � 1015) � 0.492

which is very close to the value we need.

■ Comment
Since the mobility is related to the total ionized impurity concentration, the determination of 

the impurity concentration to achieve a particular conductivity is not straightforward.

■ EXERCISE PROBLEM
Ex 5.4  A bar of p-type silicon, such as shown in Figure 5.5, has a cross-sectional area 

A � 10�6 cm2 and a length L � 1.2 � 10�3 cm. For an applied voltage of 5 V, a cur-

rent of 2 mA is required. What is the required (a) resistance, (b) resistivity, and 

(c)  impurity doping concentration? (d ) What is the resulting hole mobility?

[Ans. (a) 2.5 k
; (b) 2.083 (
-cm); (c) Na � 7.3 � 10
15

 cm
�3

; (d ) �p � 410 cm
2
/V-s]
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170 CHAPTER 5   Carrier Transport Phenomena

the drift velocity versus electric fi eld curve is the mobility. The behavior of the drift 

velocity of carriers at high electric fi elds deviates substantially from the linear rela-

tionship observed at low fi elds. The drift velocity of electrons in silicon, for example, 

saturates at approximately 107 cm /s at an electric fi eld of approximately 30 kV/cm. 

If the drift velocity of a charge carrier saturates, then the drift current density also 

saturates and becomes independent of the applied electric fi eld.

 The experimental carrier drift velocity versus electric fi eld in silicon can be 

 approximated for electrons by [2]

 vn �   
vs  ___  

  
 1 �   �   Eon  _ 
E

   �  2  �  1�2

 

   (5.27a)

and for holes by

 vp �   
vs  __ 

 
 1 �  �   Eop 
 _ 

E
   �  � 

   (5.27b)

The variables are vs � 107 cm/s at T � 300 K, Eo n � 7 � 103 V/cm, and Eo p � 

2 � 104 V/cm.

 We may note that for small electric fi elds, the drift velocities reduce to

 vn �  �   E _ 
Eo n

   �  � vs (5.28a)

and

 vp �  �   E _
 

Eo p

    �  � vs (5.28b)
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Figure 5.7 | Carrier drift velocity versus electric fi eld for 

high-purity silicon, germanium, and gallium arsenide. 

(From Sze [14].)
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At low electric fi elds, the drift velocities are linear functions of the electric fi eld as 

we have discussed. However, for large electric fi elds, the drift velocities approach 

the saturation value.

 The drift velocity versus electric fi eld characteristic of gallium arsenide is more 

complicated than for silicon or germanium. At low fi elds, the slope of the drift ve-

locity versus E-fi eld is constant and is the low-fi eld electron mobility, which is ap-

proximately 8500 cm2/V-s for gallium arsenide. The low-fi eld electron mobility in 

gallium arsenide is much larger than in silicon. As the fi eld increases, the electron 

drift velocity in gallium arsenide reaches a peak and then decreases. A differential 

mobility is the slope of the vd versus E curve at a particular point on the curve and 

the negative slope of the drift velocity versus electric fi eld represents a negative dif-

ferential mobility. The negative differential mobility produces a negative differential 

resistance; this characteristic is used in the design of oscillators.

 The negative differential mobility can be understood by considering the E  versus 

k diagram for gallium arsenide, which is shown again in Figure 5.8. The density of states 

effective mass of the electron in the lower valley is  m n  *  � 0.067  m 0 . The small effective 

mass leads to a large mobility. As the E-fi eld increases, the  energy of the electron in-

creases and the electron can be scattered into the upper  valley, where the density of states 

effective mass is 0.55 m0. The larger effective mass in the upper  valley yields a smaller 

mobility. This intervalley transfer mechanism results in a decreasing average drift veloc-

ity of electrons with electric fi eld, or the negative differential mobility characteristic. 

 5.1   Carrier Drift 171

GaAs Conduction 

band

Lower

valley

Valence

band

Upper

valley

Eg

�E � 0.31

[111] 0 [100]

Figure 5.8 | Energy-band structure 

for gallium arsenide showing the 

upper valley and lower valley in the 

conduction band. 

(From Sze [15].)
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172 CHAPTER 5   Carrier Transport Phenomena

5.2 | CARRIER DIFFUSION
There is a second mechanism, in addition to drift, that can induce a current in a 

semiconductor. We may consider a classic physics example in which a container, as 

shown in Figure 5.9, is divided into two parts by a membrane. The left side contains 

gas molecules at a particular temperature and the right side is initially empty. The 

gas molecules are in continual random thermal motion so that, when the membrane 

is broken, the gas molecules fl ow into the right side of the container. Diffusion is the 

process whereby particles fl ow from a region of high concentration toward a region 

of low concentration. If the gas molecules were electrically charged, the net fl ow of 

charge would result in a diffusion current.

5.2.1  Diffusion Current Density

To begin to understand the diffusion process in a semiconductor, we will consider a sim-

plifi ed analysis. Assume that an electron concentration varies in one dimension as shown 

in Figure 5.10. The temperature is assumed to be uniform so that the average thermal 

velocity of electrons is independent of x. To calculate the current, we will determine the 

net fl ow of electrons per unit time per unit area crossing the plane at x � 0. If the distance 

l shown in Figure 5.10 is less than the mean-free path of an electron, that is, the average 

x � 0

Figure 5.9 | Container 

divided by a membrane with 

gas molecules on one side.

  TEST YOUR UNDERSTANDING

TYU 5.1 Consider a sample of silicon at T � 300 K doped at an impurity concentration of 

Nd � 1015 cm�3 and Na � 1014 cm�3. Assume electron and hole mobilities given 

in Table 5.1. Calculate the drift current density if the applied electric fi eld is 

E � 35 V/cm. 

(Ans. 6.80 A/cm
2
)

TYU 5.2  Silicon at T � 300 K is doped with impurity concentrations of Nd � 5 � 1016 cm�3 

and Na � 2 � 1016 cm�3. (a) What are the electron and hole mobilities? (b) Deter-

mine the conductivity and resistivity of the material.

 

 [Ans. (a) �n � 1000 cm
2
/V-s, �p � 350 cm

2
/V-s; (b) � � 4.8 (
-cm)

�1
, � � 0.208 
-cm]

TYU 5.3  For a particular silicon semiconductor device at T � 300 K, the required 

material is n type with a resistivity of 0.10 
-cm. (a) Determine the re-

quired impurity doping concentration and (b) the resulting electron mobility. 

[Ans. (a) From Figure 5.4, Nd � 9 � 10
 16

 cm
�3

; (b) �n � 695 cm
2
/V-s]
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 5.2   Carrier Diffusion 173

distance an electron travels between collisions (l  vth �cn), then on the average, electrons 

moving to the right at x � �l and electrons moving to the left at x � �l will cross the 

x � 0 plane. One half of the electrons at x � �l will be traveling to the right at any instant 

of time and one half of the electrons at x � �l will be traveling to the left at any given 

time. The net rate of electron fl ow, Fn, in the �x  direction at x � 0 is given by

 Fn �   1 _ 
2
   n(�l)vth �   1 _ 

2
   n(�l )vth �   1 _ 

2
   vth[n(�l ) � n(�l )] (5.29)

 If we expand the electron concentration in a Taylor series about x � 0 keeping 

only the fi rst two terms, then we can write Equation (5.29) as

 Fn �   1 _ 
2
   vth  �  
 n(0) � l   dn _ 

dx
   �  �  
 n(0) � l   dn _ 

dx
   �    (5.30)

which becomes

 Fn � �vth l   
dn _ 
dx

   (5.31)

Each electron has a charge (�e), so the current is

 J � �eFn � �evth l   
dn _ 
dx

   (5.32)

The current described by Equation (5.32) is the electron diffusion current and is pro-

portional to the spatial derivative, or density gradient, of the electron concentration.

 The diffusion of electrons from a region of high concentration to a region of low 

concentration produces a fl ux of electrons fl owing in the negative x direction for this 

example. Since electrons have a negative charge, the conventional current direction 

is in the positive x direction. Figure 5.11a shows these one-dimensional fl ux and 

n(�l)

n(�l)

n(0)

x � �l x � �lx � 0 x

n(
x)

Figure 5.10 | Electron concentration versus distance.
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174 CHAPTER 5   Carrier Transport Phenomena
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Figure 5.11 | (a) Diffusion of electrons due to a density 

gradient. (b) Diffusion of holes due to a density gradient.

current directions. We may write the electron diffusion current density for this one- 

dimensional case, in the form

 Jnx�dif � eDn   
dn _

 dx   (5.33)

where Dn is called the electron diffusion coeffi cient, has units of cm2/s, and is a posi-

tive quantity. If the electron density gradient becomes negative, the electron diffu-

sion current density will be in the negative x direction.

 Figure 5.11b shows an example of a hole concentration as a function of distance 

in a semiconductor. The diffusion of holes, from a region of high concentration to 

a region of low concentration, produces a fl ux of holes in the negative x direction. 

Since holes are positively charged particles, the conventional diffusion current den-

sity is also in the negative x direction. The hole diffusion current density is propor-

tional to the hole density gradient and to the electronic charge, so we may write

 Jpx � dif � �eDp   
dp _

 dx   (5.34)

for the one-dimensional case. The parameter Dp is called the hole diffusion coef-
fi cient, has units of cm2/s, and is a positive quantity. If the hole density gradient be-

comes negative, the hole diffusion current density will be in the positive x direction.
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 5.2   Carrier Diffusion 175

5.2.2  Total Current Density

We now have four possible independent current mechanisms in a semiconductor. 

These components are electron drift and diffusion currents and hole drift and diffu-

sion currents. The total current density is the sum of these four components, or, for 

the one-dimensional case,

 J � en�n Ex � ep�p Ex � eDn   
dn  _ 
dx

   � eDp   
dp

 _ 
dx

    (5.35)

This equation may be generalized to three dimensions as

 J � en�n E � ep�p E � eDn�n � eDp�p (5.36)

 The electron mobility gives an indication of how well an electron moves in a 

semiconductor as a result of the force of an electric fi eld. The electron diffusion 

coeffi cient gives an indication of how well an electron moves in a semiconductor as 

a result of a density gradient. The electron mobility and diffusion coeffi cient are not 

independent parameters. Similarly, the hole mobility and diffusion coeffi cient are 

not independent parameters. The relationship between mobility and the diffusion 

coeffi cient is developed in the next section.

 The expression for the total current in a semiconductor contains four terms. For-

tunately in most situations, we will only need to consider one term at any one time at 

a particular point in a semiconductor.

   EXAMPLE 5.5Objective: Calculate the diffusion current density given a density gradient.

 Assume that, in an n-type gallium arsenide semiconductor at T � 300 K, the electron con-

centration varies linearly from 1 � 1018 to 7 � 1017 cm�3 over a distance of 0.10 cm. Calculate 

the diffusion current density if the electron diffusion coeffi cient is Dn � 225 cm2/s.

■ Solution
The diffusion current density is given by

 Jn�dif � eDn   
dn _ 
dx

   � eDn   
�n _ 
�x

  

  � (1.6 � 10�19)(225)  �   1 � 1018 � 7 � 1017

  ____ 
0. 10

   �  � 108 A /cm2

■ Comment
A signifi cant diffusion current density can be generated in a semiconductor material with only 

a modest density gradient.

■ EXERCISE PROBLEM
Ex 5.5  The hole density in silicon is given by p(x) � 1016  e �(x�Lp)  (x � 0) where Lp � 2 � 10�4 cm. 

Assume the hole diffusion coeffi cient is Dp � 8 cm2/s.  Determine the hole dif-

fusion current density at (a) x � 0, (b) x � 2 � 10�4 cm, and (c) x � 10�3 cm. 

[Ans. (a) Jp � 64 A/cm
 2
; (b) Jp � 23.54 A/cm

 2
; (c) Jp � 0.431 A/cm

2
]
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176 CHAPTER 5   Carrier Transport Phenomena

5.3 | GRADED IMPURITY DISTRIBUTION
In most cases so far, we have assumed that the semiconductor is uniformly doped. In 

many semiconductor devices, however, there may be regions that are nonuniformly 

doped. We will investigate how a nonuniformly doped semiconductor reaches  thermal 

equilibrium and, from this analysis, we will derive the Einstein relation, which relates 

mobility and the diffusion coeffi cient.

5.3.1  Induced Electric Field

Consider a semiconductor that is nonuniformly doped with donor impurity atoms. 

If the semiconductor is in thermal equilibrium, the Fermi energy level is constant 

through the crystal so the energy-band diagram may qualitatively look like that 

shown in Figure 5.12. The doping concentration decreases as x increases in this case. 

There will be a diffusion of majority carrier electrons from the region of high con-

centration to the region of low concentration, which is in the �x direction. The fl ow 

of negative electrons leaves behind positively charged donor ions. The separation of 

Ec

EF
EFi

Ev

x

Figure 5.12 | Energy-band diagram 

for a semiconductor in thermal 

equilibrium with a nonuniform donor 

impurity concentration.

  TEST YOUR UNDERSTANDING

TYU 5.4 The electron concentration in silicon is given by n(x) � 1015  e �(x�Ln)  cm�3 (x � 0) 

where Ln � 10�4 cm. The electron diffusion coeffi cient is Dn � 25 cm2/s. Deter-

mine the electron diffusion current density at (a) x � 0, (b) x � 10�4 cm, and 

(c) x → �. 

[Ans. (a) �40 A/cm
 2
; (b) �14.7 A/cm

 2
; (c) 0]

TYU 5.5 The hole concentration in silicon varies linearly from x � 0 to x � 0.01 cm. The 

hole diffusion coeffi cient is Dp � 10 cm2/s, the hole diffusion current density is 

20 A/cm2, and the hole concentration at x � 0 is p � 4 � 1017 cm�3. What is the 

value of the hole concentration at x � 0.01 cm? 

(Ans. 2.75 � 10 
 17

 cm
�3

)
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 5.3   Graded Impurity Distribution 177

positive and negative charge induces an electric fi eld that is in a direction to oppose 

the diffusion process. When equilibrium is reached, the mobile carrier concentration 

is not exactly equal to the fi xed impurity concentration and the induced electric fi eld 

prevents any further separation of charge. In most cases of interest, the space charge 

induced by this diffusion process is a small fraction of the impurity concentration, 

thus the mobile carrier concentration is not too different from the impurity dopant 

density.

 The electric potential � is related to electron potential energy by the charge 

(�e), so we can write

 � � �   1 _ e   (EF � EFi) (5.37)

The electric fi eld for the one-dimensional situation is defi ned as

 Ex � �   
d�

 _ 
dx

   �   1 _ e     
dEFi  _ 
dx

   (5.38)

If the intrinsic Fermi-level changes as a function of distance through a semiconduc-

tor in thermal equilibrium, an electric fi eld exists in the semiconductor.

 If we assume a quasi-neutrality condition in which the electron concentration is 

 almost equal to the donor impurity concentration, then we can still write

 n0 � ni exp  
   EF � EFi  __ 
kT

   �  � Nd (x) (5.39)

Solving for EF � EFi, we obtain

 EF � EFi � kT ln  �   Nd (x)
 _ ni 

   �  (5.40)

The Fermi level is constant for thermal equilibrium so when we take the derivative 

with respect to x we obtain

 �   
dEFi  _ 
dx

   �   kT _ 
Nd  (x)

     
dNd  (x)

 __ 
dx

   (5.41)

The electric fi eld can then be written, combining Equations (5.41) and (5.38), as

 Ex � �  �   kT _ e   �    1 _ 
Nd (x)

     
dNd (x)

 __ 
dx

   (5.42)

Since we have an electric fi eld, there will be a potential difference through the semi-

conductor due to the nonuniform doping.

   EXAMPLE 5.6Objective: Determine the induced electric fi eld in a semiconductor in thermal equilibrium, 

given a linear variation in doping concentration.

 Assume that the donor concentration in an n-type semiconductor at T � 300 K is given 

by

 Nd (x) � 1016 � 1019 x    (cm�3)

where x is given in cm and ranges between 0 � x � 1 �m
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178 CHAPTER 5   Carrier Transport Phenomena

5.3.2  The Einstein Relation

If we consider the nonuniformly doped semiconductor represented by the energy-

band diagram shown in Figure 5.12 and assume there are no electrical connections 

so that the semiconductor is in thermal equilibrium, then the individual electron and 

hole currents must be zero. We can write

 Jn � 0 � en�n Ex � eDn   
dn _ 
dx

   (5.43)

If we assume quasi-neutrality so that n � Nd (x), then we can rewrite Equation (5.43) 

as

 Jn � 0 � e�n Nd (x)Ex � eDn   
dNd (x)

 __ 
dx

   (5.44)

Substituting the expression for the electric fi eld from Equation (5.42) into 

Equation (5.44), we obtain

 0 � �e�n Nd (x)  �   kT _ e   �    1 _ 
Nd (x)

     
dNd (x)

 __ 
dx

   � eDn   
dNd (x)

 __ 
dx

   (5.45)

Equation (5.45) is valid for the condition

   
Dn  _ �n

   �   kT _ e   (5.46a)

 The hole current must also be zero in the semiconductor. From this condition, 

we can show that

   
Dp 

 _ �p
   �   kT _ e   (5.46b)

■ Solution
Taking the derivative of the donor concentration, we have

   
dNd (x)

 __ 
dx

   � �1019     (cm�4)

The electric fi eld is given by Equation (5.42), so we have

 Ex �   
�(0.0259)(�1019)

  ___  
(1016 � 1019x)

  

At x � 0, for example, we fi nd

Ex � 25.9 V/cm

■ Comment
We may recall from our previous discussion of drift current that fairly small electric fi elds can 

produce signifi cant drift current densities, so that an induced electric fi eld from nonuniform 

doping can signifi cantly infl uence semiconductor device characteristics.

■ EXERCISE PROBLEM
Ex 5.6  Assume the donor concentration in an n-type semiconductor at T � 300 K is given 

by Nd (x) � 1016  e �x�L  where L � 2 � 10�2 cm. Determine the induced electric fi eld 

in the semiconductor at (a) x � 0 and (b) x � 10�4 cm. 

[Ans. E � 1.295 V/cm for (a) and (b)]
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 5.3   Graded Impurity Distribution 179

Combining Equations (5.46a) and (5.46b) gives

   
Dn  _ �n

   �   
Dp 

 _ �p
   �   kT _ e   (5.47)

The diffusion coeffi cient and mobility are not independent parameters. This relation 

between the mobility and diffusion coeffi cient, given by Equation (5.47), is known 

as the Einstein relation.

Table 5.2 |  Typical mobility and diffusion coeffi cient values at 
T � 300 K (� = cm2/V-s and D = cm2/s)

 �m Dn �p Dp

Silicon 1350  35  480 12.4
Gallium arsenide 8500 220  400 10.4
Germanium 3900 101 1900 49.2

   EXAMPLE 5.7Objective: Determine the diffusion coeffi cient given the carrier mobility.

 Assume that the mobility of a particular carrier is 1000 cm2/V-s at T � 300 K.

■ Solution
Using the Einstein relation, we have that

 D �  �   kT _ e   �  � � (0.0259)(1000) � 25.9 cm2/s

■ Comment
Although this example is fairly simple and straightforward, it is important to keep in mind the 

relative orders of magnitude of the mobility and diffusion coeffi cient. The diffusion coeffi cient 

is approximately 40 times smaller than the mobility at room temperature.

■ EXERCISE PROBLEM
Ex 5.7  Assume the electron diffusion coeffi cient of a semiconductor at T � 300 K is 

Dn � 215 cm2/s. Determine the electron mobility. 

(Ans. �n � 8301 cm 
 2   
/V-s)

 Table 5.2 shows the diffusion coeffi cient values at T � 300 K corresponding to 

the mobilities listed in Table 5.1 for silicon, gallium arsenide, and germanium.

 The relation between the mobility and diffusion coeffi cient given by Equation 

(5.47) contains temperature. It is important to keep in mind that the major tempera-

ture effects are a result of lattice scattering and ionized impurity scattering processes, 

as discussed in Section 5.1.2. As the mobilities are strong functions of temperature 

because of the scattering processes, the diffusion coeffi cients are also strong func-

tions of temperature. The specifi c temperature dependence given in Equation (5.47) 

is a small fraction of the real temperature characteristic.
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180 CHAPTER 5   Carrier Transport Phenomena

*5.4 | THE HALL EFFECT
The Hall effect is a consequence of the forces that are exerted on moving charges by 

electric and magnetic fi elds. The Hall effect is used to distinguish whether a semicon-

ductor is n type or p type3 and to measure the majority carrier concentration and majority 

carrier mobility. The Hall effect device, as discussed in this section, is used to experi-

mentally measure semiconductor parameters. However, it is also used  extensively in 

engineering applications as a magnetic probe and in other circuit  applications.

 The force on a particle having a charge q and moving in a magnetic fi eld is given by

 F � qv � B (5.48)

where the cross product is taken between velocity and magnetic fi eld so that the force 

vector is perpendicular to both the velocity and magnetic fi eld.

 Figure 5.13 illustrates the Hall effect. A semiconductor with a current Ix is placed 

in a magnetic fi eld perpendicular to the current. In this case, the magnetic fi eld is in 

the z direction. Electrons and holes fl owing in the semiconductor will experience a 

force as indicated in the fi gure. The force on both electrons and holes is in the (�y) 

direction. In a p-type semiconductor ( p0 � n0), there will be a buildup of positive 

charge on the y � 0 surface of the semiconductor and, in an n-type semiconductor 

(n0 � p0), there will be a buildup of negative charge on the y � 0 surface. This net 

charge induces an electric fi eld in the y direction as shown in the fi gure. In steady 

Figure 5.13 | Geometry for measuring the Hall effect.

z

x

y

EH

EH

h�
e�

d
VH

L

W

Ix

Vx

Bz

�

�

�

�

*Indicates sections that will aid in the total summation of understanding of semiconductor devices, but 

may be skipped the fi rst time through the text without loss of continuity.
3We will assume an extrinsic semiconductor material in which the majority carrier concentration is 

much larger than the minority carrier concentration.
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 5.4   The Hall Effect 181

state, the magnetic fi eld force will be exactly balanced by the induced electric fi eld 

force. This balance may be written as

 F � q[E � v � B] � 0 (5.49a)

which becomes

 qEy � qvx Bz (5.49b)

 The induced electric fi eld in the y direction is called the Hall fi eld. The Hall fi eld 

produces a voltage across the semiconductor which is called the Hall voltage. We 

can write

 VH � �EH W (5.50)

where EH is assumed positive in the �y direction and VH is positive with the polarity 

shown.

 In a p-type semiconductor, in which holes are the majority carrier, the Hall volt-

age will be positive as defi ned in Figure 5.13. In an n-type semiconductor, in which 

electrons are the majority carrier, the Hall voltage will have the opposite polarity. 

The polarity of the Hall voltage is used to determine whether an extrinsic semicon-

ductor is n type or p type.

 Substituting Equation (5.50) into Equation (5.49) gives

 VH � vx WBz (5.51)

For a p-type semiconductor, the drift velocity of holes can be written as

 vdx �   
Jx  _ ep   �   

Ix  __ 
(ep)(Wd )

   (5.52)

where e is the magnitude of the electronic charge. Combining Equations (5.52) and 

(5.50), we have

 VH �   
Ix Bz 

 _ 
epd

   (5.53)

or, solving for the hole concentration, we obtain

 p �   
Ix Bz 

 _ 
edVH

   (5.54)

The majority carrier hole concentration is determined from the current, magnetic 

fi eld, and Hall voltage.

 For an n-type semiconductor, the Hall voltage is given by

 VH � �  
Ix Bz 

 _ 
ned

   (5.55)

so that the electron concentration is

 n � �  
Ix Bz 

 _ 
edVH

   (5.56)

Note that the Hall voltage is negative for the n-type semiconductor; therefore, the 

 electron concentration determined from Equation (5.56) is actually a positive 

quantity.
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182 CHAPTER 5   Carrier Transport Phenomena

 Once the majority carrier concentration has been determined, we can calculate 

the low-fi eld majority carrier mobility. For a p-type semiconductor, we can write

 Jx � ep�p Ex (5.57)

The current density and electric fi eld can be converted to current and voltage so that 

Equation (5.57) becomes

   
Ix  _ 

Wd
   �   

ep�pVx 
 __ 

L
   (5.58)

The hole mobility is then given by

 �p �   
Ix L __ 

epVx Wd
   (5.59)

Similarly for an n-type semiconductor, the low-fi eld electron mobility is determined 

from

 �n �   
Ix L __ 

enVx Wd
   (5.60)

EXAMPLE 5.8 Objective: Determine the majority carrier concentration and mobility, given Hall effect 

parameters.

 Consider the geometry shown in Figure 5.13. Let L � 10�1 cm, W � 10�2 cm, and 

d � 10�3 cm. Also assume that Ix � 1.0 mA, Vx � 12.5 V, Bz � 500 gauss � 5 � 10�2 tesla, 

and VH � �6.25 mV.

■ Solution
A negative Hall voltage for this geometry implies that we have an n-type semiconductor. 

Using Equation (5.56), we can calculate the electron concentration as

 n �   
�(10�3)(5 � 10�2)

   ______   
(1.6 � 10�19)(10�5)(�6.25 � 10�3)

   � 5 � 1021 m�3 � 5 � 1015 cm�3

The electron mobility is then determined from Equation (5.60) as

 �n �   
(10�3)(10�3)

   _______    
(1.6 � 10�19)(5 � 1021)(12.5)(10�4)(10�5)

   � 0.10 m2/V-s

or

 �n � 1000 cm2/V-s

■ Comment
It is important to note that the MKS units must be used consistently in the Hall effect equations 

to yield correct results.

■ EXERCISE PROBLEM
Ex 5.8  A p-type silicon sample with the geometry shown in Figure 5.13 has parameters 

L � 0.2 cm, W � 10�2 cm, and d � 8 � 10�4 cm. The semiconductor parameters 

are p � 1016 cm�3 and �p � 320 cm2/V-s. For Vx � 10 V and Bz � 500 gauss � 

5 � 10�2 tesla, determine Ix and VH . 

(Ans. Ix � 0.2048 mA, VH � 0.80 mV)
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 Glossary of Important Terms 183

5.5 | SUMMARY

■ The two basic transport mechanisms are drift, due to an applied electric fi eld, and diffu-

sion, due to a density gradient.

■ Carriers reach an average drift velocity in the presence of an applied electric fi eld, due 

to scattering events. Two scattering processes within a semiconductor are lattice scatter-

ing and impurity scattering.

■ The average drift velocity is a linear function of the applied electric fi eld for small val-

ues of electric fi eld, but the drift velocity reaches a saturation limit that is on the order 

of 10 7 cm/s at high electric fi elds.

■ Carrier mobility is the ratio of the average drift velocity and applied electric fi eld. The 

electron and hole mobilities are functions of temperature and of the ionized impurity 

concentration.

■ The drift current density is the product of conductivity and electric fi eld (a form of 

Ohm’s law). Conductivity is a function of the carrier concentrations and mobilities. Re-

sistivity is the inverse of conductivity.

■ The diffusion current density is proportional to the carrier diffusion coeffi cient and the 

carrier density gradient.

■ The diffusion coeffi cient and mobility are related through the Einstein relation.

■ The Hall effect is a consequence of a charged carrier moving in the presence of perpen-

dicular electric and magnetic fi elds. The charged carrier is defl ected, inducing a Hall volt-

age. The polarity of the Hall voltage is a function of the semiconductor conductivity type. 

The majority carrier concentration and mobility can be determined from the Hall voltage.

GLOSSARY OF IMPORTANT TERMS
conductivity  A material parameter related to carrier drift; quantitatively, the ratio of drift 

current density to electric fi eld.

diffusion  The process whereby particles fl ow from a region of high concentration to a region 

of low concentration.

diffusion coeffi cient  The parameter relating particle fl ux to the particle density gradient.

diffusion current  The current that results from the diffusion of charged particles.

drift  The process whereby charged particles move while under the infl uence of an electric 

fi eld.

drift current  The current that results from the drift of charged particles.

drift velocity  The average velocity of charged particles in the presence of an electric fi eld.

Einstein relation  The relation between the mobility and the diffusion coeffi cient.

Hall voltage  The voltage induced across a semiconductor in a Hall effect measurement.

ionized impurity scattering  The interaction between a charged carrier and an ionized 

 impurity center.

lattice scattering  The interaction between a charged carrier and a thermally vibrating lattice 

atom.

mobility  The parameter relating carrier drift velocity and electric fi eld.

resistivity  The reciprocal of conductivity; a material parameter that is a measure of the 

 resistance to current.

velocity saturation  The saturation of carrier drift velocity with increasing electric fi eld.
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184 CHAPTER 5   Carrier Transport Phenomena

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Discuss carrier drift current density.

■ Explain why carriers reach an average drift velocity in the presence of an applied 

electric fi eld.

■ Discuss the mechanisms of lattice scattering and impurity scattering.

■ Defi ne mobility and discuss the temperature and ionized impurity concentration depen-

dence on mobility.

■ Defi ne conductivity and resistivity.

■ Discuss velocity saturation.

■ Discuss carrier diffusion current density.

■ State the Einstein relation.

■ Describe the Hall effect.

REVIEW QUESTIONS
 1. Write the equation for the total drift current density. Is the linear relationship between 

drift current density and electric fi eld always valid? Why or why not.

 2. Defi ne electron and hole mobility. What is the unit of mobility?

 3. Explain the temperature dependence of mobility. Why is the carrier mobility a function 

of the ionized impurity concentrations?

 4. Defi ne conductivity. Defi ne resistivity. What are the units of conductivity and 

 resistivity?

 5. Sketch the drift velocity of electrons in silicon versus electric fi eld. Repeat for GaAs.

 6. Write the equations for the diffusion current densities of electrons and holes.

 7. What is the Einstein relation?

 8. What is the direction of the induce electric fi eld in a semiconductor with a graded donor 

impurity concentration? Repeat for a graded acceptor impurity concentration.

 9. Describe the Hall effect.

 10. Explain why the polarity of the Hall voltage changes depending on the conductivity 

type (n type or p type) of the semiconductor.

PROBLEMS
(Note: Use the semiconductor parameters given in Appendix B if the parameters are not spe-

cifi cally given in a problem.)

Section 5. 1  Carrier Drift

5.1 The concentration of donor impurity atoms in silicon is Nd � 1015 cm�3. Assume an 

electron mobility of �n � 1300 cm2/V-s and a hole mobility of �p � 450 cm2/V-s. 

(a) Calculate the resistivity of the material. (b) What is the conductivity of the material?

5.2 A p-type silicon material is to have a conductivity of � � 1.80 (
-cm)�1. If the mobil-

ity values are �n � 1250 cm2/V-s and �p � 380 cm2/V-s, what must be the acceptor 

impurity concentration in the material?

nea29583_ch05_156-191.indd   184nea29583_ch05_156-191.indd   184 12/11/10   10:15 AM12/11/10   10:15 AM

Cotta
Rectangle



5.3 (a) The required conductivity of an n-type silicon sample at T � 300 K is to be 

� � 10 (
-cm)�1. What donor impurity concentration is required? What is the electron 

mobility corresponding to this impurity concentration? (b) A p-type silicon material is 

required to have a resistivity of � � 0.20 (
-cm). What acceptor impurity concentra-

tion is required and what is the corresponding hole mobility?

5.4 (a) The resistivity of a p-type GaAs material at T � 300 K is required to be 

� � 0.35 (
-cm). Determine the acceptor impurity concentration that is required. 

What is the hole mobility corresponding to this impurity concentration? (b) An n-type 

GaAs material is required to have a conductivity of � � 120 (
-cm)�1. What donor 

impurity concentration is required and what is the corresponding electron mobility?

5.5 A silicon sample is 2.5 cm long and has a cross-sectional area of 0.1 cm2. The silicon 

is n type with a donor impurity concentration of Nd � 2 � 1015 cm�3. The resistance 

of the sample is measured and found to be 70 
. What is the electron mobility?

5.6 Consider a homogeneous gallium arsenide semiconductor at T � 300 K with 

Nd � 1016 cm�3 and Na � 0. (a) Calculate the thermal-equilibrium values of electron 

and hole concentrations. (b) For an applied E-fi eld of 10 V/cm, calculate the drift 

current density.  (c) Repeat parts (a) and (b) if Nd � 0 and Na � 1016 cm�3.

5.7 A silicon crystal having a cross-sectional area of 0.001 cm2 and a length of 10�3 cm is 

connected at its ends to a 10-V battery. At T � 300 K, we want a current of 100 mA 

in the silicon. Calculate (a) the required resistance R, (b) the required conductivity, 

(c) the density of donor atoms to be added to achieve this conductivity, and (d) the 

concentration of acceptor atoms to be added to form a compensated p-type material 

with the conductivity given from part (b) if the initial concentration of donor atoms is 

Nd � 1015 cm�3.

5.8 (a) A silicon semiconductor resistor is in the shape of a rectangular bar with a cross-

sectional area of 8.5 � 10�4 cm2, a length of 0.075 cm, and is doped with a concentra-

tion of 2 � 1016 cm�3 boron atoms. Let T � 300 K. A bias of 2 volts is applied across 

the length of the silicon device. Calculate the current in the resistor. (b) Repeat part 

(a) if the length is increased by a factor of three. (c) Determine the average drift ve-

locity of holes in parts (a) and (b).

5.9 (a) A GaAs semiconductor resistor is doped with donor impurities at a concentra-

tion of Nd � 2 � 1015 cm�3 and has a cross-sectional area of 5 � 10�5 cm2. A current 

of I � 25 mA is induced in the resistor with an applied bias of 5 V. Determine the 

length of the resistor. (b) Using the results of part (a), calculate the drift velocity of 

the electrons. (c) If the bias applied to the resistor in part (a) increases to 20 V, deter-

mine the resulting current if the electrons are traveling at their saturation velocity of 

5 � 106 cm/s.

5.10 (a) Three volts is applied across a 1-cm-long semiconductor bar. The average electron 

drift velocity is 104 cm/s. Find the electron mobility. (b) If the electron mobility in 

part (a) were 800 cm2/V-s, what is the average electron drift velocity?

5.11 Use the velocity–fi eld relations for silicon and gallium arsenide shown in Figure 5.7 

to determine the transit time of electrons through a 1-�m distance in these materials 

for an electric fi eld of (a) 1 kV/cm and (b) 50 kV/cm.

5.12 A perfectly compensated semiconductor is one in which the donor and acceptor 

impurity concentrations are exactly equal. Assuming complete ionization, determine 

the resistivity of silicon at T � 300 K in which the impurity concentrations are 

(a) Na � Nd � 1014 cm�3, (b) Na � Nd � 1016 cm�3, and (c) Na � Nd � 1018 cm�3.

 Problems 185
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186 CHAPTER 5   Carrier Transport Phenomena

5.13 (a) In a p-type gallium arsenide semiconductor, the conductivity is � � 5 (
-cm)�1 

at T � 300 K. Calculate the thermal-equilibrium values of the electron and hole 

 concentrations. (b) Repeat part (a) for n-type silicon if the resistivity is � � 8 
-cm.

5.14 In a particular semiconductor material, �n � 1000 cm2/V-s, �p � 600 cm2/V-s, and 

NC � NV � 1019 cm�3. These parameters are independent of temperature. The 

 measured conductivity of the intrinsic material is � � 10�6 (
-cm)�1 at T � 300 K. 

Find the conductivity at T � 500 K.

5.15 (a) Calculate the resistivity at T � 300 K of intrinsic (i) silicon, (ii) germanium, and 

(iii) gallium arsenide. (b) If rectangular semiconductor bars are fabricated using the 

materials in part (a), determine the resistance of each bar if its cross-sectional area is 

85 �m2 and length is 200 �m.

5.16 An n-type silicon material at 	 � 300 K has a conductivity of 0.25 (
-cm)�1. 

(a) What is the donor impurity concentration and the corresponding electron 

mobility? (b) Determine the expected conductivity of the material at (i) T � 250 K 

and (ii) T � 400 K.

5.17 The conductivity of a semiconductor layer varies with depth as �(x) � �o exp(�x�d) 

where �o � 20 (
-cm)�1 and d � 0.3 �m. If the thickness of the semiconductor layer 

is t � 1.5 �m, determine the average conductivity of this layer.

5.18 An n-type silicon resistor has a length L � 150 �m, width W � 7.5 �m, and thick-

ness T � 1 �m. A voltage of 2 V is applied across the length of the resistor. The donor 

impurity concentration varies linearly through the thickness of the resistor with Nd � 

2 � 1016 cm�3 at the top surface and Nd � 2 � 1015 cm�3 at the bottom surface. As-

sume an average carrier mobility of �n � 750 cm2/V-s. (a) What is the electric fi eld in 

the resistor? (b) Determine the average conductivity of the silicon. (c) Calculate the 

current in the resistor. (d) Determine the current density near the top surface and the 

current density near the bottom surface.

5.19 Consider silicon doped at impurity concentrations of Nd � 2 � 1016 cm�3 and Na � 0. 

An empirical expression relating electron drift velocity to electric fi eld is given by

vd �   
�n0E
 ___  

 �
___________

 1 �   �   �n0E
 _ vsat 

   �  2   
  

 where �n0 � 1350 cm2/V-s, vsat � 1.8 � 107 cm/s, and E is given in V/cm. Plot 

 electron drift current density (magnitude) versus electric fi eld (log–log scale) over the 

range 0 � E � 106 V/cm.

5.20 Consider silicon at T � 300 K. Assume the electron mobility is �n � 1350 cm2/V-s. 

The kinetic energy of an electron in the conduction band is (1�2) m n  *  v d  
2 , where  m n  *  is the 

effective mass and vd is the drift velocity. Determine the kinetic energy of an  electron 

in the conduction band if the applied electric fi eld is (a) 10 V/cm and (b) 1 kV/cm.

5.21 Consider a semiconductor that is uniformly doped with Nd � 1014 cm�3 and Na � 0, 

with an applied electric fi eld of E � 100 V/cm. Assume that �n � 1000 cm2/V-s and 

�p � 0. Also assume the following parameters:

Nc � 2 � 1019 (T�300)3�2 cm�3

Nv � 1 � 1019 (T�300)3�2 cm�3

Eg � 1.10 eV

 (a) Calculate the electric-current density at T � 300 K. (b) At what temperature will this 

current increase by 5 percent? (Assume the mobilities are independent of  temperature.)
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5.22 A semiconductor material has electron and hole mobilities �n and �p, respectively. 

When the conductivity is considered as a function of the hole concentration p0, 

(a) show that the minimum value of conductivity, �min, can be written as

�min �   
2�i (�n �p)1�2 

 ___ 
(�n � �p)

  

 where �i is the intrinsic conductivity, and (b) show that the corresponding hole 

concen tration is p0 � ni(�n��p)
1�2.

5.23 Consider three samples of silicon at T � 300 K. The n-type sample is doped with 

arsenic atoms to a concentration of Nd � 5 � 1016 cm�3. The p-type sample is doped 

with boron atoms to a concentration of Na � 2 � 1016 cm�3. The compensated sample 

is doped with both the donors and acceptors described in the n-type and p-type 

samples. (a) Find the equilibrium electron and hole concentrations in each sample, 

(b) determine the majority carrier mobility in each sample, (c) calculate the conduc-

tivity of each sample, (d) and determine the electric fi eld required in each sample to 

induce a drift current density of J � 120 A/cm2.

5.24 Three scattering mechanisms are present in a particular semiconductor mate-

rial. If only the fi rst scattering mechanism were present, the mobility would be 

�1 � 2000 cm2/V-s, if only the second mechanism were present, the mobility would 

be �2 � 1500 cm2/V-s, and if only the third mechanism were present, the mobility 

would be �3 � 500 cm2/V-s. What is the net mobility?

5.25 Assume that the mobility of electrons in silicon at T � 300 K is �n � 1300 cm2/V-s. 

Also assume that the mobility is limited by lattice scattering and varies as T�3�2. 

 Determine the electron mobility at (a) T � 200 K and (b) T � 400 K.

5.26 Two scattering mechanisms exist in a semiconductor. If only the fi rst mechanism were 

present, the mobility would be 250 cm2/V-s. If only the second mechanism were pres-

ent, the mobility would be 500 cm2/V-s. Determine the mobility when both scattering 

mechanisms exist at the same time.

5.27 The effective density of states functions in silicon can be written in the form

Nc � 2.8 � 1019   �    T _ 
300 

   �  3�2

      Nv � 1.04 � 1019   �    T _ 
300 

   �  3�2

 

 Assume the mobilities are given by

�n � 1350  �    T _ 
300 

   �  �3�2

      �p � 480  �    T _ 
300 

   �  �3�2

 

 Assume the bandgap energy is Eg � 1.12 eV and independent of temperature. Plot the 

intrinsic conductivity as a function of T over the range 200 � T � 600 K.

5.28 (a) Assume that the electron mobility in an n-type semiconductor is given by

�n �   1350  ___  

   � 1�   Nd  __ 
 5 � 1016 

   �  1�2

 

   cm2/V-s

 where Nd is the donor concentration in cm�3. Assuming complete ionization, plot the 

conductivity as a function of Nd over the range 1015 � Nd � 1018 cm�3. (b) Compare 

the results of part (a) to that if the mobility were assumed to be a constant equal to 

1350 cm2/V-s. (c) If an electric fi eld of E � 10 V/cm is applied to the semiconductor, 

plot the electron drift current density of parts (a) and (b).

 Problems 187
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188 CHAPTER 5   Carrier Transport Phenomena

Section 5.2  Carrier Diffusion

5.29 Consider a sample of silicon at T � 300 K. Assume that the electron concentration 

varies linearly with distance, as shown in Figure P5.29. The diffusion current density 

is found to be Jn � 0.19 A/cm2. If the electron diffusion coeffi cient is Dn � 25 cm2/s, 

determine the electron concentration at x � 0.

5.30 The steady-state electron distribution in silicon can be approximated by a linear func-

tion of x. The maximum electron concentration occurs at x � 0 and is n(0) � 2 � 

1016 cm�3. At x � 0.012 cm, the electron concentration is 5 � 1015 cm�3. If the elec-

tron diffusion coeffi cient is Dn � 27 cm2/s, determine the electron diffusion current 

density.

5.31 The electron diffusion current density in a semiconductor is a constant and is given by 

Jn � �2 A/cm2. The electron concentration at x � 0 is n(0) � 1015 cm�3. (a) Calculate 

the electron concentration at x � 20 �m if the material is silicon with Dn � 30 cm2/s. 

(b) Repeat part (a) if the material is GaAs with Dn � 230 cm2/s.

5.32 The hole concentration in p-type GaAs is given by p(x) � 1016 (1 � x�L)2 cm�3 for 

�L � x � 0 where L � 12 �m. The hole diffusion coeffi cient is Dp � 10 cm2/s. Calcu-

late the hole diffusion current density at (a) x � 0, (b) x � �6 �m, and (c) x � �12 �m.

5.33 In silicon, the electron concentration is given by n(x) � 1015e�x�Ln cm�3 for x � 0 and 

the hole concentration is given by p(x) � 5 � 1015e�x�Lp cm�3 for x � 0 . The param-

eter values are Ln � 2 � 10�3 cm and LP � 5 � 10�4 cm. The electron and hole diffu-

sion coeffi cients are Dn � 25 cm2/s and DP � 10 cm2/s, respectively. The total current 

density is defi ned as the sum of the electron and hole diffusion current densities at 

x � 0. Calculate the total current density.

5.34 The concentration of holes in a semiconductor is given by p(x) � 5 � 1015e�x�Lp cm�3 

for x � 0. Determine the hole diffusion current density at (a) x � 0 and (b) x � Lp if 

the material is (i) silicon with Dp � 10 cm2/s and Lp � 50 �m, and (ii) germanium 

with Dp � 48 cm2/s and Lp � 22.5 �m.

5.35 The electron concentration in silicon at T � 300 K is given by

n(x) � 1016 exp  �   �x _ 
18

   �  cm�3

 where x is measured in �m and is limited to 0 � x � 25 �m. The electron diffu-

sion coeffi cient is Dn � 25 cm2/s and the electron mobility is �n � 960 cm2/V-s. The 

total electron current density through the semiconductor is constant and equal to 

Figure P5.29 | Figure for 

Problem 5.29.

5 � 1014

n 
(c

m
�

3
)

x (cm)

n(0)

0 0.010
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Jn � �40 A/cm2. The electron current has both diffusion and drift current components. 

 Determine the electric fi eld as a function of x which must exist in the semiconductor.

5.36 The total current in a semiconductor is constant and equal to J � �10 A/cm2. The total 

current is composed of a hole drift current and electron diffusion current. Assume that 

the hole concentration is a constant and equal to 1016 cm�3 and assume that the elec-

tron concentration is given by n(x) � 2 � 1015e�x�L cm�3 where L � 15 �m. The elec-

tron diffusion coeffi cient is Dn � 27 cm2/s and the hole mobility is �p � 420 cm2/V-s. 

Calculate (a) the electron diffusion current density for x � 0, (b) the hole drift current 

density for x � 0, and (c) the required electric fi eld for x � 0.

*5.37 A constant electric fi eld, E � 12 V/cm, exists in the �x direction of an n-type gallium 

arsenide semiconductor for 0 � x � 50 �m. The total current density is a constant and 

is J � 100 A/cm2. At x � 0, the drift and diffusion currents are equal. Let T � 300 K 

and �n � 8000 cm2/V-s. (a) Determine the expression for the electron concentration 

n(x). (b) Calculate the electron concentration at x � 0 and at x � 50 �m. (c) Calculate 

the drift and diffusion current densities at x � 50 �m.

*5.38 In n-type silicon, the Fermi energy level varies linearly with distance over a short 

range. At x � 0, EF � EFi � 0.4 eV and, at x � 10�3 cm, EF�EFi � 0.15 eV. (a) Write 

the expression for the  electron concentration over the distance. (b) If the electron dif-

fusion coeffi cient is Dn � 25 cm2/s, calculate the electron diffusion  current density at 

(i) x � 0 and (ii) x � 5 � 10�4 cm.

*5.39 (a) The electron concentration in a semiconductor is given by n � 1016(1 � x�L) cm�3 for 

0 � x � L, where L � 10 �m. The electron mobility and diffusion coeffi cient are �n � 
1000 cm2/V-s and Dn � 25.9 cm2/s. An electric fi eld is applied such that the total electron 

current density is a constant over the given range of x and is Jn � �80 A/cm2. Determine 

the required electric fi eld versus distance function. (b) Repeat part (a) if Jn � �20 A/cm2.

Section 5.3  Graded Impurity Distribution

5.40 Consider an n-type semiconductor at T � 300 K in thermal equilibrium (no cur-

rent). Assume that the donor concentration varies as Nd(x) � Nd0e�x�L over the range 

0 � x � L where Nd0 � 1016 cm�3 and L � 10 �m. (a) Determine the electric fi eld as 

a function of x for 0 � x � L. (b) Calculate the potential difference between x � 0 

and x � L (with the potential at x � 0 being positive with respect to that at x � L).

5.41 Using the data in Example 5.6, calculate the potential difference between x � 0 and 

x � 1 �m.

5.42 Determine the doping profi le in a semiconductor at T � 300 K that will induce a con-

stant electric fi eld of 500 V/cm over a length of 0.1 cm.

*5.43 In GaAs, the donor impurity concentration varies as Nd0 exp (�x�L) for 0 � x � L, 

where L � 0. 1 �m and Nd0 � 5 � 1016 cm�3. Assume �n � 6000 cm2/V-s and 

T � 300 K. (a) Derive the expression for the electron diffusion current density versus 

distance over the given range of x. (b) Determine the induced electric fi eld that gener-

ates a drift current density that compensates the diffusion current density.

5.44 (a) Consider the electron mobility in silicon for Nd � 1017cm�3 from Figure 5.2a. 

 Calculate and plot the electron diffusion coeffi cient versus temperature over the range 

�50 � T � 200°C. (b) Repeat part (a) if the electron diffusion coeffi cient is given by 

Dn � (0.0259)�n for all temperatures. What conclusion can be made about the tem-

perature dependence of the diffusion coeffi cient?

 Problems 189

*Asterisks next to problems indicate problems that are more diffi cult.
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190 CHAPTER 5   Carrier Transport Phenomena

5.45 Consider a semiconductor at T � 300 K. (a) (i) Determine the electron diffusion coef-

fi cient if the electron mobility is �n � 1150 cm2/V-s. (ii) Repeat (i) of part (a) if the 

electron mobility is �n � 6200 cm2/V-s. (b) (i) Determine the hole mobility if the hole 

diffusion coeffi cient is Dp � 8 cm2/s. (ii) Repeat (i) of part (b) if the hole diffusion 

coeffi cient is Dp � 35 cm2/s.

Section 5.4  The Hall Effect

(Note: Refer to Figure 5.13 for the geometry of the Hall effect.)

5.46 Silicon, at T � 300 K, is uniformly doped with phosphorus atoms at a concentration 

of 2 � 1016 cm�3. A Hall device has the same geometrical dimensions as given in 

Example 5.8. The current is Ix � 1.2 mA and the magnetic fi eld is BZ � 500 gauss � 

5 � 10�2 tesla. Determine (a) the Hall voltage and (b) the Hall fi eld.

5.47 Germanium is doped with 5 � 1015 donor atoms per cm3 at T � 300 K. The dimen-

sions of the Hall device are d � 5 � 10�3 cm, W � 2 � 10�2 cm, and L � 10�1 cm. 

The current is Ix � 250 �A, the applied voltage is Vx � 100 mV, and the magnetic fl ux 

density is Bz � 500 gauss � 5 � 10�2 tesla. Calculate: (a) the Hall voltage, (b) the 

Hall fi eld, and (c) the carrier mobility.

5.48 A semiconductor Hall device at T � 300 K has the following geometry: d � 10�3 cm, 

W � 10�2 cm, and L � 10�1 cm. The following parameters are measured: IX � 0.50 mA, 

VX � 15 V, VH � �5.2 mV, and BZ � 0.10 tesla. Determine the (a) conductivity type, 

(b) majority carrier concentration, and (c) majority carrier mobility.

5.49 Consider silicon at T � 300 K. A Hall effect device is fabricated with the follow-

ing geometry: d � 5 � 10�3 cm, W � 5 � 10�2 cm, and L � 0.50 cm. The electri-

cal  parameters measured are: Ix � 0.50 mA, Vx � 1.25 V, and Bz � 650 gauss � 
6.5 � 10�2 tesla. The Hall fi eld is EH � �16.5 mV/cm. Determine (a) the Hall 

 voltage, (b) the conductivity type, (c) the majority carrier concentration, and (d) the 

majority carrier mobility.

5.50 Consider a gallium arsenide sample at T � 300 K. A Hall effect device has been 

 fabricated with the following geometry: d � 0.0 1 cm, W � 0.05 cm, and L � 0.5 cm. 

The electrical parameters are: Ix � 2.5 mA, Vx � 2.2 V, and Bz � 2.5 � 10�2 tesla. 

The Hall voltage is VH � �4.5 mV. Find: (a) the conductivity type, (b) the  majority 

carrier concentration, (c) the mobility, and (d) the resistivity.

Summary and Review

5.51 An n-type silicon semiconductor resistor is to be designed so that it carries a current 

of 5 mA with an applied voltage of 5 V. (a) If Nd � 3 � 1014 cm�3 and Na � 0, design 

a resistor to meet the required specifi cations. (b) If Nd � 3 � 1016 cm�3 and 

Na � 2.5 � 1016 cm�3, redesign the resistor. (c) Discuss the relative lengths of the two 

designs compared to the doping concentration. Is there a linear relationship?

5.52 In fabricating a Hall effect device, the two points at which the Hall voltage is mea-

sured may not be lined up exactly perpendicular to the current Ix (see Figure 5.13). 

Discuss the effect this misalignment will have on the Hall voltage. Show that a valid 

Hall voltage can be obtained from two measurements: fi rst with the magnetic fi eld in 

the �z  direction, and then in the �z direction.

5.53 Another technique for determining the conductivity type of a semiconductor is called 

the hot probe method. It consists of two probes and an ammeter that indicates the 
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 direction of current. One probe is heated and the other is at room temperature. No 

 voltage is applied, but a current will exist when the probes touch the semiconductor. 

Explain the operation of this hot probe technique and sketch a diagram indicating the 

direction of current for p- and n-type semiconductor samples.
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6
Nonequilibrium Excess Carriers

in Semiconductors

O
ur discussion of the physics of semiconductors in Chapter 4 was based on ther-

mal equilibrium. When a voltage is applied or a current exists in a semiconduc-

tor device, the semiconductor is operating under nonequilibrium conditions. 

In our discussion of current transport in Chapter 5, we did not address nonequilibrium 

conditions but implicitly assumed that equilibrium was not signifi cantly disturbed. Ex-

cess electrons in the conduction band and excess holes in the valence band may exist in 

addition to the thermal-equilibrium concentrations if an  external excitation is applied 

to the semiconductor. In this chapter, we discuss the behavior of nonequilibrium elec-

tron and hole concentrations as functions of time and space coordinates.

 Excess electrons and excess holes do not move independently of each other. 

These excess carriers diffuse, drift, and recombine with the same effective diffu-

sion coeffi cient, drift mobility, and lifetime. This phenomenon is called ambipolar 

transport. We develop the ambipolar transport equation that describes the behavior 

of excess electrons and holes. Excess carriers dominate the electrical properties of 

a semiconductor material, and the behavior of excess carriers is fundamental to the 

operation of semiconductor devices. ■

6.0 | PREVIEW
In this chapter, we will:

■ Describe the process of generation and recombination of excess carriers in a 

semiconductor.

■ Defi ne the recombination rate and generation rate of excess carriers, and defi ne 

the excess carrier lifetime.

■ Discuss why excess electrons and excess holes do not move independently of 

each other. The movement of excess carriers is called ambipolar transport, and 

the ambipolar transport equation is derived.

C H A P T E R
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 6.1   Carrier Generation and Recombination 193

■ Apply the ambipolar transport equation to various situations to determine the 

time behavior and spatial behavior of excess carriers.

■ Defi ne the quasi-Fermi energy level.

■ Analyze the effect of defects in a semiconductor on the excess carrier lifetime.

■ Analyze the effect of defects at a semiconductor surface on the excess carrier 

concentration.

6.1 | CARRIER GENERATION AND RECOMBINATION
In this chapter, we discuss carrier generation and recombination, which we can de-

fi ne as follows: generation is the process whereby electrons and holes are created, 

and recombination is the process whereby electrons and holes are annihilated.

 Any deviation from thermal equilibrium will tend to change the electron and 

hole concentrations in a semiconductor. A sudden increase in temperature, for ex-

ample, will increase the rate at which electrons and holes are thermally generated 

so that their concentrations will change with time until new equilibrium values are 

reached. An external excitation, such as light (a fl ux of photons), can also generate 

electrons and holes, creating a nonequilibrium condition. To understand the genera-

tion and  recombination processes, we fi rst consider direct band-to-band generation 

and recombination, and then, later, the effect of allowed electronic energy states 

within the bandgap, referred to as traps or recombination centers.

6.1.1  The Semiconductor in Equilibrium

We have determined the thermal-equilibrium concentration of electrons and holes in 

the conduction and valence bands, respectively. In thermal equilibrium, these con-

centrations are independent of time. However, electrons are continually being ther-

mally excited from the valence band into the conduction band by the random nature 

of the thermal process. At the same time, electrons moving randomly through the 

crystal in the conduction band may come in close proximity to holes and “fall” into 

the empty states in the valence band. This recombination process annihilates both 

the electron and hole. Since the net carrier concentrations are independent of time in 

thermal equilibrium, the rate at which electrons and holes are generated and the rate 

at which they recombine must be equal. The generation and recombination processes 

are schematically shown in Figure 6.1.

Figure 6.1 � Electron–hole generation and recombination.
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194 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 Let G
 n 0 and G

 p 0 be the thermal-generation rates of electrons and holes, respec-

tively, given in units of #/cm3-s. For the direct band-to-band generation, the electrons 

and holes are created in pairs, so we must have that

 Gn 0 � Gp 0 (6.1)

Let Rn0 and Rp0 be the recombination rates of electrons and holes, respectively, for 

a semiconductor in thermal equilibrium, again given in units of #/cm3-s. In direct 

band-to-band recombination, electrons and holes recombine in pairs, so that

 Rn 0 � Rp 0 (6.2)

In thermal equilibrium, the concentrations of electrons and holes are independent of 

time; therefore, the generation and recombination rates are equal, so we have

 Gn 0 � Gp 0 � Rn 0 � Rp 0 (6.3)

6.1.2  Excess Carrier Generation and Recombination

Additional notation is introduced in this chapter. Table 6.1 lists some of the more 

 pertinent symbols used throughout the chapter. Other symbols will be defi ned as we 

 advance through the chapter.

 Electrons in the valence band may be excited into the conduction band when, for 

example, high-energy photons are incident on a semiconductor. When this happens, 

not only is an electron created in the conduction band, but a hole is created in the 

 valence band; thus, an electron–hole pair is generated. The additional electrons and 

holes created are called excess electrons and excess holes.
 The excess electrons and holes are generated by an external force at a particu-

lar rate. Let  g n  �   be the generation rate of excess electrons and  g p  �   be that of excess 

holes. These generation rates also have units of #/cm3-s. For the direct band-to-

band generation, the excess electrons and holes are also created in pairs, so we must 

have

  g n  �   �  g p  �   (6.4)

Table 6.1 � Relevant notation used in Chapter 6

Symbol Defi nition

n0, p0  Thermal-equilibrium electron and hole concentrations 
(independent of time and also usually position)

n, p  Total electron and hole concentrations (may be func-
tions of time and/or position)

�n � n � n0  Excess electron and hole concentrations (may 
�p � p � p0  be functions of time and/or position)

 g n  �  ,  g p  �    Excess electron and hole generation rates

 R n  �  ,  R p  �    Excess electron and hole recombination rates

�n0, �p0  Excess minority carrier electron and hole lifetimes
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 When excess electrons and holes are created, the concentration of electrons in 

the conduction band and of holes in the valence band increase above their thermal- 

equilibrium value. We may write

 n � n0 � �n (6.5a)

and

 p � p0 � �p (6.5b)

where n0 and p0 are the thermal-equilibrium concentrations, and �n and �p are the 

excess electron and hole concentrations. Figure 6.2 shows the excess electron–hole 

generation process and the resulting carrier concentrations. The external force has 

perturbed the equilibrium condition so that the semiconductor is no longer in thermal 

equilibrium. We may note from Equations (6.5a) and (6.5b) that, in a nonequilibrium 

 condition, np � n0p0 �  n i  
2 .

 A steady-state generation of excess electrons and holes will not cause a continual 

buildup of the carrier concentrations. As in the case of thermal equilibrium, an elec-

tron in the conduction band may “fall down” into the valence band, leading to the 

process of excess electron–hole recombination. Figure 6.3 shows this process. The 
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Figure 6.2 � Creation of excess electron and hole densities by 

photons.
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Figure 6.3 � Recombination of excess carriers 

reestablishing thermal equilibrium.
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196 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 recombination rate for excess electrons is denoted by  R n  �   and for excess holes by  R p  �  . 
Both parameters have units of #/cm3-s. The excess electrons and holes recombine in 

pairs, so the recombination rates must be equal. We can then write

  R n  �   �  R p  �    (6.6)

 In the direct band-to-band recombination that we are considering, the recombi-

nation occurs spontaneously; thus, the probability of an electron and hole recombin-

ing is constant with time. The rate at which electrons recombine must be proportional 

to the electron concentration and must also be proportional to the hole concentration. 

If there are no electrons or holes, there can be no recombination.

 The net rate of change in the electron concentration can be written as

   
dn(t)

 _ 
dt

   � �r  �  n i  
2  � n(t)p(t) �   (6.7)

where

 n(t) � n0 � �n(t) (6.8a)

and

 p(t) � p0 � �p(t) (6.8b)

The fi rst term, �r 
 n i  

2 , in Equation (6.7) is the thermal-equilibrium generation rate. 

Since excess electrons and holes are created and recombine in pairs, we have that 

�n(t) � �p(t). (Excess electron and hole concentrations are equal so we can simply 

use the phrase excess carriers to mean either.) The thermal-equilibrium parameters, 

n0 and p0, are independent of time; therefore, Equation (6.7) becomes

   
d(�n(t))

 __ 
dt

   � �r  �  n i  
2  � (n0 � �n(t))(p0 � �p(t)) � 

 � ��r �n(t)[(n0 � p0) � �n(t)] (6.9)

 Equation (6.9) can easily be solved if we impose the condition of low-level injec-
tion. Low-level injection puts limits on the magnitude of the excess carrier concen-

tration compared with the thermal-equilibrium carrier concentrations. In an extrinsic 

n-type material, we generally have n0 � p0 and, in an extrinsic p-type material, we gen-

erally have p0 � n0. Low-level injection means that the excess  carrier concentration 

is much less than the thermal-equilibrium majority carrier concentration. Conversely, 

high-level injection occurs when the excess carrier concentration becomes comparable 

to or greater than the thermal-equilibrium majority carrier concentrations.

 If we consider a p-type material (p0 � n0) under low-level injection (�n(t) � p0), 

then Equation (6.9) becomes

   
d(�n(t))

 __ 
dt

   � ��r p0�n(t) (6.10)

The solution to the equation is an exponential decay from the initial excess concen-

tration, or

 �n(t) � �n(0) e ��r  p0t  � �n(0) e �t/�n 0  (6.11)

nea29583_ch06_192-240.indd   196nea29583_ch06_192-240.indd   196 12/11/10   11:17 AM12/11/10   11:17 AM



 6.1   Carrier Generation and Recombination 197

where �n0 � (�rp0)
�1 and is a constant for the low-level injection. Equation (6.11) 

describes the decay of excess minority carrier electrons so that �n0 is often referred to 

as the excess minority carrier lifetime.1

 The recombination rate—which is defi ned as a positive quantity—of excess mi-

nority carrier electrons can be written, using Equation (6.10), as

  R n  �   �   
�d(�n(t))

 __ 
dt

   � ��r p0�n(t) �   
�n(t)

 _ �n0

   (6.12)

For the direct band-to-band recombination, the excess majority carrier holes recom-

bine at the same rate, so that for the p-type material

  R n  �   �  R p  �   �   
�n(t)

 _ �n0

   (6.13)

 In the case of an n-type material (n0 � p0) under low-level injection (�n(t) � n0), 

the decay of minority carrier holes occurs with a time constant �
 p0 � (�r n0)

�1, where �
 p0 

is also referred to as the excess minority carrier lifetime. The recombination rate of the 

majority carrier electrons will be the same as that of the minority carrier holes, so we have

  R n  �   �  R p  �   �   
�n(t)

 _ �
 p0

   (6.14)

 The generation rates of excess carriers are not functions of electron or hole con-

centrations. In general, the generation and recombination rates may be functions of 

the space coordinates and time.

1In Chapter 5 we defi ned � as a mean time between collisions. We defi ne � here as the mean time before 

a recombination event occurs. The two parameters are not related.

   EXAMPLE 6.1Objective: Determine the behavior of excess carriers as a function of time.

 Assume that excess carriers have been generated uniformly in a semiconductor to a con-

centration of �n(0) � 1015 cm�3. The forcing function generating the excess carriers turns off 

at time t � 0. Assuming the excess carrier lifetime is �n0 � 10�6 s, determine �n(t) for t 	 0.

■ Solution
From Equation (6.11), we have

 �n(t) � �n(0)e�t/�n0 � 1015 e�t/10�6
 cm�3 

For example, at: t � 0,  �n � 1015 cm�3 

 t � 1�s,  �n � 1015  e �1/1  � 3.68 � 1014 cm�3 

 t � 4�s,  �n � 1015  e �4/1  � 1.83 � 1013 cm�3 

 t � 10�s,  �n � 1015  e �10/1  � 4.54 � 1010 cm�3 

■ Comment
These results simply demonstrate the exponential decay of excess carriers with time after an 

excitation source is removed.
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198 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

6.2 | CHARACTERISTICS OF EXCESS CARRIERS
The generation and recombination rates of excess carriers are important parameters, 

but how the excess carriers behave with time and in space in the presence of electric 

fi elds and density gradients is of equal importance. As mentioned at the beginning of 

this chapter, the excess electrons and holes do not move independently of each other, 

but they diffuse and drift with the same effective diffusion coeffi cient and with the 

same effective mobility. This phenomenon is called ambipolar transport. The ques-

tion that must be answered is what is the effective diffusion coeffi cient and what is 

the effective mobility that characterizes the behavior of these excess carriers? To 

answer these questions, we must develop the continuity equations for the carriers and 

then develop the ambipolar transport equations.

 The fi nal results show that, for an extrinsic semiconductor under low injection (this 

concept will be defi ned in the analysis), the effective diffusion coeffi cient and mobility 

parameters are those of the minority carrier. This result is thoroughly developed in the 

following derivations. As will be seen in the following chapters, the behavior of the 

excess carriers has a profound impact on the characteristics of semiconductor devices.

6.2.1 Continuity Equations

The continuity equations for electrons and holes are developed in this section. 

 Figure 6.4 shows a differential volume element in which a one-dimensional hole-

particle fl ux is entering the differential element at x and is leaving the element at 

x � dx. The parameter  F px  
�

   is the hole-particle fl ux, or fl ow, and has units of number of 

holes/cm2-s. For the x component of the particle current density shown, we may write

  F px  
�

   (x � dx) �  F px  
�

  (x) �   

 F px  

�
   
 _ 


x   � dx (6.15)

■ EXERCISE PROBLEM
Ex 6.1  Using the parameters in Example 6.1, calculate the recombination rate of the excess 

carriers for (a) t � 0, (b) t � 1�s, (c) t � 4�s, and (d ) t � 10�s.

 

[Ans. (a) 10
 21

 cm
�3

s
�1

; (b) 3.68 � 10
 20

 cm
�3

s
�1

; (c) 1.83 � 10
 19

 cm
�3

s
�1

; (d) 4.54 � 

10
 16

 cm
�3

s
�1

]

x

F�
px(x) F�

px(x � dx)

dy

dz

x � dx

Figure 6.4 � Differential volume showing 

x component of the hole-particle fl ux.
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 6.2   Characteristics of Excess Carriers 199

This equation is a Taylor expansion of  F px  
�

   (x � dx), where the differential length 

dx is small, so that only the fi rst two terms in the expansion are signifi cant. The net 

increase in the number of holes per unit time within the differential volume element 

due to the x-component of hole fl ux is given by

   

p

 _ 

t   dx dy dz � [ F px  

�
   (x) �  F px  

�
   (x � dx)] dy dz � �   


 F px  
�

   
 _ 


x   dx dy dz (6.16)

 If  F px  
�

   (x) 	  F px  
�

   (x � dx), for example, there will be a net increase in the num-

ber of holes in the differential volume element with time. If we generalize to a 

three- dimensional hole fl ux, then the right side of Equation (6.16) may be written 

as �� �  F p  
�  dx dy dz, where � �  F p  

�  is the divergence of the fl ux vector. We will 

limit ourselves to a one-dimensional analysis.

 The generation rate and recombination rate of holes will also affect the hole 

concentration in the differential volume. The net increase in the number of holes per 

unit time in the differential volume element is then given by

   

p

 _ 

t   dx dy dz � �   


 F p  
�  
 _ 


x   dx dy dz � gp dx dy dz �   
p
 _ �pt
   dx dy dz (6.17)

where p is the density of holes. The fi rst term on the right side of Equation (6.17) is 

the increase in the number of holes per unit time due to the hole fl ux, the second term 

is the increase in the number of holes per unit time due to the generation of holes, and 

the last term is the decrease in the number of holes per unit time due to the recombi-

nation of holes. The recombination rate for holes is given by p/�
 pt where �

 pt includes 

the thermal-equilibrium carrier lifetime and the excess carrier lifetime.

 If we divide both sides of Equation (6.17) by the differential volume dx dy dz, 

the net increase in the hole concentration per unit time is

    

p

 _ 

t   � �  


 F p  
� 
 _ 


x   � gp �   
p
 _ �

 pt
   (6.18)

Equation (6.18) is known as the continuity equation for holes.

 Similarly, the one-dimensional continuity equation for electrons is given by

   
n _ 

t   � �   


F�
n  __ 


x   � gn �   n _ �nt
   (6.19)

where F�
n is the electron-particle fl ow, or fl ux, also given in units of number of 

 electrons/cm2-s.

6.2.2 Time-Dependent Diffusion Equations

In Chapter 5, we derived the hole and electron current densities, which are given, in 

one dimension, by

 Jp � e�p pE � eDp   

p

 _ 

x    (6.20)

and

 Jn � e�n nE � eDn   

n _ 

x    (6.21)
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200 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

If we divide the hole current density by (�e) and the electron current density by 

(�e), we obtain each particle fl ux. These equations become

   
Jp 
 _ 

(�e)
   �  F p  

�  � �p pE � Dp   

p

 _ 

x    (6.22)

and

   
Jn  _ 

(�e)
   � F �

n � ��n nE � Dn   

n _ 

x    (6.23)

 Taking the divergence of Equations (6.22) and (6.23), and substituting back into 

the continuity equations of (6.18) and (6.19), we obtain

   

p

 _ 

t   � ��p   


(pE)
 _ 


x   � Dp   

2p

 _ 

x2

   � gp �   
p
 _ � pt
   (6.24)

and

   
n _ 

t   � ��n   


(nE)
 _ 


x   � Dn   

2n _ 

x2

   � gn �   n _ �nt
   (6.25)

Keeping in mind that we are limiting ourselves to a one-dimensional analysis, we can 

expand the derivative of the product as

   

(pE)

 _ 

x   � E   


p
 _ 


x   � p   
E _ 

x    (6.26)

In a more generalized three-dimensional analysis, Equation (6.26) would have to be 

 replaced by a vector identity. Equations (6.24) and (6.25) can be written in the form

 Dp   

2p

 _ 

x2

   � �p � E   

p

 _ 

x   � p   
E _ 


x   �  � gp �   
p
 _ �pt
   �   


p
 _ 


t    (6.27)

and

 Dn   

2n _ 

x2

   � �n  � E   
n _ 

x   � n   
E  _ 


x 
   �  � gn �   n _ �nt

   �   
n _ 

t    (6.28)

 Equations (6.27) and (6.28) are the time-dependent diffusion equations for holes 

and electrons, respectively. Since both the hole concentration p and the electron con-

centration n contain the excess concentrations, Equations (6.27) and (6.28) describe 

the space and time behavior of the excess carriers.

 The hole and electron concentrations are functions of both the thermal equilib-

rium and the excess values, which are given in Equations (6.5a) and (6.5b). The thermal-

equilibrium concentrations, n0 and p0, are not functions of time. For the special case 

of a homogeneous semiconductor, n0 and p0 are also independent of the space coor-

dinates. Equations (6.27) and (6.28) may then be written in the form

 Dp   

2(�p)

 __ 

x2

   � �p  � E   

(�p)

 _ 

x   � p   
E _ 


x   �  � gp �   
p
 _ �pt
   �   


(�p)
 _ 


t   (6.29)

and

 Dn   

2(�n)

 __ 

x2

   � �n  � E   

(�n)

 _ 

x   � n   
E  _ 


x   �  � gn �   n _ �nt
   �   


(�n)
 _ 


t    (6.30)
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 6.3   Ambipolar Transport 201

Note that Equations (6.29) and (6.30) contain terms involving the total concentra-

tions, p and n, and terms involving only the excess concentrations, �p and �n.

6.3 | AMBIPOLAR TRANSPORT
Originally, we assumed that the electric fi eld in the current Equations (6.20) and 

(6.21) was an applied electric fi eld. This electric fi eld term appears in the time- 

dependent diffusion equations given by Equations (6.29) and (6.30). If a pulse of 

 excess electrons and a pulse of excess holes are created at a particular point in a 

semiconductor with an applied electric fi eld, the excess holes and electrons will tend 

to drift in opposite directions. However, because the electrons and holes are charged 

particles, any separation will induce an internal electric fi eld between the two sets 

of particles. This internal electric fi eld will create a force attracting the electrons and 

holes back toward each other. This effect is shown in Figure 6.5. The electric fi eld 

term in Equations (6.29) and (6.30) is then composed of the  externally applied fi eld 

plus the induced internal fi eld. This E-fi eld may be  written as

 E � Eapp � Eint (6.31)

where Eapp is the applied electric fi eld and Eint is the induced internal electric fi eld.

 Since the internal E-fi eld creates a force attracting the electrons and holes, 

this E-fi eld will hold the pulses of excess electrons and excess holes together. The 

negatively charged electrons and positively charged holes then will drift or diffuse 

 together with a single effective mobility or diffusion coeffi cient. This phenomenon is 

called ambipolar diffusion or ambipolar transport.

6.3.1  Derivation of the Ambipolar Transport Equation

The time-dependent diffusion Equations (6.29) and (6.30) describe the behavior of 

the excess carriers. However, a third equation is required to relate the excess electron 

and hole concentrations to the internal electric fi eld. This relation is Poisson’s equa-

tion, which may be written as

 � � Eint �   
e(�p � �n)

 __ �s 
   �   


Eint
 

_
 
x   (6.32)

where �s is the permittivity of the semiconductor material.

�

�

�

�

�

�
Eint

x

Eapp

�p�n

Figure 6.5 � The creation of an internal electric 

fi eld as excess electrons and holes tend to separate.
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202 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 To make the solution of Equations (6.29), (6.30), and (6.32) more tractable, we 

need to make some approximations. We can show that only a relatively small internal 

electric fi eld is suffi cient to keep the excess electrons and holes drifting and diffusing 

together. Hence, we can assume that

 �Eint���Eapp� (6.33)

 However, the � � Eint term may not be negligible. We will impose the condition 

of charge neutrality: We will assume that the excess electron concentration is just 

balanced by an equal excess hole concentration at any point in space and time. If this 

 assumption were exactly true, there would be no induced internal electric fi eld to 

keep the two sets of particles together. However, only a very small difference in the 

excess electron concentration and excess hole concentration will set up an internal 

E-fi eld suffi cient to keep the particles diffusing and drifting together. We can show 

that a 1 percent difference in �p and �n, for example, will result in non-negligible 

values of the � � E � � � Eint term in Equations (6.29) and (6.30).

 We can combine Equations (6.29) and (6.30) to eliminate the � � E term. Con-

sidering Equations (6.1) and (6.4), we can defi ne

 gn � gp � g (6.34)

and considering Equations (6.2) and (6.6), we can defi ne

 Rn �   n _ �nt
   � Rp �   

p
 _ �pt
   � R (6.35)

The lifetimes in Equation (6.35) include the thermal-equilibrium carrier lifetimes 

and the excess carrier lifetimes. If we impose the charge neutrality condition, then 

�n � �p. We will denote both the excess electron and excess hole concentrations in 

Equations (6.29) and (6.30) by �n. We may then rewrite Equations (6.29) and (6.30) as

 Dp   

2(�n)

 __ 

x2

   � �p � E   

(�n)

 _ 

x   � p   
E _ 


x   �  � g � R �   

(�n)

 _ 

t    (6.36)

and

 Dn   

2(�n)

 __ 

x2

   � �n � E   

(�n)

 _ 

x   � n   
E _ 


x   �  � g � R �   

(�n)

 _ 

t    (6.37)

 If we multiply Equation (6.36) by �n n, multiply Equation (6.37) by �p p, and 

add the two equations, the � � E � 
E/
x term will be eliminated. The result of this 

addition gives

 (�n n Dp � �p pDn)   

2(�n)

 __ 

x2

   � (�n �p)(p � n) E   

(�n)

 _ 

x  

 � (�n n � �p p)(g � R) � (�n n � �p p)  

(�n)

 _ 

t    (6.38)

If we divide Equation (6.38) by the term (�nn � �p p), this equation becomes

 D�   

2(�n)

 __ 

x2

   � ��E   

(�n)

 _ 

x   � g � R �   


(�n)
 _ 


t   (6.39)
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where

 D� �   
 �n  nDp � �p pDn 

  ___  
�nn � �p p

    (6.40)

and

 �� �   
�n �p (p � n)

 ___ 
�nn � �p p

    (6.41)

 Equation (6.39) is called the ambipolar transport equation and describes the 

behavior of the excess electrons and holes in time and space. The parameter D� is 

called the ambipolar diffusion coeffi cient and �� is called the ambipolar mobility.
 The Einstein relation relates the mobility and diffusion coeffi cient by

   
�n 

 _ 
Dn

   �   
�p 

 _ 
Dp

   �   e _ 
k T

    (6.42)

Using these relations, the ambipolar diffusion coeffi cient may be written in the form

 D� �   
Dn Dp (n � p) 

  ___ 
Dnn � Dpp

    (6.43)

The ambipolar diffusion coeffi cient, D�, and the ambipolar mobility, ��, are func-

tions of the electron and hole concentrations, n and p, respectively. Since both n 

and p contain the excess carrier concentration �n, the coeffi cient in the ambipolar 

transport equation are not constants. The ambipolar transport equation, given by 

Equation (6.39), then, is a nonlinear differential equation.

6.3.2 Limits of Extrinsic Doping and Low Injection

The ambipolar transport equation may be simplifi ed and linearized by considering 

an extrinsic semiconductor and by considering low-level injection. The ambipolar 

diffusion coeffi cient, from Equation (6.43), may be written as

 D� �   
DnDp[(n0 � �n) � (p0 � �n)]

   _____   
Dn (n0 � �n) � Dp (p0 � �n)

    (6.44)

where n0 and p0 are the thermal-equilibrium electron and hole concentrations, 

 respectively, and �n is the excess carrier concentration. If we consider a p-type semi-

conductor, we can assume that p0 � n0. The condition of low-level injection, or just 

low injection, means that the excess carrier concentration is much smaller than the 

thermal-equilibrium majority carrier concentration. For the p-type semiconductor, 

then, low injection implies that �n � p0. Assuming that n0 � p0 and �n � p0, and 

assuming that Dn and Dp are on the same order of magnitude, the ambipolar diffusion 

coeffi cient from Equation (6.44) reduces to

 D� � Dn (6.45)
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204 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

If we apply the conditions of an extrinsic p-type semiconductor and low injection to 

the ambipolar mobility, Equation (6.41) reduces to

 �� � �n (6.46)

 It is important to note that for an extrinsic p-type semiconductor under low  injection, 
the ambipolar diffusion coeffi cient and the ambipolar mobility coeffi cient reduce to the 

minority carrier electron parameter values, which are constants. The ambipolar trans-

port equation reduces to a linear differential equation with constant coeffi cients.

 If we now consider an extrinsic n-type semiconductor under low injection, we 

may assume that p0 � n0 and �n � n0. The ambipolar diffusion coeffi cient from 

Equation (6.43) reduces to

 D� � Dp (6.47)

and the ambipolar mobility from Equation (6.41) reduces to

 �� � ��p (6.48)

The ambipolar parameters again reduce to the minority-carrier values, which are 

constants. Note that, for the n-type semiconductor, the ambipolar mobility is a nega-

tive value. The ambipolar mobility term is associated with carrier drift; therefore, the 

sign of the drift term depends on the charge of the particle. The equivalent ambipolar 

particle is negatively charged, as one can see by comparing Equations (6.30) and 

(6.39). If the ambipolar mobility reduces to that of a positively charged hole, a nega-

tive sign is introduced as shown in Equation (6.48).

 The remaining terms we need to consider in the ambipolar transport equa-

tion are the generation rate and the recombination rate. Recall that the electron and 

hole  recombination rates are equal and are given by Equation (6.35) as Rn � Rp � 

n��nt � p��pt � R, where �nt and �pt are the mean electron and hole lifetimes, respec-

tively. If we consider the inverse lifetime functions, then 1/�nt is the probability per 

unit time that an electron will encounter a hole and recombine. Likewise, 1/�pt is the 

probability per unit time that a hole will encounter an electron and recombine. If 

we again consider an extrinsic p-type semiconductor under low injection, the con-

centration of majority carrier holes will be essentially constant, even when excess 

carriers are present. Then, the probability per unit time of a minority carrier electron 

 encountering a majority carrier hole will be essentially constant. Hence, the minor-

ity carrier electron lifetime, �nt � �n, will remain a constant for the extrinsic p-type 

semiconductor under low injection.

 Similarly, if we consider an extrinsic n-type semiconductor under low injec-

tion, the minority carrier hole lifetime, �pt � �p, will remain constant. Even under 

the condition of low injection, the minority carrier hole concentration may increase 

by several orders of magnitude. The probability per unit time of a majority carrier 

electron encountering a hole may change drastically. The majority carrier lifetime, 

then, may change substantially when excess carriers are present.

 Consider, again, the generation and recombination terms in the ambipolar trans-

port equation. For electrons we may write

 g � R � gn � Rn � (Gn0 �  g n  �  ) � (Rn0 �  R n  �  ) (6.49)
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 6.3   Ambipolar Transport 205

where Gn0 and  g n  �   are the thermal-equilibrium electron and excess electron generation 

rates, respectively. The terms Rn0 and  R n  �   are the thermal-equilibrium electron and 

excess electron recombination rates, respectively. For thermal equilibrium, we have 

that

 Gn0 � Rn0 (6.50)

so Equation (6.49) reduces to

 g � R �  g n  �   �  R n  �   �  g n  �   �   �n _ �n
    (6.51)

where �n is the excess minority carrier electron lifetime.

 For the case of holes, we may write

 g � R � gp � Rp � (Gp0 �  g p  �  ) � (Rp0 �  R p  �  ) (6.52)

where Gp0 and  g p  �   are the thermal-equilibrium hole and excess hole generation rates, 

respectively. The terms Rp0 and  R p  �   are the thermal-equilibrium hole and excess hole 

recombination rates, respectively. Again, for thermal equilibrium, we have that

 Gp0 � Rp0 (6.53)

so that Equation (6.52) reduces to

 g � R �  g p  �   �  R p  �   �  g p  �   �   
�p

 _ �p
   (6.54)

where �p is the excess minority carrier hole lifetime.

 The generation rate for excess electrons must equal the generation rate for  

excess holes. We may then defi ne a generation rate for excess carriers as g�, so that  

g n  �   �  g p  �   � g�. We also determined that the minority carrier lifetime is essentially a 

constant for low injection. Then, the term g � R in the ambipolar transport equation 

may be written in terms of the minority carrier parameters.

 The ambipolar transport equation, given by Equation (6.39), for a p-type semi-

conductor under low injection then becomes

 Dn   

2(�n)

 __ 

x2

   � �nE   

(�n)

 _ 

x   � g� �   �n _ �n0

   �   

(�n)

 _ 

t    (6.55)

The parameter �n is the excess minority carrier electron concentration, the parameter 

�n0 is the minority carrier lifetime under low injection, and the other parameters are 

the usual minority carrier electron parameters.

 Similarly, for an extrinsic n-type semiconductor under low injection, the ambi-

polar transport equation becomes

 Dp   

2(�p)

 __ 

x2

   � �p E   

(�p)

 _ 

x   � g� �   

�p
 _ �p0

   �   

(�p)

 _ 

t    (6.56)

The parameter �p is the excess minority carrier hole concentration, the parameter �p0 

is the minority carrier hole lifetime under low injection, and the other parameters are 

the usual minority carrier hole parameters.
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206 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 It is extremely important to note that the transport and recombination parameters 

in Equations (6.55) and (6.56) are those of the minority carrier. Equations (6.55) and 

(6.56) describe the drift, diffusion, and recombination of excess minority carriers as 

a function of spatial coordinates and as a function of time. Recall that we had im-

posed the condition of charge neutrality; the excess minority carrier concentration is 

equal to the excess majority carrier concentration. The excess majority carriers, then, 

diffuse and drift with the excess minority carriers; thus, the behavior of the excess 

majority carrier is determined by the minority carrier parameters. This ambipolar 

phenomenon is extremely important in semiconductor physics, and is the basis for 

describing the characteristics and behavior of semiconductor devices.

6.3.3 Applications of the Ambipolar Transport Equation

We solve the ambipolar transport equation for several problems. These examples 

help illustrate the behavior of excess carriers in a semiconductor material, and the 

results are used later in the discussion of the pn junction and the other semiconductor 

devices.

 The following examples use several common simplifi cations in the solution of 

the ambipolar transport equation. Table 6.2 summarizes these simplifi cations and 

their effects.

Table 6.2 | Common ambipolar transport equation simplifi cations

Specifi cation Effect

Steady state   
�(�n)

 _ 
�t    � 0 ,    

�(�p)
 _ 

�t    � 0

Uniform distribution of excess carriers Dn   
�2 (�n)

 
__

 
�x2   � 0 ,   Dp

  
�2 (�n)

 
__

 
�x2   � 0

(uniform generation rate)

Zero electric fi eld   E   
�(�n)

 _ 
�x    � 0 ,   E   

�(�p)
 _ 

�x   � 0

No excess carrier generation g� � 0

No excess carrier recombination    �n _ �n0

   � 0 ,    
�p

 _ �p0

   � 0 
(infi nite lifetime)

EXAMPLE 6.2 Objective: Determine the time behavior of excess carriers as a semiconductor returns to 

thermal equilibrium.

 Consider an infi nitely large, homogeneous n-type semiconductor with zero applied elec-

tric fi eld. Assume that at time t � 0, a uniform concentration of excess carriers exists in the 

crystal, but assume that g� � 0 for t � 0. If we assume that the concentration of excess 

 carriers is much smaller than the thermal-equilibrium electron concentration, then the low-

injection condition applies. Calculate the excess carrier concentration as a function of time 

for t � 0.
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■ Solution
For the n-type semiconductor, we need to consider the ambipolar transport equation for the 

 minority carrier holes, which is given by Equation (6.56). The equation is

 Dp   

2(�p)

 __ 

x2

   � �p E   

(�p)

 _ 

x   � g� �   

�p
 _ �p0

   �   

(�p)

 _ 

t   

We are assuming a uniform concentration of excess holes so that 
2 (�p)�
x2 � 
(�p)�
x � 0. 
For t 	 0, we are also assuming that g� � 0. Equation (6.56) reduces to

   
d(�p)

 _ 
dt

   � �  
�p

 _ �p0

   (6.57)

Since there is no spatial variation, the total time derivative may be used. At low injection, the 

minority carrier hole lifetime, �p0, is a constant. The left-side of Equation (6.57) is the time 

rate of change of �p and the right-side of the equation is the recombination rate. The solution 

to Equation (6.57) is

 �p(t) � �p(0) e �t��p 0  (6.58)

where �p(0) is the uniform concentration of excess carriers that exists at time t � 0. The con-

centration of excess holes decays exponentially with time, with a time constant equal to the 

minority carrier hole lifetime.

 From the charge-neutrality condition, we have that �n � �p, so the excess electron con-

centration is given by

 �n(t) � �p(t) � �p(0) e �t��p 0  (6.59)

■ Comment
The excess electrons and holes recombine at the rate determined by the excess minority carrier 

hole lifetime in the n-type semiconductor.

■ EXERCISE PROBLEM
Ex 6.2  Consider n-type GaAs doped at Nd � 1016 cm�3. Assume that 1014 electron–hole 

pairs have been uniformly created per cm3 at t � 0, and assume the minority carrier 

hole lifetime is �p0 � 50 ns. Determine the time at which the minority carrier hole 

concentration reaches (a) 1/e of its initial value and (b) 10% of its initial value.

 

[Ans. (a) t � 50 ns; (b) t � 115 ns]

   EXAMPLE 6.3Objective: Determine the time dependence of excess carriers in reaching a steady-state 

condition.

 Again consider an infi nitely large, homogeneous n-type semiconductor with a zero ap-

plied electric fi eld. Assume that, for t  0, the semiconductor is in thermal equilibrium and 

that, for t � 0, a uniform generation rate exists in the crystal. Calculate the excess carrier 

concentration as a function of time assuming the condition of low injection.
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208 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

■ Solution
The condition of a uniform generation rate and a homogeneous semiconductor again implies 

that 
2 (�p)�
x2 � 
(�p)�
x � 0 in Equation (6.56). The equation, for this case, reduces to

 g� �   
�p

 _ �p0

   �   
d(�p)

 _ 
dt

    (6.60)

The solution to this differential equation is

 �p(t) � g��p0(1 � e�t/�p0)  (6.61)

■ Comment
We may note that, as t → �, a steady-state excess hole and electron concentration of g��p 0 is 

reached. Equation (6.60) contains both a generation rate term and a recombination rate term 

for the excess carriers.

■ EXERCISE PROBLEM
Ex 6.3  In Example 6.3, consider n-type silicon at T � 300 K doped to Nd � 5 � 1016 cm�3. 

Assume that g� � 5 � 1021 cm�3 s�1 and let � p0 � 10�7 s. (a) Determine �p(t) at 

(i) t � 0, (ii) t � 10�7 s, (iii) t � 5 � 10�7 s, and (iv) t → �. (b) Considering the 

 results of part (a), is the low-injection condition maintained? 

 

[Ans. (a) (i) 0; (ii) 3.16 � 10
14

 cm
�3

; (iii) 4.966 � 10
14

 cm
�3

; (iv) 5 � 10
14

 cm
�3

; 

(b) �p(max) � 0.01Nd, yes]

 The excess minority carrier hole concentration increases with time with the 

same time constant �p0, which is the excess minority carrier lifetime. The excess car-

rier concentration reaches a steady-state value as time goes to infi nity, even though a 

steady-state generation of excess electrons and holes exists. This steady-state effect 

can be seen from Equation (6.60) by setting d(�p)/dt � 0. The remaining terms sim-

ply state that, in steady state, the generation rate is equal to the recombination rate.

  TEST YOUR UNDERSTANDING

TYU 6.1 Silicon at T�300 K has been doped with boron atoms to a concentration of 

Na � 5 � 1016 cm�3. Excess carriers have been generated in the uniformly doped 

material to a concentration of 1015 cm�3. The minority carrier lifetime is 5 �s. 
(a) What carrier type is the minority carrier? (b) Assuming g� � E � 0 for t 	 0, 
 determine the minority carrier concentration for t 	 0. 

[Ans. (a) electrons; (b) 10
15

 e
�t�5�10�6

 cm
�3

]

TYU 6.2 Consider silicon with the same parameters as given in TYU 6.1. The material is 

in  thermal equilibrium for t  0. At t � 0, a source generating excess carriers is 

turned on, producing a generation rate of g� � 1020 cm�3-s�1. (a) What carrier 

type is the minority carrier? (b) Determine the minority carrier concentration for 

t 	 0. (c) What is the minority carrier concentration as t → �?

 

[Ans. (a) electrons; (b) 5 � 10
14

 [1 � e
�t�5�10�6

] cm
�3

 (c) 5 � 10
14 

cm
�3

]
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 6.3   Ambipolar Transport 209

   EXAMPLE 6.4Objective: Determine the steady-state spatial dependence of the excess carrier concentration.

 Consider a p-type semiconductor that is homogeneous and infi nite in extent. Assume a 

zero applied electric fi eld. For a one-dimensional crystal, assume that excess carriers are being 

generated at x � 0 only, as indicated in Figure 6.6. The excess carriers being generated at 

x � 0 will begin diffusing in both the �x and �x directions. Calculate the steady-state excess 

carrier concentration as a function of x.

■ Solution
The ambipolar transport equation for excess minority carrier electrons is given by Equation 

(6.55), and is written as

 Dn   

2(�n)

 __ 

x2

   � �n E   

(�n)

 _ 

x   � g� �   �n _ �n0

   �   

(�n)

 _ 

t   

From our assumptions, we have E � 0, g� � 0 for x � 0, and 
(�n)�
t � 0 for steady state. 

Assuming a one-dimensional crystal, Equation (6.55) reduces to

 Dn   
d2(�n)

 __ 
dx2

   �   �n _ �n0

   � 0 (6.62)

Dividing by the diffusion coeffi cient, Equation (6.62) may be written as

    
d2(�n)

 __ 
dx2

   �   �n __ Dn �n0

   �   
d2 (�n)

 __ 
dx2

   �   �n _ 
 L n  

2
 
   � 0 (6.63)

where we have defi ned  L n  
2  � Dn�n0. The parameter Ln has the unit of length and is called the 

minority carrier electron diffusion length. The general solution to Equation (6.63) is

 �n(x) � Ae�x�Ln � Bex�Ln (6.64)

As the minority carrier electrons diffuse away from x � 0, they will recombine with the ma-

jority carrier holes. The minority carrier electron concentration will then decay toward zero at 

both x � �� and x � ��. These boundary conditions mean that B � 0 for x 	 0 and A � 0 

for x  0. The solution to Equation (6.63) may then be written as

 �n(x) � �n(0)e�x�Ln  x � 0  (6.65a)

g�

x � 0 x

Figure 6.6 | Steady-state generation 

rate at x � 0.
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210 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 As before, we will assume charge neutrality; thus, the steady-state excess major-

ity carrier hole concentration also decays exponentially with distance with the same 

characteristic minority carrier electron diffusion length Ln. Figure 6.7 is a plot of the 

total electron and hole concentrations as a function of distance. We are assuming low 

injection, that is, �n(0) � p0 in the p-type semiconductor. The total concentration of 

and

 �n(x) � �n(0)e�x�Ln  x � 0  (6.65b)

where �n(0) is the value of the excess electron concentration at x � 0. The steady-state  excess 

electron concentration decays exponentially with distance away from the source at x � 0.

■ Comment
We may note that the steady-state excess concentration decays to 1/e of its value at x � Ln.

■ EXERCISE PROBLEM
Ex 6.4  In Example 6.4, consider p-type silicon at T � 300 K doped to Na � 5 � 1016 cm�3. 

Assume that �n0 � 5 � 10�7 s, Dn � 25 cm2 /s, and �n(0) � 1015 cm�3. (a) Calculate 

the value of diffusion length Ln. (b) Determine �n at (i) x � 0, (ii) x � �30 �m, 

(iii) x � �50 �m, (iv) x � �85 �m, and (v) x � �120 �m.

[Ans. (a) Ln � 35.36 �m; (b) (i) 10
15

 cm
�3

; (ii) 4.28 � 10
14

 cm
�3

, (iii) 2.43 � 10
14

 cm
�3

, 

(iv) 9.04 � 10
13

 cm
�3

, (v) 3.36 � 10
13

 cm
�3

]

p0

n0

p0 � �n(0)

n0 � �n(0)

Carrier

concentration

(log scale)

xx � 0

Figure 6.7 | Steady-state electron and hole concentrations for the case 

when excess electrons and holes are generated at x � 0.
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 6.3   Ambipolar Transport 211

majority carrier holes barely changes. However, we may have �n(0) � n0 and still 

satisfy the low-injection condition. The minority carrier concentration may change 

by many orders of magnitude.

TYU 6.3 Excess electrons and holes are generated at the end of a silicon bar (x � 0). The 

 silicon is doped with phosphorus atoms to a concentration of Nd � 1017 cm�3. 
The minority carrier lifetime is 1 �s, the electron diffusion coeffi cient is 

Dn � 25 cm2/s, and the hole diffusion coeffi cient is Dp � 10 cm2/s. If �n(0) � 

�p(0) �1015 cm�3, determine the steady-state electron and hole concentrations in 

the silicon for x 	 0. 

[Ans. �n(x) � �p(x) 10
15

 e 
�x�3.16�10

�3

  cm
�3

, where x is in cm]

TYU 6.4 Using the parameters given in TYU 6.3, calculate the electron and hole diffusion 

current densities at x � 10 �m. 

[Ans. Jp � �0.369 A/cm
2
, Jn � �0.369 A/cm

2
]

TEST YOUR UNDERSTANDING

 The three previous examples, which applied the ambipolar transport equation 

to specifi c situations, assumed either a homogeneous or a steady-state condition; 

only the time variation or the spatial variation was considered. Now consider an 

example in which both the time and spatial dependence are considered in the same 

problem.

   EXAMPLE 6.5Objective: Determine both the time dependence and spatial dependence of the excess 

carrier concentration.

 Assume that a fi nite number of electron–hole pairs is generated instantaneously at time 

t � 0 and at x � 0, but assume g� � 0 for t 	 0. Assume we have an n-type semiconductor 

with a constant applied electric fi eld equal to E0, which is applied in the �x direction. Calcu-

late the excess carrier concentration as a function of x and t.

■ Solution
The one-dimensional ambipolar transport equation for the minority carrier holes can be writ-

ten from Equation (6.56) as

 Dp   

2(�p)

 __ 

x2

   � �p E0   

(�p)

 _ 

x   �   

�p
 _ �p 0
   �   


(�p)
 _ 


t    (6.66)

The solution to this partial differential equation is of the form

 �p(x, t) � p�(x, t)e �t��p 0 (6.67)

By substituting Equation (6.67) into Equation (6.66), we are left with the partial differential 

equation

 Dp   

2 p�(x, t)

 __ 

x2

   � �p E0   

p�(x, t)

 __ 

x   �   


p�(x, t)
 __ 


t    (6.68)
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212 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 Equation (6.70) can be plotted as a function of distance x, for various times. 

 Figure 6.8 shows such a plot for the case when the applied electric fi eld is zero. For 

t 	 0, the excess minority carrier holes diffuse in both the �x and �x directions. 

During this time, the excess majority carrier electrons, which were generated, diffuse 

at exactly the same rate as the holes. As time proceeds, the excess holes recombine 

with the excess electrons so that at t � � the excess hole concentration is zero. In this 

particular example, both diffusion and recombination processes are occurring at the 

same time.

 Figure 6.9 shows a plot of Equation (6.70) as a function of distance x at various 

times for the case when the applied electric fi eld is not zero. In this case, the pulse of 

excess minority carrier holes is drifting in the �x direction, which is the direction of 

the electric fi eld. We still have the same diffusion and recombination processes as we 

had before. An important point to consider is that, with charge neutrality, �n � �p at 

any instant of time and at any point in space. The excess electron concentration is 

equal to the excess hole concentration. In this case, then, the excess electron pulse is 

moving in the same direction as the applied electric fi eld even though the electrons 

have a negative charge. In the  ambipolar transport process, the excess carriers are 

characterized by the minority carrier parameters. In this example, the excess carriers 

behave according to the minority carrier hole parameters, which include Dp, �p, and 

�p0. The excess majority carrier electrons are being pulled along by the excess minor-

ity carrier holes.

Equation (6.68) is normally solved using Laplace transform techniques. The solution, without 

going through the mathematical details, is

 p�(x, t) �   1 __ 
(4�Dp t)1�2

   exp  �   �(x � �p E0 t)2

  ___ 
4Dp t

   �  (6.69)

The total solution, from Equations (6.67) and (6.69), for the excess minority carrier hole con-

centration is

 �p(x, t) �   e�t��p0
  __ 

(4�Dpt)1�2
   exp  �   �(x � �p E0t)2

  ___ 
4Dpt

   �  (6.70)

■ Comment
We could show that Equation (6.70) is a solution to the partial differential equation, Equa-

tion (6.66), by direct substitution. We may also note that Equation (6.70) is not normalized.

■ EXERCISE PROBLEM
Ex 6.5  Consider the result of Example 6.5. Let Dp � 10 cm2 /s, �p0 � 10�7 s, �p � 

400 cm2/V-s, and E0 � 100 V/cm. (a) Determine �p for t � 10�7 s at (i) x � 20 �m, 

(ii) x � 40 �m, and (iii) x � 60 �m. (b) Determine �p for x � 40 �m at (i) t � 

5 � 10�8 s, (ii) t � 10�7 s, and (iii) t � 2 � 10�7 s. Compare the results to the 

curves shown in Figure 6.9.

[Ans. (a) (i) 38.18, (ii) 103.8, (iii) 38.18; (b) (i) 32.75, (ii) 103.8, (iii) 3.65]
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�p(x, t)

Distance, x

t � t1 	 0

t � t2 	 t1

t � t3 	 t2

x � 0

E � 0

Figure 6.8 | Excess hole concentration versus dis-

tance at various times for zero applied electric fi eld.

E0

�p(x, t)

Distance, x

t � t1 	 0

t � t2 	 t1

t � t3 	 t2

x � 0

Figure 6.9 | Excess hole concentration versus distance at various times for a 

constant applied electric fi eld.
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214 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

6.3.4 Dielectric Relaxation Time Constant

We have assumed in the previous analysis that a quasi-neutrality condition exists—

that is, the concentration of excess holes is balanced by an equal concentration of 

excess electrons. Suppose that we have a situation as shown in Figure 6.10, in which 

a uniform concentration of holes �p is suddenly injected into a portion of the surface 

of a semiconductor. We will instantly have a concentration of excess holes and a net 

positive charge density that is not balanced by a concentration of excess electrons. 

How is charge neutrality achieved and how fast?

 There are three defi ning equations to be considered. Poisson’s equation is

 � � E �   
�
 _ �    (6.71)

The current equation, Ohm’s law, is

 J � 	E (6.72)

The continuity equation, neglecting the effects of generation and recombination, is

 � � J � �   

�

 _ 

t    (6.73)

  TEST YOUR UNDERSTANDING

TYU 6.5 As a good approximation, the peak value of a normalized excess carrier concen-

tration, given by Equation (6.70), occurs at x � �pE 0
t. Assume the following 

parameters: �p 0 � 5 �s, Dp � 10 cm2/s, �p � 386 cm2/V-s, and E
 0
 � 10 V/cm. 

Calculate the peak value at times of (a) t � 1 �s, (b) t � 5 �s, (c) t � 15 �s, and 

(d) t � 25 �s. What are the corresponding values of x for parts (a) to (d)?

[Ans. (a) 73.0, x � 38.6 �m; (b) 14.7, x � 193 �m; (c) 1.15, x � 579 �m; 

(d) 0.120, x � 965 �m]

 

TYU 6.6 The excess carrier concentration, given by Equation (6.70), is to be calculated 

at distances of one diffusion length away from the peak value. Using the param-

eters given in TYU 6.5, calculate the values of �p for (a) t � 1 �s 

at (i) 1.093 � 10�2 cm and (ii ) x � �3.21 � 10�3 cm; (b) t � 5 �s at 

(i) x � 2.64 � 10�2 cm and (ii) x � 1.22 � 10�2 cm; (c) t � 15 �s 

at (i ) x � 6.50 � 10�2 cm and (ii ) x � 5.08 � 10�2 cm. 

[Ans. (a) (i) 20.9, (ii) 20.9; (b) (i) 11.4, (ii) 11.4; (c) (i) 1.05, (ii) 1.05]

n type
�p

holes

Figure 6.10 | The injection of a concentration of 

holes into a small region at the surface of an n-type 

semiconductor.
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 6.3   Ambipolar Transport 215

The parameter � is the net charge density and the initial value is given by e(�p). We 

will assume that �p is uniform over a short distance at the surface. The parameter � 

is the permittivity of the semiconductor.

 Taking the divergence of Ohm’s law and using Poisson’s equation, we fi nd

 � � J � 	� � E �   
	�

 _ �   (6.74)

Substituting Equation (6.74) into the continuity equation, we have

   
	�

 _ �   � �  

�

 _ 

t   � �  

d�
 _ 

dt
   (6.75)

Since Equation (6.75) is a function of time only, we can write the equation as a total 

derivative. Equation (6.75) can be rearranged as

   
d�

 _ 
dt

   �  �   	 _ �    �  � � 0 (6.76)

Equation (6.76) is a fi rst-order differential equation whose solution is

 �(t) � �(0) e �(t��d)  (6.77)

where

 �d �   � _ 	   (6.78)

and is called the dielectric relaxation time constant.

   EXAMPLE 6.6Objective: Calculate the dielectric relaxation time constant for a particular semiconductor.

 Consider n-type silicon with a donor impurity concentration of Nd � 1016 cm�3.

■ Solution
The conductivity is found as

 	 � e�nNd � (1.6 � 10�19)(1200)(1016) � 1.92 (�-cm)�1

where the value of mobility is the approximate value found from Figure 5.3. The permittivity 

of silicon is

 � � �r �0 � (11.7)(8.85 � 10�14) F/cm 

The dielectric relaxation time constant is then

 �d �   � _ 	   �   
(11.7)(8.85 � 10�14)

  ____ 
1.92

   � 5.39 � 10�13 s

or

 �d � 0.539 ps
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216 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

*6.3.5 Haynes–Shockley Experiment

We have derived the mathematics describing the behavior of excess carriers in a 

semiconductor. The Haynes–Shockley experiment was one of the fi rst experiments 

to actually measure excess carrier behavior.

 Figure 6.11 shows the basic experimental arrangement. The voltage source V1 

establishes an applied electric fi eld E0 in the �x direction in the n-type semiconduc-

tor sample. Excess carriers are effectively injected into the semiconductor at contact 

A. Contact B is a rectifying contact that is under reverse bias by the voltage source 

V2. The contact B will collect a fraction of the excess carriers as they drift through 

the semiconductor. The collected carriers will generate an output voltage, V0.
 This experiment corresponds to the problem we discussed in Example 6.5. 

 Figure 6.12 shows the excess carrier concentrations at contacts A and B for two 

conditions. Figure 6.12a shows the idealized excess carrier pulse at contact A at 

time t � 0. For a given electric fi eld E01, the excess carriers will drift along the 

■ Comment
Equation (6.77) then predicts that in approximately four time constants, or in approximately 

2 ps, the net charge density is essentially zero; that is, quasi-neutrality has been achieved. 

Since the continuity equation, Equation (6.73), does not contain any generation or recombi-

nation terms, the initial positive charge is then neutralized by pulling in electrons from the 

bulk n-type material to create excess electrons. This process occurs very quickly compared to 

the normal excess carrier lifetimes of approximately 0.1 �s. The condition of quasi-charge- 

neutrality is then justifi ed.

■ EXERCISE PROBLEM
Ex 6.6  (a) Consider n-type GaAs doped to Nd � 5 � 1015 cm�3. Determine the dielectric 

relaxation time. (b) Repeat part (a) for p-type silicon doped to Na � 2 � 1016 cm�3. 

[Ans. (a) �d � 0.193 ps; (b) �d � 0.809 ps]

E0

Vin

V2

R1

V1

R2

V0

A

d

� �

�

�

R

B

n type

Figure 6.11 | The basic Haynes–Shockley experimental 

arrangement.
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semiconductor producing an output voltage as a function of time given in Fig-

ure 6.12b. The peak of the pulse will arrive at contact B at time t0. If the applied 

electric fi eld is reduced to a value E02, E02  E01, the output voltage response at 

contact B will look approximately as shown in Figure 6.12c. For the smaller electric 

fi eld, the drift velocity of the pulse of excess carriers is smaller, and so it will take a 

longer time for the pulse to reach the contact B. During this longer time period, there 

is more diffusion and more recombination. The excess carrier pulse shapes shown in 

Figure 6.12b, c are different for the two electric fi eld conditions.

(a)

Time

In
p
u
t 

p
u
ls

e

(b)

Time

Electric field, E01V0

t0

(c)

Time

Electric field,

E02  E01

t�0

V0

Figure 6.12 | (a) The idealized excess carrier pulse at 

terminal A at t � 0. (b) The excess carrier pulse versus 

time at terminal B for a given applied electric fi eld. (c) The 

excess carrier pulse versus time at terminal B for a smaller 

applied electric fi eld.
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218 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 The minority carrier mobility, lifetime, and diffusion coeffi cient can be deter-

mined from this single experiment. As a good fi rst approximation, the peak of the 

 minority carrier pulse will arrive at contact B when the exponent involving distance 

and time in Equation (6.70) is zero, or

 x � �p E0 t � 0 (6.79a)

In this case x � d, where d is the distance between contacts A and B, and t � t0, 

where t0 is the time at which the peak of the pulse reaches contact B. The mobility 

may be calculated as

 �p �   d _ 
E0 t0

    (6.79b)

 Figure 6.13 again shows the output response as a function of time. At times t1 

and t2, the magnitude of the excess concentration is e�1 of its peak value. If the time 

difference between t1 and t2 is not too large,  e �t/�p 0  and (4� Dp t)1	2 do not change ap-

preciably during this time; then the equation

 (d � �p E0 t)2 � 4Dp t (6.80)

is satisfi ed at both t � t1 and t � t2. If we set t � t1 and t � t2 in Equation (6.80) and 

add the two resulting equations, we may show that the diffusion coeffi cient is given 

by

 Dp �   
(�p E0)

2(�t)2

 __ 
16t0

   (6.81)

where

 �t � t2 � t1 (6.82)

 The area S under the curve shown in Figure 6.13 is proportional to the number of 

excess holes that have not recombined with majority carrier electrons. We may write

 S � K exp  �   �t0 _ �p0 
   �  � K exp  �   �d __ 

�p E0�p0

   �  (6.83)

where K is a constant. By varying the electric fi eld, the area under the curve will change. 

A plot of ln (S) as a function of (d��p E0) will yield a straight line whose slope is (1/�p 0), 
so the minority carrier lifetime can also be determined from this  experiment.

Figure 6.13 | The output excess carrier 

pulse versus time to determine the 

diffusion coeffi cient.

Time
t2t0

V0

t1
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 6.4   Quasi-Fermi Energy Levels 219

 The Haynes–Shockley experiment is elegant in the sense that the three basic 

processes of drift, diffusion, and recombination are all observed in a single experi-

ment. The determination of mobility is straightforward and can yield accurate values. 

The determination of the diffusion coeffi cient and lifetime is more complicated and 

may lead to some inaccuracies.

6.4 | QUASI-FERMI ENERGY LEVELS
The thermal-equilibrium electron and hole concentrations are functions of the Fermi 

energy level. We can write

 n0 � ni exp  �   EF � EFi  __ 
kT

   �  (6.84a)

and

 p0 � ni exp  �   EFi � EF  __ 
kT

   �  (6.84b)

where EF and EFi are the Fermi energy and intrinsic Fermi energy, respectively, and ni 

is the intrinsic carrier concentration. Figure 6.14a shows the energy-band diagram for 

an n-type semiconductor in which EF 	 EFi. For this case, we may note from Equations 

(6.84a) and (6.84b) that n0 	 ni and p0  ni, as we would expect. Similarly, Figure 6.14b 

shows the energy-band diagram for a p-type semiconductor in which EF  EFi. Again 

we may note from Equations (6.84a) and (6.84b) that n0  ni and p0 	 ni, as we would 

expect for the p-type material. These results are for thermal equilibrium.

 If excess carriers are created in a semiconductor, we are no longer in thermal 

equilibrium and the Fermi energy is strictly no longer defi ned. However, we may 

defi ne a quasi-Fermi level for electrons and a quasi-Fermi level for holes that apply 

for nonequilibrium. If �n and �p are the excess electron and hole concentrations, 

respectively, we may write

 n0 � �n � ni exp  �   EFn � EFi  __ 
kT

   �  (6.85a)

Figure 6.14 | Thermal-equilibrium energy-band diagrams for (a) n-type 

semiconductor and (b) p-type semiconductor.
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220 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

and

 p0 � �p � ni exp  �   EFi � EFp  __ 
kT

   �  (6.85b)

where EFn and EFp are the quasi-Fermi energy levels for electrons and holes, respec-

tively. The total electron concentration and the total hole concentration are functions 

of the quasi-Fermi levels.

EXAMPLE 6.7 Objective: Calculate the quasi-Fermi energy levels.

 Consider an n-type semiconductor at T � 300 K with carrier concentrations of n0 � 

1015 cm�3, ni � 1010 cm�3, and p0 � 105 cm�3. In nonequilibrium, assume that the excess  carrier 

concentrations are �n � �p � 1013 cm�3.

■ Solution
The Fermi level for thermal equilibrium can be determined from Equation (6.84a). We have

 EF � EFi � kT ln  �   n0 _ ni
   �  � 0.2982 eV

We can use Equation (6.85a) to determine the quasi-Fermi level for electrons in nonequilib-

rium. We can write

 EFn � EFi � kT ln  �   n0 � �n __ ni 
   �  � 0.2984 eV 

Equation (6.85b) can be used to calculate the quasi-Fermi level for holes in nonequilibrium. 

We can write

 EFi � EFp � kT ln  �   p0 � �p
 __ ni 

   �  � 0.179 eV 

■ Comment
We may note that the quasi-Fermi level for electrons is above EFi while the quasi-Fermi level 

for holes is below EFi.

■ EXERCISE PROBLEM
Ex 6.7  Impurity concentrations of Nd � 3 � 1015 cm�3 and Na � 1016 cm�3 are added to 

silicon at T � 300 K. Excess carriers are generated in the semiconductor such 

that the steady-state excess carrier concentrations are �n � �p � 4 � 1014 cm�3. 

(a)  Determine the thermal-equilibrium Fermi level with respect to the intrinsic Fermi 

level. (b) Find EFn and EFp with respect to EFi. 

  

[Ans. (a) EFi � EF � 0.33808 eV; (b) EFi � EFp � 0.33952 eV, EFn � EFi � 0.26395 eV]

 Figure 6.15a shows the energy-band diagram with the Fermi energy level corre-

sponding to thermal equilibrium. Figure 6.15b now shows the energy-band diagram 

under the nonequilibrium condition. Since the majority carrier electron concentra-

tion does not change signifi cantly for this low-injection condition, the quasi-Fermi 

level for electrons is not much different from the thermal-equilibrium Fermi level. 
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 6.5   Excess Carrier Lifetime 221

The quasi-Fermi energy level for the minority carrier holes is signifi cantly differ-

ent from the Fermi level and illustrates the fact that we have deviated from thermal 

equilibrium signifi cantly. Since the electron concentration has increased, the quasi-

Fermi level for electrons has moved slightly closer to the conduction band. The hole 

 concentration has increased signifi cantly so that the quasi-Fermi level for holes has 

moved much closer to the valence band. We will consider the quasi-Fermi energy 

levels again when we discuss forward-biased pn junctions.

*6.5 | EXCESS CARRIER LIFETIME
The rate at which excess electrons and holes recombine is an important characteristic 

of the semiconductor and infl uences many of the device characteristics, as we will 

see in later chapters. We considered recombination briefl y at the beginning of this 

chapter and argued that the recombination rate is inversely proportional to the mean 

carrier lifetime. We have assumed up to this point that the mean carrier lifetime is 

simply a parameter of the semiconductor material.

 We have been considering an ideal semiconductor in which electronic energy 

states do not exist within the forbidden-energy bandgap. This ideal effect is present 

in a perfect single-crystal material with an ideal periodic-potential function. In a 

real semiconductor material, defects occur within the crystal and disrupt the perfect 

 periodic-potential function. If the density of these defects is not too great, the defects 

will create discrete electronic energy states within the forbidden-energy band. These 

allowed energy states may be the dominant effect in determining the mean carrier 

lifetime. The mean carrier lifetime may be determined from the Shockley–Read–

Hall theory of recombination.

6.5.1 Shockley–Read–Hall Theory of Recombination

An allowed energy state, also called a trap, within the forbidden bandgap may act as 

a recombination center, capturing both electrons and holes with almost equal prob-

ability. This equal probability of capture means that the capture cross sections for 

Figure 6.15 | (a) Thermal-equilibrium energy-band diagram for Nd � 1015 cm�3 and 

ni � 1010 cm�3. (b) Quasi-Fermi levels for electrons and holes if 1013 cm�3 excess 

carriers are present.
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222 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

electrons and holes are approximately equal. The Shockley–Read–Hall theory of re-

combination assumes that a single recombination center, or trap, exists at an energy 

Et within the bandgap. There are four basic processes, shown in Figure 6.16, that may 

occur at this single trap. We will assume that the trap is an acceptor-type trap; that is, 

it is negatively charged when it contains an electron and is neutral when it does not 

contain an electron.

 The four basic processes are as follows:

Process 1: The capture of an electron from the conduction band by an initially 

neutral empty trap.

Process 2: The inverse of process 1—the emission of an electron that is ini-

tially occupying a trap level back into the conduction band.

Process 3: The capture of a hole from the valence band by a trap containing 

an electron. (Or we may consider the process to be the emission of an electron 

from the trap into the valence band.)

Process 4: The inverse of process 3—the emission of a hole from a neutral trap 

into the valence band. (Or we may consider this process to be the capture of an 

electron from the valence band.)

 In process 1, the rate at which electrons from the conduction band are captured 

by the traps is proportional to the density of electrons in the conduction band and 

Figure 6.16 | The four basic trapping and emission processes for the case of an acceptor-

type trap.
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 6.5   Excess Carrier Lifetime 223

proportional to the density of empty trap states. We can then write the electron cap-

ture rate as

 Rcn � CnNt[1 � fF(Et)]n (6.86)

where

 Rcn � capture rate (#/cm3-s)

 Cn � constant proportional to electron-capture cross section

 Nt � total concentration of trapping centers

 n � electron concentration in the conduction band

 fF(Et) � Fermi function at the trap energy

The Fermi function at the trap energy is given by

 fF (Et) �   1 ____  

1 � exp  �   Et � EF 
 __ 

kT
   � 

   (6.87)

which is the probability that a trap will contain an electron. The function [1 � fF(Et)] 

is then the probability that the trap is empty. In Equation (6.87), we have assumed 

that the degeneracy factor is 1, which is the usual approximation made in this analy-

sis. However, if a degeneracy factor is included, it will eventually be absorbed in 

other constants later in the analysis.

 For process 2, the rate at which electrons are emitted from fi lled traps back into 

the conduction band is proportional to the number of fi lled traps, so that

 Ren � En Nt fF (Et) (6.88)

where

 Ren � emission rate (#/cm3-s)

 En � constant

 fF(Et) � probability that the trap is occupied

 In thermal equilibrium, the rate of electron capture from the conduction band 

and the rate of electron emission back into the conduction band must be equal. Then

 Ren�Rcn (6.89)

so that

 En Nt fF0 (Et) � Cn Nt [1 � fF0(Et)]n0 (6.90)

where fF0 denotes the thermal-equilibrium Fermi function. Note that, in thermal equi-

librium, the value of the electron concentration in the capture rate term is the equi-

librium value n0. Using the Boltzmann approximation for the Fermi function, we can 

fi nd En in terms of Cn as

 En � n�Cn (6.91)
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224 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

where n� is defi ned as

 n� � Nc exp  �   �(Ec � Et)
 __ 

kT
   �  (6.92)

The parameter n� is equivalent to an electron concentration that would exist in the 

conduction band if the trap energy Et coincided with the Fermi energy EF.
 In nonequilibrium, excess electrons exist, so that the net rate at which electrons 

are captured from the conduction band is given by

 Rn � Rcn � Ren (6.93)

which is just the difference between the capture rate and the emission rate. Combin-

ing Equations (6.86) and (6.88) with (6.93) gives

 Rn � [Cn Nt (1 � fF (Et))n] � [En Nt fF (Et)] (6.94)

 We may note that, in this equation, the electron concentration n is the total con-

centration, which includes the excess electron concentration. The remaining con-

stants and terms in Equation (6.94) are the same as defi ned previously and the Fermi 

energy in the Fermi probability function needs to be replaced by the quasi-Fermi 

energy for electrons. The constants En and Cn are related by Equation (6.91), so the 

net recombination rate can be written as

 Rn � Cn Nt [n(1 � fF (Et)) � n�fF (Et)] (6.95)

 If we consider processes 3 and 4 in the recombination theory, the net rate at 

which holes are captured from the valence band is given by

 Rp � Cp Nt [pfF(Et) � p�(1 � fF (Et))] (6.96)

where Cp is a constant proportional to the hole capture rate, and p� is given by

 p� � Nv exp  �   �(Et � Ev)
 __ 

kT
   �  (6.97)

 In a semiconductor in which the trap density is not too large, the excess electron 

and hole concentrations are equal and the recombination rates of electrons and holes 

are equal. If we set Equation (6.95) equal to Equation (6.96) and solve for the Fermi 

function, we obtain

 fF (Et) �   
Cn n � Cp p�

  _____  
Cn(n � n�) � Cp(p � p�)

   (6.98)

We may note that n� p� �  n i  
2 . Then, substituting Equation (6.98) back into either 

Equation (6.95) or (6.96) gives

 Rn � Rp �   
CnCp Nt  � np �  n i  

2  � 
  _____  

Cn(n � n�) � Cp(p � p�)
   � R  (6.99)

Equation (6.99) is the recombination rate of electrons and holes due to the recombi-

nation center at E � Et. If we consider thermal equilibrium, then np � n0 p0 �  n 
i
  2 , so 
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 6.5   Excess Carrier Lifetime 225

that Rn � Rp � 0. Equation (6.99), then, is the recombination rate of excess electrons 

and holes.

 Since R in Equation (6.99) is the recombination rate of the excess carriers, we 

may write

 R �   �n _ �   (6.100)

where �n is the excess carrier concentration and � is the lifetime of the excess carriers.

6.5.2 Limits of Extrinsic Doping and Low Injection

We simplifi ed the ambipolar transport equation, Equation (6.39), from a nonlinear 

differential equation to a linear differential equation by applying limits of extrinsic 

doping and low injection. We may apply these same limits to the recombination rate 

equation.

 Consider an n-type semiconductor under low injection. Then

 n0 � p0, n0 � �p, n0 � n�, n0 � p�

where �p is the excess minority carrier hole concentration. The assumptions of 

n0 � n� and n0 � p� imply that the trap level energy is near midgap so that n� and p� 
are not too different from the intrinsic carrier concentration. With these assumptions, 

Equation (6.99) reduces to

 R � Cp Nt �p (6.101)

The recombination rate of excess carriers in the n-type semiconductor is a function of 

the parameter Cp, which is related to the minority carrier hole capture cross section. 

The recombination rate, then, is a function of the minority carrier parameter in the 

same way that the ambipolar transport parameters reduced to their minority carrier 

values.

 The recombination rate is related to the mean carrier lifetime. Comparing Equa-

tions (6.100) and (6.101), we may write

 R �   �n _ �   � Cp Nt �p �   
�p

 _ �p0

   (6.102)

where

 �p0 �   1 _ 
Cp Nt

   (6.103)

and where �p0 is defi ned as the excess minority carrier hole lifetime. If the trap con-

centration increases, the probability of excess carrier recombination increases; thus, 

the excess minority carrier lifetime decreases.

 Similarly, if we have a strongly extrinsic p-type material under low injection, we 

can assume that

 p0 � n0, p0 � �n, p0 � n�, p0 � p� 
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226 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

The lifetime then becomes that of the excess minority carrier electron lifetime, or

 �n0 �   1 _ 
Cn Nt

   (6.104)

 Again note that for the n-type material, the lifetime is a function of Cp, which is 

related to the capture rate of the minority carrier hole. And for the p-type material, 

the lifetime is a function of Cn, which is related to the capture rate of the minority car-

rier electron. The excess carrier lifetime for an extrinsic material under low injection 

reduces to that of the minority carrier.

EXAMPLE 6.8 Objective: Determine the excess carrier lifetime in an intrinsic semiconductor.

 If we substitute the defi nitions of excess carrier lifetimes from Equations (6.103) and 

(6.104) into Equation (6.99), the recombination rate can be written as

 R �   
 � np �  n 

i
  2  � 
  _____  

�p0(n � n�) � �n0(p � p�)
   (6.105)

Consider an intrinsic semiconductor containing excess carriers. Then n � ni � �n and 

p � ni � �n. Also assume that n� � p� � ni.

■ Solution
Equation (6.105) now becomes

 R �   
2ni �n � (�n)2

  ____  
(2ni � �n)(�p0 � �n0)

  

If we also assume very low injection, so that �n � 2ni, then we can write

 R �   �n __ 
�p0 � �n0

   �   �n _ �  

where � is the excess carrier lifetime. We see that � � �p0 � �n0 in the intrinsic material.

■ Comment
The excess carrier lifetime increases as we change from an extrinsic to an intrinsic 

 semiconductor.

■ EXERCISE PROBLEM
Ex 6.8  Consider silicon at T � 300 K doped at concentrations of Nd � 1015 cm�3 and Na � 

0. Assume that n� � p� � ni in the excess carrier recombination rate equation and 

assume parameter values of �n0 � �p0 � 5 � 10�7 s. Calculate the recombination 

rate of excess carriers if �n � �p � 1014 cm�3. 

 

(Ans. 1.83 � 10  
20

 cm
�3

 s
�1

)

Intuitively, we can see that the number of majority carriers that are available for 

 recombining with excess minority carriers decreases as the extrinsic semiconductor 

becomes intrinsic. Since there are fewer carriers available for recombining in the 

intrinsic material, the mean lifetime of an excess carrier increases.
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*6.6 | SURFACE EFFECTS
In all previous discussions, we have implicitly assumed the semiconductors were infi nite 

in extent; thus, we were not concerned with any boundary conditions at a semiconduc-

tor surface. In any real application of semiconductors, the material is not infi nitely large 

and therefore surfaces do exist between the semiconductor and an adjacent medium.

6.6.1 Surface States

When a semiconductor is abruptly terminated, the perfect periodic nature of the idealized 

single-crystal lattice ends abruptly at the surface. The disruption of the  periodic-potential 

function results in allowed electronic energy states within the energy bandgap. In the 

previous section, we argued that simple defects in the semiconductor would create 

discrete energy states within the bandgap. The abrupt termination of the periodic 

potential at the surface results in a distribution of allowed energy states within the 

bandgap, shown schematically in Figure 6.17 along with the discrete energy states in 

the bulk semiconductor.

 The Shockley–Read–Hall recombination theory shows that the excess minority 

carrier lifetime is inversely proportional to the density of trap states. We may argue 

that since the density of traps at the surface is larger than in the bulk, the excess mi-

nority carrier lifetime at the surface will be smaller than the corresponding lifetime 

in the bulk material. If we consider an extrinsic n-type semiconductor, for example, 

the recombination rate of excess carriers in the bulk, given by Equation (6.102), is

 R �   
�p

 _ �p0

   �   
�pB 

 _ �p0

   (6.106)

where �pB is the concentration of excess minority carrier holes in the bulk material. 

We may write a similar expression for the recombination rate of excess carriers at 

the surface as

 Rs �   
�ps 

 _ �p0s
   (6.107)

where �ps is the excess minority carrier hole concentration at the surface and �p0s is 

the excess minority carrier hole lifetime at the surface.

Figure 6.17 | Distribution of surface 

states within the forbidden bandgap.
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228 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 Assume that excess carriers are being generated at a constant rate throughout the 

entire semiconductor material. We showed that, in steady state, the generation rate is 

equal to the recombination rate for the case of a homogeneous, infi nite semiconduc-

tor. Using this argument, the recombination rates at the surface and in the bulk mate-

rial must be equal. Since �p0s  �p0, then the excess minority carrier concentration 

at the surface is smaller than the excess minority carrier concentration in the bulk 

region, or �ps  �pB. Figure 6.18 shows an example of the excess carrier concentra-

tion plotted as a function of distance from the semiconductor surface.

Figure 6.18 | Steady-state excess hole 

concentration versus distance from a 

semiconductor surface.
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EXAMPLE 6.9 Objective: Determine the steady-state excess carrier concentration as a function of  distance 

from the surface of a semiconductor.

 Consider Figure 6.18, in which the surface is at x � 0. Assume that in the n-type semicon-

ductor �pB � 1014 cm�3 and �p0 � 10�6 s in the bulk, and �p0s � 10�7 s at the surface. Assume 

zero applied electric fi eld and let Dp � 10 cm2/s.

■ Solution
From Equations (6.106) and (6.107), we have

    
�pB 

 _ �p0

   �   
�ps 

 _ �p0s
  

so that

 �ps � �pB 
 �   �p0s 

 
_

 �p0
   �  � (1014) �   10�7  _ 

10�6
    �  � 1013 cm�3 

From Equation (6.56), we can write

 Dp
  d  2(�p)

 
__

 dx2   � g� �   
�p

 _ �p0    � 0 (6.108)

 The generation rate can be determined from the steady-state conditions in the bulk, or

 g� �   
�pB 

 _ �p0

   �   1014

 _ 
10�6

   � 1020 cm�3-s�1
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6.6.2 Surface Recombination Velocity

A gradient in the excess carrier concentration exists near the surface as shown in 

Figure 6.18; excess carriers from the bulk region diffuse toward the surface where 

they recombine. This diffusion toward the surface can be described by

 �Dp  � ̂n �   
d(�p)

 _ 
dx

   �  |
surf

 � s�p|surf (6.110)

where each side of the equation is evaluated at the surface. The parameter n̂ is 

the unit outward vector normal to the surface. Using the geometry of Figure 6.18, 

d(�p)/dx is a positive quantity and n̂ is negative, so that the parameter s is a positive 

quantity.

 A dimensional analysis of Equation (6.110) shows that the parameter s has units 

of cm/s, or velocity. The parameter s is called the surface recombination velocity. If 
the excess concentrations at the surface and in the bulk region were equal, then the 

gradient term would be zero and the surface recombination velocity would be zero. 

As the excess concentration at the surface becomes smaller, the gradient term be-

comes larger, and the surface recombination velocity increases. The surface recom-

bination velocity gives some indication of the surface characteristics as compared 

with the bulk region.

The solution to Equation (6.107) is of the form

 �p(x) � g��p0 � Ae x�Lp � Be� x�Lp (6.109)

As x → ��, �p(x) � �pB � g��p0 � 1014 cm�3, which implies that A � 0. At x � 0, we have

 �p(0) � �ps � 1014 � B � 1013 cm�3

so that B � �9 � 1013. The entire solution for the minority carrier hole concentration as a 

function of distance from the surface is

 �p(x) � 1014 (1 � 0.9e� x�Lp)

where

 Lp �  

_____

 Dp�p0
   �  


_________
 (10)(10�6)   � 31.6 � m

■ Comment
The excess carrier concentration is smaller at the surface than in the bulk.

■ EXERCISE PROBLEM
Ex 6.9  (a) Repeat Example 6.9 for the case when ��0s � 0. (b) What is the excess hole con-

centration at x � 0? (c) For this particular case, what is the recombination rate of 

excess carriers at the surface? 

 

[Ans. (a) �p(x) � g��p0 (1 � e
�
 
x�Lp); (b) �p(0) � 0; (c) R� � �]
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230 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 Equation (6.110) may be used as a boundary condition to the general solution 

given by Equation (6.109) in Example 6.8. Using Figure 6.18, we have that n̂ � �1, 
and Equation (6.110) becomes

  Dp   
d(�p)

 _ 
dx

   |
surf

 � s�p|surf  (6.111)

We have argued that the coeffi cient A is zero in Equation (6.109). Then, from Equa-

tion (6.109), we can write that

  �psurf � �p(0) � g��p0 � B  (6.112a)

and

    
d(�p)

 _ 
dx

   |
surf

 �   
d(�p)

 _ 
dx

   |
x�0

 � �  B _ 
Lp

    (6.112b)

Substituting Equations (6.112a) and (6.112b) into Equation (6.111) and solving for 

the coeffi cient B, we obtain

 B �   
�sg��p0 

 __ 
(Dp�Lp) � s

    (6.113)

The excess minority carrier hole concentration can then be written as

 �p(x) � g��p0  � 1 �   
sLp

 e � x�L�    __ 
D

p
 � sL

p 
   �   (6.114)

EXAMPLE 6.10 Objective: Determine the value of surface recombination velocity corresponding to the 

parameters given in Example 6.9.

 From Example 6.9, we have that g��p0 � 1014 cm�3, Dp � 10 cm2/s, Lp � 31.6 �m, and 

�p(0) � 1013 cm�3.

■ Solution
Writing Equation (6.114) at the surface, we have

 �p(0) � g��p0 
 � 1 �   

s ___ 
(Dp /Lp) � s

   � 
Solving for the surface recombination velocity, we fi nd that

 s �   
Dp 

 _ 
Lp

    �   g��p0 
 _ 

�p(0)
   � 1 � 

which becomes

  s �   
10
 __ 

31.6 � 10�4
    �   1014 

 _ 
1013

   � 1 �  � 2.85 � 104 cm/s 
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 In the above example, the surface infl uences the excess carrier concentration to 

the extent that, even at a distance of Lp � 31.6 �m from the surface, the  excess carrier 

concentration is only two-thirds of the value in the bulk. We will see in later chap-

ters that device performance is dependent in large part on the properties of  excess 

carriers.

6.7 | SUMMARY
■ The processes of excess electron and hole generation and recombination were dis-

cussed. The excess carrier generation rate and recombination rate were defi ned.

■ Excess electrons and holes do not move independently of each other, but move together. 

This common movement is called ambipolar transport.

■ The ambipolar transport equation was derived and limits of low injection and extrinsic 

doping were applied to the coeffi cients. Under these conditions, the excess electrons 

and holes diffuse and drift together with the characteristics of the minority carrier, a 

 result that is fundamental to the behavior of semiconductor devices.

■ The concept of excess carrier lifetime was developed.

■ Examples of excess carrier behavior as a function of time, as a function of space, and as 

a function of both time and space were examined.

■ The quasi-Fermi level for electrons and the quasi-Fermi level for holes were  defi ned. 

The degree of quasi-Fermi level splitting is a measure of departure from thermal 

equilibrium.

■ The Shockley–Read–Hall theory of recombination was considered. Expressions for 

the excess minority carrier lifetime were developed. Generation and recombination of 

excess carriers increase as a result of traps in a semiconductor.

■ The effect of a semiconductor surface infl uences the behavior of excess electrons and 

holes. The surface recombination velocity was defi ned.

GLOSSARY OF IMPORTANT TERMS
ambipolar diffusion coeffi cient The effective diffusion coeffi cient of excess carriers.

ambipolar mobility The effective mobility of excess carriers.

ambipolar transport The process whereby excess electrons and holes diffuse, drift, and 

recombine with the same effective diffusion coeffi cient, mobility, and lifetime.

■ Comment
This example shows that a surface recombination velocity of approximately s � 3 � 104 cm�s 

could seriously degrade the performance of semiconductor devices, such as solar cells, since 

these devices tend to be fabricated close to a surface.

■ EXERCISE PROBLEM
Ex 6.10  (a) Using Equation (6.114), determine �p(x) for (i) s � � and (ii) s � 0. (b) What 

does (i) an infi nite surface recombination velocity (s � � ) and (ii) a zero  surface 

recombination velocity (s � 0) imply?

 

[Ans. (a) (i) �p(x) � g��p0  � 1 �  e 
�x�Lp   � , (ii) �p(x) � g��p0; (b) (i) �p(0) � 0, (ii) �p(0) 

� g��p0 and �p(x) � constant]
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232 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

ambipolar transport equation The equation describing the behavior of excess carriers as a 

function of time and space coordinates.

carrier generation The process of elevating electrons from the valence band into the con-

duction band, creating an electron–hole pair.

carrier recombination The process whereby an electron “falls” into an empty state in the 

valence band (a hole) so that an electron–hole pair is annihilated.

excess carriers The term describing both excess electrons and excess holes.

excess electrons The concentration of electrons in the conduction band over and above the 

thermal-equilibrium concentration.

excess holes The concentration of holes in the valence band over and above the 

 thermal-equilibrium concentration.

excess minority carrier lifetime The average time that an excess minority carrier exists 

before it recombines.

generation rate The rate (#/cm3-s) at which electron–hole pairs are created.

low-level injection The condition in which the excess carrier concentration is much smaller 

than the thermal-equilibrium majority carrier concentration.

minority carrier diffusion length The average distance a minority carrier diffuses before 

recombining: a parameter equal to  

___

 D�   where D and � are the minority carrier diffusion 

coeffi cient and lifetime, respectively.

quasi-Fermi level The quasi-Fermi level for electrons and the quasi-Fermi level for holes 

relate the nonequilibrium electron and hole concentrations, respectively, to the intrinsic 

carrier concentration and the intrinsic Fermi level.

recombination rate The rate (#/cm3-s) at which electron–hole pairs recombine.

surface recombination velocity A parameter that relates the gradient of the excess carrier 

concentration at a surface to the surface concentration of excess carriers.

surface states The electronic energy states that exist within the bandgap at a semiconductor 

surface.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Describe the concept of excess carrier generation and recombination.

■ Describe the concept of an excess carrier lifetime.

■ Describe how the time-dependent diffusion equations for holes and electrons are 

derived.

■ Describe how the ambipolar transport equation is derived.

■ Understand the consequence of the coeffi cients in the ambipolar transport equation 

re ducing to the minority carrier values under low injection and extrinsic 

semiconductors.

■ Apply the ambipolar transport equation to various problems.

■ Understand the concept of the dielectric relaxation time constant and what it means. 

■ Calculate the quasi-Fermi levels for electrons and holes.

■ Calculate the excess carrier recombination rate for a given concentration of excess 

carriers.

■ Understand the effect of a surface on the excess carrier concentrations.
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REVIEW QUESTIONS
 1. Why are the electron generation rate and recombination rate equal in thermal 

 equilibrium?

 2. Defi ne the excess carrier recombination rate in terms of excess carrier concentration and 

lifetime.

 3. Explain how the density of holes, for example, can change as a result of a change in the 

fl ux of particles.

 4. Why is the general ambipolar transport equation nonlinear?

 5. Explain qualitatively why a pulse of excess electrons and holes would move together in 

the presence of an applied electric fi eld.

 6. Explain qualitatively why the excess carrier lifetime reduces to that of the minority 

 carrier under low injection.

 7. What is the time dependence of the density of excess carriers when the generation rate 

becomes zero?

 8. In the presence of an external force, why doesn’t the density of excess carriers continue 

to increase with time?

 9. When a concentration of one type of excess carrier is suddenly created in a semiconduc-

tor, what is the mechanism by which the net charge density quickly becomes zero?

10. State the defi nition of the quasi-Fermi level for electrons. Repeat for holes.

11. Explain why the presence of traps in a semiconductor increases the recombination rate 

of excess carriers.

12. Why, in general, is the concentration of excess carriers less at the surface of a semi-

conductor than in the bulk?

PROBLEMS
(Note: Use the semiconductor parameters listed in Appendix B if they are not specifi cally 

given in a problem. Assume T � 300 K.)

Section 6.1 Carrier Generation and Recombination

 6.1 Consider silicon at T � 300 K that is doped with donor impurity atoms to a concentra-

tion of Nd � 5 � 1015 cm�3. The excess carrier lifetime is 2 � 10�7s. (a) Determine 

the thermal equilibrium recombination rate of holes. (b) Excess carriers are  generated 

such that �n � �p � 1014 cm�3. What is the recombination rate of holes for this 

condition?

 6.2 GaAs, at T � 300 K, is uniformly doped with acceptor impurity atoms to a concen-

tration of Na � 2 � 1016 cm�3. Assume an excess carrier lifetime of 5 � 10�7s. 

(a) Determine the electron–hole recombination rate if the excess electron concen-

tration is �n � 5 � 1014 cm�3. (b) Using the results of part (a), what is the lifetime 

of holes?

 6.3 An n-type silicon sample contains a donor concentration of Nd � 1016 cm�3. The 

 minority carrier hole lifetime is found to be �p0 � 20 �s. (a) What is the lifetime of 

the majority carrier electrons? (b) Determine the thermal-equilibrium generation 

rate for electrons and holes in this material. (c) Determine the thermal-equilibrium 

 recombination rate for electrons and holes in this material.
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234 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

 6.4 (a) A sample of semiconductor has a cross-sectional area of 1 cm2 and a thickness 

of 0.1 cm. Determine the number of electron–hole pairs that are generated per unit 

 volume per unit time by the uniform absorption of 1 watt of light at a wavelength of 

6300 Å. Assume each photon creates one electron–hole pair. (b) If the excess minority 

carrier lifetime is 10 �s, what is the steady-state excess carrier concentration?

Section 6.2 Mathematical Analysis of Excess Carriers

 6.5 Derive Equation (6.27) from Equations (6.18) and (6.20).

 6.6 Consider a one-dimensional hole fl ux as shown in Figure 6.4. If the generation rate 

of holes in this differential volume is gp � 1020 cm�3-s�1 and the recombination rate 

is 2 � 1019 cm�3-s�1, what must be the gradient in the particle current density to 

 main tain a steady-state hole concentration?

 6.7 Repeat Problem 6.6 if the generation rate becomes zero.

Section 6.3 Ambipolar Transport

 6.8 Starting with the continuity equations given by Equations (6.29) and (6.30), derive the 

ambipolar transport equation given by Equation (6.39).

 6.9 A silicon sample at T � 300 K has a uniform acceptor concentration of 7 � 1015 cm�3. 

The excess carrier lifetime is �n0 � 10�7 s. (a) Determine the ambipolar mobility. 

(b) Find the ambipolar diffusion coeffi cient. (c) What are the electron and hole lifetimes?

6.10 Germanium at T � 300 K is uniformly doped with donor impurity atoms to a concen-

tration of 4 � 1013 cm�3. The excess carrier lifetime is found to be �p0 � 2 � 10�6 s.

(a) Determine the ambipolar (i) diffusion coeffi cient and (ii) mobility. (b) Find the 

electron and hole lifetimes.

6.11 Assume that an n-type semiconductor is uniformly illuminated, producing a uniform 

excess generation rate g�. Show that in steady state the change in the semiconductor 

conductivity is given by

� 	 � e(�n � �p)� p 0 g�

6.12 Consider a silicon sample at T � 300 K that is uniformly doped with acceptor impu-

rity atoms at a concentration of Na � 1016 cm�3. At t � 0, a light source is turned on 

generating excess carriers uniformly throughout the sample at a rate of g� � 8 � 

1020 cm�3 s�1. Assume the minority carrier lifetime is �n0 � 5 � 10�7 s, and assume 

mobility values of �n � 900 cm2 /V-s and �p � 380 cm2 /V-s. (a) Determine the 

conductivity of the silicon as a function of time for t � 0. (b) What is the value of 

 conductivity at (i) t � 0 and (ii) t ��?

6.13 An n-type GaAs semiconductor at T � 300 K is uniformly doped at Nd � 5 � 1015 cm�3. 

The minority carrier lifetime is �p0 � 5 � 10�8 s. Assume mobility values of �n � 7500 

cm2 /V-s and �p � 310 cm2 /V-s. A light source is turned on at t � 0 generating excess 

carriers uniformly at a rate of g� � 4 � 1021 cm�3 s�1 and turns off at t � 10�6 s. 

(a) Determine the excess carrier concentrations versus time over the range 0 � t � �. 

(b) Calculate the conductivity of the semiconductor versus time over the same time pe-

riod as part (a).

6.14 A bar of silicon at T � 300 K has a length of L � 0.05 cm and a cross-sectional area 

of A � 10�5 cm2. The semiconductor is uniformly doped with Nd � 8 � 1015 cm�3 and 
Na � 2 � 1015 cm�3. A voltage of 10 V is applied across the length of the material. For 
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t  0, the semiconductor has been uniformly illuminated with light, producing an ex-

cess carrier generation rate of g� � 8 � 1020 cm�3 s�1. The minority carrier lifetime is 

�p0 � 5 � 10�7 s. At t � 0, the light source is turned off. Determine the current in the 

semiconductor as a function of time for t � 0.

6.15 Silicon at T � 300 K is uniformly doped with impurity atoms at concentrations of 
Na � 2 � 1016 cm�3 and Nd � 6 � 1015 cm�3 and is in thermal equilibrium for t  0. 

A light source turns on at t � 0 producing excess carriers with a uniform generation 

rate of g� � 2 � 1021 cm�3 s�1. The electric fi eld is zero. (a) If the maximum, steady-

state excess carrier concentrations are �n � �p � 5 � 1014 cm�3, determine the excess 

minority carrier lifetime. (b) Derive the expressions for the excess carrier concentra-

tion and excess carrier recombination rate as a function of time. (c) Determine the 

times at which the excess carrier concentration is equal to (i) one-fourth, (ii) one-half, 

(iii) three-fourths, and (iv) 95% of the steady-state value.

6.16 In a GaAs material at T � 300 K, the doping concentrations are Nd � 8 � 1015 cm�3 

and Na � 2 � 1015 cm�3. The thermal equilibrium recombination rate is Ro � 4 � 

104 cm�3 s�1. (a) What is the minority carrier lifetime? (b) A uniform generation 

rate for excess carriers results in an excess carrier recombination rate of R� � 2 � 

1021 cm�3 s�1. What is the steady-state excess carrier concentration? (c) What is the 

excess carrier lifetime?

6.17 (a) Consider a silicon sample at T � 300 K doped with 1016 cm�3 donor atoms. Let 

�p0 � 5 � 10�7 s. A light source turns on at t � 0 producing excess carriers with a 

uniform generation rate of g� � 5 � 1020 cm�3 s�1. At t � 5 � 10�7 s, the light source 

turns off. (i) Derive the expression(s) for the excess carrier concentration as a function 

of time over the range 0 � t � �. (ii) What is the value of the excess concentration 

when the light source turns off. (b) Repeat part (a) for the case when the light source 

turns off at t � 2 � 10�6 s. (c) Sketch the excess minority carrier concentrations 

 versus time for parts (a) and (b).

6.18 A semiconductor is uniformly doped with 1017 cm�3 acceptor atoms and has the fol-

lowing properties: Dn � 27 cm2/s, Dp � 12 cm2/s, �n0 � 5 � 10�7 s, and �p0 � 10�7 s. 

An external source has been turned on for t  0 producing a uniform concentration of 

excess carriers at a generation rate of g� � 1021 cm�3 s�1. The source turns off at time 

t � 0 and back on at time t � 2 � 10�6 s. (a) Derive the expressions for the excess 

carrier concentration as a function of time for 0 � t � �. (b) Determine the value of 

excess carrier concentration at (i) t � 0, (ii) t � 2 � 10�6 s, and (iii) t � �. (c) Plot 

the excess carrier concentration as a function of time.

6.19 Consider a bar of p-type silicon that is uniformly doped to a value of Na � 2 � 1016 cm�3 

at T � 300 K. The applied electric fi eld is zero. A light source is incident on the end of 

the semiconductor as shown in Figure P6.19. The steady-state concentration of excess 

carriers generated at x � 0 is �p(0) � �n(0) � 2 � 1014 cm�3. Assume the following 

Figure P6.19 | Figure for Problems 

6.19 and 6.21.

Light

x � 0

p type

x
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236 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

parameters: �n � 1200 cm2 /V-s, �p � 400 cm2 /V-s, �n0 � 10�6 s, and �p0 � 5 � 10�7 s. 

Neglecting surface effects, (a) determine the steady-state excess electron and hole 

concentrations as a function of distance into the semiconductor, and (b) calculate the 

steady-state electron and hole diffusion current densities as a function of distance into 

the semiconductor.

6.20 The x � 0 end of an Na � 1 � 1014 cm�3 doped semi-infi nite (x � 0) bar of silicon 

maintained at T � 300 K is attached to a “minority carrier digester” which makes np � 

0 at x � 0 (np is the minority carrier electron concentration in a p-type  semiconductor). 

The electric fi eld is zero. (a) Determine the thermal-equilibrium  values of n
 p 0 and p

 p 0 . 
(b) What is the excess minority carrier concentration at x � 0? (c) Derive the expres-

sion for the steady-state excess minority carrier concentration as a function of x.

6.21 In a p-type silicon semiconductor, excess carriers are being generated at the end of the 

bar at x � 0 as shown in Figure P6.19. The uniform doping concentrations are Na � 7 � 

1016 cm�3 and Nd � 2 � 1016 cm�3. The steady-state excess carrier concentrations at 

x � 0 are �p(0) � �n(0) � 5 � 1014 cm�3. (Neglect surface effects.) The electric fi eld is 

zero. Assume semiconductor parameters of �n0 � �p0 � 10�6 s, Dn � 25 cm2 /s, and 

Dp � 10 cm2 /s. (a) Calculate �n and the electron and hole diffusion current densities at 

x � 0. (b) Repeat part (a) for x � 5 � 10�3 cm. (c) Repeat part (a) for x � 15 � 10�3 cm.

6.22 Consider an n-type silicon sample. Excess carriers are generated at x � 0 such as 

shown in Figure 6.6. A constant electric fi eld E0 is applied in the �x direction. Show 

that the steady-state excess carrier concentration is given by

�p(x) � A exp (s_x)  x 	 0  and  �p(x) � A exp (s�x)  x  0

 where

 s �  �   1 _ 
Lp

    � 
 �  

_____

 1�
2   � 
 and


 �   
�p Lp E 0 __ 

2Dn

   

6.23 Plot the excess carrier concentration �p(x) versus x from Problem 6.22 for (a) E0 � 0 

and (b) E0 � 10 V/cm. 

*6.24 Consider the semiconductor described in Problem 6.19. Assume a constant electric 

fi eld E0 is applied in the �x direction. (a) Derive the expression for the steady-state 

excess electron concentration. (Assume the solution is of the form  e �ax .) (b) Plot �n 

versus x for (i) E0 � 0 and (ii) E0 � 12 V/cm. (c) Explain the general characteristics 

of the two curves plotted in part (b).

6.25 Assume that a p-type semiconductor is in thermal equilibrium for t  0 and has an 

 infi nite minority carrier lifetime. Also assume that the semiconductor is uniformly 

 illuminated, resulting in a uniform generation rate, g�(t), which is given by

 g�(t) �  G 0  �      for 0  t  T

 g�(t) � 0    for t  0 and t 	 T

 where  G 0  �   is a constant. Find the excess minority carrier concentration as a function 

of time.

*6.26 Consider the n-type semiconductor shown in Figure P6.26. Illumination produces a 

constant excess carrier generation rate, G�0, in the region �L  x  �L. Assume that the 

*Asterisks next to problems indicate problems that are more diffi cult.
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minority carrier lifetime is infi nite and assume that the excess minority carrier hole con-

centration is zero at x � �3L and at x � �3L. Find the steady-state excess minority car-

rier concentration versus x, for the case of low injection and for zero  applied electric fi eld.

6.27 An n-type semiconductor at T � 300 K is used in the Haynes–Shockley experiment. 

The length of the sample is 0.4 cm and the applied voltage is V1 � 8V. The contacts A 

and B are separated by 0.25 cm. The peak of the pulse arrives at contact B 32 �s after 

carrier injection at contact A. The width of the pulse is �t � 9.35 �s. Determine the 

hole mobility and diffusion coeffi cient. Compare the results with the Einstein relation.

6.28 Consider the function f(x, t) � (4�Dt)�1	 2 exp (�x2/4Dt). (a) Show that this  function 

is a solution to the differential equation D(
2f /
x2) � 
f�
t. (b) Show that the  integral 

of the function f(x, t) over x from �� to �� is unity for all values of time. (c) Show 

that this function approaches a � function as t approaches zero.

6.29 The basic equation in the Haynes–Shockley experiment is given by Equation (6.70). 

(a) Plot �p(x, t) versus x for various values of t and for E0 � 0 as well as for E0 � 0. 
(b) Plot �p(x, t) versus t for various values of x and for E0 � 0 as well as for E0 � 0.

Section 6.4 Quasi-Fermi Energy Levels

6.30 An n-type silicon semiconductor, doped at Nd � 4 � 1016 cm�3, is steadily illuminated 

such that g� � 2 � 1021 cm�3 s�1. Assume �n0 � 10�6 s and �p0 � 5 � 10�7 s. 

(a) Determine the thermal-equilibrium value of EF � EFi. (b) Calculate the quasi-

Fermi levels for electrons and holes with respect to EFi. (c) What is the difference (in 

eV) between EFn and EF ?

6.31 Consider a p-type silicon semiconductor at T � 300 K doped at Na � 5 � 1015 cm�3. 

(a) Determine the position of the Fermi level with respect to the intrinsic Fermi level. 

(b) Excess carriers are generated such that the excess carrier concentration is 10 per-

cent of the thermal-equilibrium majority carrier concentration. Determine the quasi-

Fermi levels with respect to the intrinsic Fermi level. (c) Plot the Fermi level and 

quasi-Fermi levels with respect to the intrinsic level.

6.32 Consider n-type silicon doped at Nd � 5 � 1015 cm�3. It is found that EFn � EF � 

1.02 � 10�3 eV. (a) What is the excess carrier concentration? (b) Determine EFn � EFi. 

(c) Calculate EFi � EFp.

6.33 A p-type silicon sample is doped at Na � 6 � 1015 cm�3. It is determined that EFn � 
EFi � 0.270 eV. (a) Determine the excess carrier concentration. (b) Find EFi � EFp. 

(c) (i) Derive the expression for EF � EFp. (ii) Find EF � EFp.

Figure P6.26 | Figure for Problem 6.26.

0 L 3L�L�3L

Illumination

x
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238 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

6.34 Consider n-type GaAs doped at Nd � 1016 cm�3. (a) For an excess concentration of 

�p � (0.02)Nd, determine (i) EFn � EFi and (ii) EFi � EFp. (b) Repeat part (a) if �p � 

(0.1)Nd.

6.35 A p-type gallium arsenide semiconductor at T � 300 K is doped at Na � 1016 cm�3. 

The excess carrier concentration varies linearly from 1014 cm�3 to zero over a  distance 

of 50 �m. Plot the position of the quasi-Fermi levels with respect to the  intrinsic 

Fermi level versus distance.

6.36 Consider p-type silicon at T � 300 K doped to Na � 5 � 1014 cm�3. Assume excess 

carriers are present and assume that EF � EFp � (0.01)kT. (a) Does this condition cor-

respond to low injection? Why or why not? (b) Determine EFn � EFi.

6.37 An n-type silicon sample is doped with donors at a concentration of Nd � 1016 cm�3. Ex-

cess carriers are generated such that the excess hole concentration is given by �p(x) � 

1014 exp (�x�10�4 )cm�3. Plot the function EFi�EFp versus x over the range 0 � x � 
4 � 10�4.

6.38 An n-type silicon semiconductor is doped at Nd � 2 � 1016 cm�3. (a) Plot EFi � EFp 

as a function of �p over the range 1011 � �p � 1015 cm�3. (Use a log scale for �p.) 

(b) Repeat part (a) for EFn � EFi.

Section 6.5 Excess Carrier Lifetime

6.39 Consider Equation (6.99) and the defi nitions of �p0 and �n0 by Equations (6.103) and 

(6.104). Let n� � p� � ni. Assume that in a particular region of a semiconductor, n � 

p � 0. (a) Determine the recombination rate R. (b) Explain what this result means 

physically.

6.40 Again consider Equation (6.99) and the defi nitions of �p0 and �n0 given by 

Equa tions (6.103) and (6.104). Let �p0 � 10�7 s and �n0 � 5 � 10�7 s. Also let n� � 

p� � ni � 1010 cm�3. Assume very low injection so that �n � ni. Calculate R/�n for 

a semiconductor which is (a) n-type (n0 � p0), (b) intrinsic (n0 � p0 � ni), and 

(c)  p-type (p0 � n0).

Section 6.6 Surface Effects

*6.41 Consider an n-type semiconductor as shown in Figure P6.41, doped at Nd � 1016 cm�3 

and with a uniform excess carrier generation rate equal to g� � 1021 cm�3-s�1.  Assume 

that Dp � 10 cm 2/s and �p0 � 10�7 s. The electric fi eld is zero. (a) Determine the 

steady-state excess minority carrier concentration versus x if the surface recombina-

tion velocity at x � 0 is (i) s � 0, (ii) s � 2000 cm/s, and (iii) s � �. (b) Calculate 

the excess minority carrier concentration at x � 0 for (i) s � 0, (ii) s � 2000 cm/s, 

and (iii) s � �.

Figure P6.41 | Figure for Problem 6.41.

s

x

n type

x � 0
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   Problems 239

*6.42 (a) Consider the p-type semiconductor shown in Figure P6.42 with the following 

 parameters: Na � 5 � 1016 cm�3, Dn � 25 cm2/s, and �n0 � 5 � 10�7 s. The surface 

recombination velocities at the two surfaces are shown. The electric fi eld is zero. The 

semiconductor is illuminated at x � 0 with an excess carrier generation rate equal to 

g� � 2 � 1021 cm�3-s �1. Determine the excess minority carrier electron concentration 

versus x in steady state. (b) Repeat part (a) for �n0 � �.

*6.43 Consider the n-type semiconductor shown in Figure P6.43. Assume that Dp � 10 cm2/s 

and �p0 � �. The electric fi eld is zero. Assume that a fl ux of excess electrons and 

holes is incident at x � 0. Let the fl ux of each carrier type be 1019 carriers/cm2-s. 

 Determine the minority carrier hole current versus x if the surface recombination 

 velocity is (a) s(W ) � � and (b) s(W ) � 2000 cm/s.

*6.44 A p-type semiconductor is shown in Figure P6.44. The surface recombination veloci-

ties are shown. The semiconductor is uniformly illuminated for �W  x  0 produc-

ing a constant excess carrier generation rate G�0. Determine the steady-state excess 

carrier concentration versus x if the minority carrier lifetime is infi nite and if the 

 electric fi eld is zero.

6.45 Plot �p(x) versus x for various values of s using Equation (6.113). Choose reasonable 

parameter values.

Summary and Review

*6.46 Consider an n-type semiconductor as shown in Figure P6.41. The material is doped at 

Nd � 3 � 1016 cm�3 and Na � 0. Assume that Dp � 12 cm2/s and �p0 � 2 � 10�7 s. The 

electric fi eld is zero. “Design” the surface recombination velocity so that the  minority 

carrier diffusion current density at the surface is no greater than Jp � �0.18 A/cm2 

with a uniform excess carrier generation rate equal to g� � 3 � 10 21 cm�3-s�1.

6.47 Consider a semiconductor with excess carriers present. From the defi nition of car-

rier lifetimes and recombination rates, determine the average time that an electron 

Figure P6.42 | Figure for Problem 6.42.

x � 0 x � W � 30 � 10–4 cm

s � 0

s � �

x

p type

Figure P6.43 | Figure for Problem 6.43.

x � 0 x � W � 20 � 10–4 cm

s � 0

s(W )

x

n type

Figure P6.44 | Figure for Problem 6.44.

Illumination

s � 0

x � �W x � �Wx � 0
s � �
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240 CHAPTER 6   Nonequilibrium Excess Carriers in Semiconductors

stays in the conduction band and the average time that a hole stays in the valence 

band.  Discuss these relations for (a) an intrinsic semiconductor and (b) an n-type 

 semiconductor.

*6.48 (a) Design a GaAs photoconductor that is 4 �m thick. Assume that the material is 

doped at Nd � 1016 cm�3 and has lifetime values of �
 n 0 � 10�7 s and �

 p 0 � 5 � 10�8 

s. With an excitation of g� � 1021 cm�3 s�1, a photocurrent of at least 2 �A is required 

with an applied voltage of 2 V. (b) Repeat the design for a silicon photoconductor that 

has the same parameters as given in part (a).
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7
The pn Junction

U
p to this point in the text, we have been considering the properties of the semi-

conductor material. We calculated electron and hole concentrations in thermal 

equilibrium and determined the position of the Fermi level. We then consid-

ered the nonequilibrium condition in which excess electrons and holes are present in 

the semiconductor. We now wish to consider the situation in which a p-type and an 

n-type semiconductor are brought into contact with one another to form a pn junction.

 Most semiconductor devices contain at least one junction between p-type and 

n-type semiconductor regions. Semiconductor device characteristics and operation 

are intimately connected to these pn junctions, so considerable attention is devoted 

initially to this basic device. 

 The electrostatics of the zero-biased and reverse-biased pn junction is consid-

ered in this chapter. The current–voltage characteristics of the pn junction diode are 

developed in the next chapter. ■

7.0 | PREVIEW
In this chapter, we will:

■ Consider a uniformly doped pn junction, in which one region of the semicon-

ductor is uniformly doped with acceptor atoms and the adjacent region is uni-

formly doped with donor atoms.

■ Determine the energy-band diagram of a pn junction in thermal equilibrium.

■ Discuss the creation of a space charge region between the p and n regions. 

■ Apply Poisson’s equation to determine the electric fi eld in the space charge 

 region and calculate the built-in potential barrier.

■ Analyze the changes that occur in the pn junction when a reverse-biased voltage is 

applied. Derive expressions for space charge width and depletion capacitance.

■ Analyze the voltage breakdown characteristics of a pn junction.

■ Consider the properties of a nonuniformly doped pn junction. Specifi c doping 

profi les can lead to desirable properties of the pn junction.

C H A P T E R
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242 CHAPTER 7   The pn Junction

7.1 | BASIC STRUCTURE OF THE pn JUNCTION
Figure 7.1a schematically shows the pn junction. It is important to realize that the en-

tire semiconductor is a single-crystal material in which one region is doped with ac-

ceptor impurity atoms to form the p region and the adjacent region is doped with 

donor atoms to form the n region. The interface separating the n and p regions is 

 referred to as the metallurgical junction.
 The impurity doping concentrations in the p and n regions are shown in Fig-

ure 7.1b. For simplicity, we will consider a step junction in which the doping concen-

tration is uniform in each region and there is an abrupt change in doping at the junc-

tion. Initially, at the metallurgical junction, there is a very large density gradient in 

both electron and hole concentrations. Majority carrier electrons in the n region will 

begin diffusing into the p region, and majority carrier holes in the p region will begin 

diffusing into the n region. If we assume there are no external connections to the 

semiconductor, then this diffusion process cannot continue indefi nitely. As electrons 

diffuse from the n region, positively charged donor atoms are left behind. Similarly, 

as holes diffuse from the p region, they uncover negatively charged acceptor atoms. 

The net positive and negative charges in the n and p regions induce an electric fi eld 

in the region near the metallurgical junction, in the direction from the positive to the 

negative charge, or from the n to the p region.

 The net positively and negatively charged regions are shown in Figure 7.2. These 

two regions are referred to as the space charge region. Essentially all electrons and 

holes are swept out of the space charge region by the electric fi eld. Since the space 

charge region is depleted of any mobile charge, this region is also referred to as the 

p n

Metallurgical

junction

(a)

Figure 7.1 | (a) Simplifi ed geometry of 

a pn junction; (b) doping profi le of an 

ideal uniformly doped pn junction.

Na

NdHole

diffusion

Electron

diffusion

x � 0

(b)

Figure 7.2 | The space charge region, the electric fi eld, and the 

forces acting on the charged carriers.

p n

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

Space charge region

E-field

“Diffusion

force” on

holes

“Diffusion

force” on

electrons

E-field 

force on

holes

E-field

force on

electrons

Na negative

charge

Nd positive

charge

nea29583_ch07_241-275.indd   242nea29583_ch07_241-275.indd   242 12/11/10   11:32 AM12/11/10   11:32 AM



 7.2   Zero Applied Bias 243

depletion region; these two terms will be used interchangeably. Density gradients 

still exist in the majority carrier concentrations at each edge of the space charge 

region. We can think of a density gradient as producing a “diffusion force” that acts 

on the majority carriers. These diffusion forces, acting on the electrons and holes at 

the edges of the space charge region, are shown in the fi gure. The electric fi eld in 

the space charge region produces another force on the electrons and holes, which is 

in the opposite direction to the diffusion force for each type of particle. In thermal 

equilibrium, the diffusion force and the E-fi eld force exactly balance each other.

7.2 | ZERO APPLIED BIAS
We have considered the basic pn junction structure and discussed briefl y how the 

space charge region is formed. In this section we will examine the properties of the 

step    junction in thermal equilibrium, where no currents exist and no external excita-

tion is  applied. We will determine the space charge region width, electric fi eld, and 

potential through the depletion region.

 The analysis in this chapter is based on two assumptions that we have consid-

ered in previous chapters. The fi rst assumption is that the Boltzmann approximation 

is valid, which means that each semiconductor region is nondegenerately doped. The 

second assumption is that complete ionization exists, which means that the tempera-

ture of the pn junction is not “too low.”

7.2.1  Built-in Potential Barrier

If we assume that no voltage is applied across the pn junction, then the junction is 

in thermal equilibrium—the Fermi energy level is constant throughout the entire 

system. Figure 7.3 shows the energy-band diagram for the pn junction in thermal 

equilibrium. The conduction and valance band energies must bend as we go through 

the space charge region, since the relative position of the conduction and valence 

bands with respect to the Fermi energy changes between p and n regions.

Figure 7.3 | Energy-band diagram of a pn junction in 

thermal equilibrium.

Ec

EFi

EFi
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244 CHAPTER 7   The pn Junction

 Electrons in the conduction band of the n region see a potential barrier in 

trying to move into the conduction band of the p region. This potential barrier 

is referred to as the built-in potential barrier and is denoted by Vbi. The built-in 

potential barrier maintains equilibrium between majority carrier electrons in the 

n region and minority carrier electrons in the p region, and also between majority 

carrier holes in the p region and minority carrier holes in the n region. This poten-

tial difference across the junction cannot be measured with a voltmeter because 

new potential barriers will be formed between the probes and the semiconductor 

that will cancel Vbi. The potential Vbi maintains equilibrium, so no current is pro-

duced by this voltage.

 The intrinsic Fermi level is equidistant from the conduction band edge through 

the junction; thus, the built-in potential barrier can be determined as the difference 

 between the intrinsic Fermi levels in the p and n regions. We can defi ne the potentials 

�Fn and �Fp as shown in Figure 7.3, so we have

 Vbi � ��Fn� � ��Fp�  (7.1)

 In the n region, the electron concentration in the conduction band is given by

 n0 � Nc exp  �   �(Ec � EF)
 __ 

kT
   �  (7.2)

which can also be written in the form

 n0 � ni exp  �   EF � EFi  __ 
kT

   �  (7.3)

where ni and EFi are the intrinsic carrier concentration and the intrinsic Fermi energy, 

respectively. We may defi ne the potential �Fn in the n region as

 e�Fn � EFi � EF (7.4)

Equation (7.3) may then be written as

 n0 � ni exp  �   �(e�Fn)
 __ 

kT
   �  (7.5)

Taking the natural log of both sides of Equation (7.5), setting n0 � Nd, and solving 

for the potential, we obtain

 �Fn �   �kT _ e   ln  �   Nd
 
 _ ni 
   �  (7.6)

 Similarly, in the p region, the hole concentration is given by

 p0 � Na � ni exp  �   EFi � EF 
 __ 

kT
   �  (7.7)

where Na is the acceptor concentration. We can defi ne the potential �Fp in the p re-

gion as

 e�Fp � EFi � EF (7.8)
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Combining Equations (7.7) and (7.8), we fi nd that

 �Fp � �   kT _ e   ln  �   Na  _ ni 
   �  (7.9)

 Finally, the built-in potential barrier for the step junction is found by substituting 

Equations (7.6) and (7.9) into Equation (7.1), which yields

 Vbi �   kT _ 
e
   ln  �   NaNd  _ 

 n  i  
2 
   �  � Vt ln  �   NaNd  _ 

 n  i  
2 
   �  (7.10)

where Vt � kT/e and is defi ned as the thermal voltage.

 At this time, we should note a subtle but important point concerning notation. 

Previously in the discussion of a semiconductor material, Nd and Na denoted donor 

and acceptor impurity concentrations in the same region, thereby forming a compen-

sated semiconductor. From this point on in the text, Nd and Na will denote the net 

donor and acceptor concentrations in the individual n and p regions, respectively. If 

the p region, for example, is a compensated material, then Na will represent the dif-

ference between the actual acceptor and donor impurity concentrations. The param-

eter Nd is defi ned in a similar manner for the n region.

   EXAMPLE 7.1Objective: Calculate the built-in potential barrier in a pn junction.

 Consider a silicon pn junction at T � 300 K with doping concentrations of Na � 

2 � 1017 cm�3 and Nd � 1015 cm�3.

■ Solution
The built-in potential barrier is determined from Equation (7.10) as

Vbi � Vt ln  �   Na Nd  _ 
 n i  

2 
   �  � (0.0259) ln  �   (2 � 1017)(1015)

  ___  
(1.5 � 1010)2

   �  � 0.713 V

If we change the doping concentration in the p region of the pn junction such that the doping 

concentrations become Na � 1016 cm�3 and Nd � 1015 cm�3, then the built-in potential  barrier 

becomes Vbi � 0.635 V.

■ Comment
The built-in potential barrier changes only slightly as the doping concentrations change by 

 orders of magnitude because of the logarithmic dependence.

■ EXERCISE PROBLEM
Ex 7.1  (a) Calculate the built-in potential barrier in a silicon pn junction at T � 300 K for 

(i) Na � 5 � 1015 cm�3, Nd � 1017 cm�3 and (ii) Na � 2 � 1016 cm�3, Nd � 2 � 1015 cm�3. 

(b) Repeat part (a) for a GaAs pn junction.

  

[Ans. (a) (i) 0.736 V, (ii) 0.671 V; (b) (i) 1.20 V, (ii) 1.14 V]
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246 CHAPTER 7   The pn Junction

7.2.2  Electric Field

An electric fi eld is created in the depletion region by the separation of positive and 

negative space charge densities. Figure 7.4 shows the volume charge density distri-

bution in the pn junction assuming uniform doping and assuming an abrupt junction 

approximation. We will assume that the space charge region abruptly ends in the 

n region at x � �xn and abruptly ends in the p region at x � �xp (xp is a positive 

quantity).

 The electric fi eld is determined from Poisson’s equation, which, for a one- 

dimensional analysis, is

   
d 2�(x)

 __ 
dx2

   �   
��(x)

 __ �s 
   � �   

d E(x)
 _ 

dx
   (7.11)

where �(x) is the electric potential, E(x) is the electric fi eld, �(x) is the volume charge 

density, and �s is the permittivity of the semiconductor. From Figure 7.4, the charge 

densities are

 �(x) � �eNa  �xp � x � 0 (7.12a)

and

 �(x) � eNd  0 � x � xn (7.12b)

 The electric fi eld in the p region is found by integrating Equation (7.11). We 

have

 E � 

∫
 

 

 

 
 

 

 

 
  
�(x)

 _ �s
     dx � � 

∫
 

 

 

 
 

 

 

 
  
eNa

 

 _ �s 

    dx �   
�eNa  _ �s 

   x � C1 (7.13)

where C1 is a constant of integration. The electric fi eld is assumed to be zero in the 

neutral p region for x � �xp since the currents are zero in thermal equilibrium. Since 

there are no surface charge densities within the pn junction structure, the electric 

�eNd

�eNa

�xn

�xp

p n

�

�

� (C/cm3)

Figure 7.4 | The space charge density in 

a uniformly doped pn junction assuming 

the abrupt junction approximation.
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fi eld is a continuous function. The constant of integration is determined by setting 

E � 0 at x � �xp. The electric fi eld in the p region is then given by

 E �   
�eNa  _ �s 

  
 (x � xp)  �xp � x � 0 (7.14)

In the n region, the electric fi eld is determined from

 E �  

∫
 

 

 

 
 

 

 

 
  
(eNd)

 _ �s 

    dx �   
eNd  _ �s 

   x � C2 (7.15)

where C2 is again a constant of integration and is determined by setting E � 0 at 

x � xn, since the E-fi eld is assumed to be zero in the n region and is a continuous 

function. Then

 E �   
�eNd  _ �s 

   (xn � x)     0 � x � xn (7.16)

The electric fi eld is also continuous at the metallurgical junction, or at x � 0. Setting 

Equations (7.14) and (7.16) equal to each other at x � 0 gives

 Na xp � Nd xn (7.17)

Equation (7.17) states that the number of negative charges per unit area in the p re-

gion is equal to the number of positive charges per unit area in the n region.

 Figure 7.5 is a plot of the electric fi eld in the depletion region. The electric fi eld 

direction is from the n to the p region, or in the negative x direction for this geom-

etry. For the uniformly doped pn junction, the E-fi eld is a linear function of distance 

through the junction, and the maximum (magnitude) electric fi eld occurs at the met-

allurgical junction. An electric fi eld exists in the depletion region even when no volt-

age is applied between the p and n regions.

 The potential in the junction is found by integrating the electric fi eld. In the 

p region then, we have

 �(x) � � 

∫
 

 

 

 
 

 

 

 
  E(x)dx �  

∫
 

 

 

 
 

 

 

 
    

eNa  _ �s 
   (x � xp) dx (7.18)

Figure 7.5 | Electric fi eld in the space 

charge region of a uniformly doped pn 

junction.

�xnx � 0�xp

p
E

n

nea29583_ch07_241-275.indd   247nea29583_ch07_241-275.indd   247 12/11/10   11:32 AM12/11/10   11:32 AM



248 CHAPTER 7   The pn Junction

or

 �(x) �   
eNa  _ �s 

     �   x2

 _ 
2
   � xp · x �  �  C 1  

 ′  (7.19)

where  C 1  
 ′  is again a constant of integration. The potential difference through the 

pn junction is the important parameter, rather than the absolute potential, so we may 

arbitrarily set the potential equal to zero at x � �xp . The constant of integration is 

then found as

  C 1  
 ′   �   

eNa  _ 
2�s 

    x  p  
2  (7.20)

so that the potential in the p region can now be written as

 �(x) �   
eNa  _ 
2�s 

   (x � xp)
2    (�xp � x � 0) (7.21)

 The potential in the n region is determined by integrating the electric fi eld in the 

n region, or

 �(x) �  

∫
 

 

 

 
 

 

 

 
    

eNd  _ �s 
   (xn � x)dx (7.22)

Then

 �(x) �   
eNd  _ �s 

    � xn · x �   x
2  _ 

2
   �  �  C 2  

 ′  (7.23)

where  C 2  
 ′   is another constant of integration. The potential is a continuous function, 

so setting Equation (7.21) equal to Equation (7.23) at the metallurgical junction, or 

at x � 0, gives

  C 2  
 ′  �   

eNa  _ 
2�s 

    x p  
2  (7.24)

The potential in the n region can thus be written as

 �(x) �   
eNd  _ �s 

    � xn · x �   x
2  _ 

2
   �  �   

eNa  _ 
2�s 

    x p  
2      (0 � x � xn) (7.25)

 Figure 7.6 is a plot of the potential through the junction and shows the quadratic 

dependence on distance. The magnitude of the potential at x � xn is equal to the built-

in potential barrier. Then from Equation (7.25), we have

 Vbi � ��(x � xn)� �   e _ 
2�s 

    � Nd   x  n  
2  � Na

   x p  
2  �  (7.26)

 The potential energy of an electron is given by E � �e�, which means that the 

electron potential energy also varies as a quadratic function of distance through the 

space charge region. The quadratic dependence on distance was shown in the energy-

band diagram of Figure 7.3, although we did not explicitly know the shape of the curve 

at that time.
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7.2.3  Space Charge Width

We can determine the distance that the space charge region extends into the p and 

n regions from the metallurgical junction. This distance is known as the space charge 

width. From Equation (7.17), we may write, for example,

 xp �   
Nd  xn  _ 
Na 

   (7.27)

Then, substituting Equation (7.27) into Equation (7.26) and solving for xn, we obtain

 xn �   �   2�sVbi  _ 
e
    �   Na  _ 

Nd 
   �   �    1 

 __ 
Na � Nd 

   �  �  1	2

  (7.28)

Equation (7.28) gives the space charge width, or the width of the depletion region, 

xn extending into the n-type region for the case of zero applied voltage.

 Similarly, if we solve for xn from Equation (7.17) and substitute into Equa-

tion (7.26), we fi nd

 xp �   �   2�sVbi  _ 
e
    �   Nd  _ 

Na 
   �   �     1 

 __ 
Na � Nd 

   �  �  1	2

  (7.29)

where xp is the width of the depletion region extending into the p region for the case 

of zero applied voltage.

 The total depletion or space charge width W is the sum of the two components, or

 W � xn � xp (7.30)

Using Equations (7.28) and (7.29), we obtain

 W �   �   2�sVbi  _ e    �   Na � Nd  __ 
NaNd 

   �  �  1	2

  (7.31)

Figure 7.6 | Electric potential through the space charge 

region of a uniformly doped pn junction.

�xp x � 0 �xn

Vbi

p n
�
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250 CHAPTER 7   The pn Junction

The built-in potential barrier can be determined from Equation (7.10), and then the 

total space charge region width is obtained using Equation (7.31).

EXAMPLE 7.2 Objective: Calculate the space charge width and electric fi eld in a pn junction for zero bias.

 Consider a silicon pn junction at T � 300 K with doping concentrations of Na � 1016 cm�3 

and Nd � 1015 cm�3.

■ Solution
In Example 7.1, we determined the built-in potential barrier as Vbi � 0.635 V. From Equa-

tion (7.31), the space charge width is

 W �   �   2�sVbi  _ e    �   Na � Nd  __ 
Na  Nd 

   �  �  1	2

 

 �   �   2(11.7)(8.85 � 10�14)(0.635) 
   _____  

1.6 � 10�19 
    �   1016 � 1015  __ 

(1016)(1015)
   �  �  1	2

 

 � 0.951 � 10�4 cm � 0.951 �m

Using Equations (7.28) and (7.29), we can fi nd xn � 0.8644 �m, and xp � 0.0864 �m.

 The peak electric fi eld at the metallurgical junction, using Equation (7.16) for example, is

 Emax � �   
eNd xn  _ �s 

   � �   
(1.6 � 10�19)(1015)(0.8644 � 10�4)

   ______   
(11.7)(8.85 � 10�14)

   � �1.34 � 104 V/cm

■ Comment
The peak electric fi eld in the space charge region of a pn junction is quite large. We must keep 

in mind, however, that there is no mobile charge in this region; hence there will be no drift 

current. We may also note, from this example, that the width of each space charge region is a 

reciprocal function of the doping concentration: The depletion region will extend further into 

the lower-doped region.

■ EXERCISE PROBLEM

Ex 7.2  A silicon pn junction at T � 300 K with zero applied bias has doping concentrations 

of Nd � 5 � 1016 cm�3 and Na � 5 � 1015 cm�3. Determine xn, xp, W, and �Emax�.

xp � 4.11 � 10
�5

 cm, W � 4.52 � 10
�5

 cm, �Emax� � 3.18 � 10
4
 V/cm)

(Ans. xn � 4.11 � 10
�6

 cm,

  TEST YOUR UNDERSTANDING

TYU 7.1 Calculate Vbi, xn, xp, W, and �Emax� for a silicon pn junction at zero bias and T � 300 K 

for doping concentrations of (a) Na � 2 � 1017 cm�3, Nd � 1016 cm�3 and 

(b) Na � 4 � 1015 cm�3, Nd � 3 � 1016 cm�3. 

W � 0.5064 �m, �Emax� � 2.76 � 10
4
 V/cm]

  Emax� � 4.77 � 10
4
 V/cm; (b) Vbi � 0.699 V, xn � 0.0596 �m, xp � 0.4469 �m,

[Ans. (a) Vbi � 0.772 V, xn � 0.3085 �m, xp � 0.0154 �m, W � 0.3240 �m,

TYU 7.2 Repeat Exercise Problem Ex 7.2 for a GaAs pn junction. 

�Emax� � 3.86 � 10
4
 V/cm)

(Ans. Vbi � 1.186 V, xn � 0.05590 �m, xp � 0.5590 �m, W � 0.6149 �m,
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 7.3   Reverse Applied Bias 251

7.3 | REVERSE APPLIED BIAS
If we apply a potential between the p and n regions, we will no longer be in an equi-

librium condition—the Fermi energy level will no longer be constant through the 

system. Figure 7.7 shows the energy-band diagram of the pn junction for the case 

when a positive voltage is applied to the n region with respect to the p region. As 

the positive potential is downward, the Fermi level on the n side is below the Fermi 

level on the p side. The difference between the two is equal to the applied voltage in 

units of energy.

 The total potential barrier, indicated by Vtotal , has increased. The applied poten-

tial is the reverse-biased condition. The total potential barrier is now given by

 Vtotal � ��Fn� � ��Fp� � VR (7.32)

where VR is the magnitude of the applied reverse-biased voltage. Equation (7.32) can 

be rewritten as

 Vtotal � Vbi � VR (7.33)

where Vbi is the same built-in potential barrier we had defi ned in thermal  equilibrium.

7.3.1  Space Charge Width and Electric Field

Figure 7.8 shows a pn junction with an applied reverse-biased voltage VR. Also 

 indicated in the fi gure are the electric fi eld in the space charge region and the  electric 

fi eld Eapp , induced by the applied voltage. The electric fi elds in the neutral p and n re-

gions are essentially zero, or at least very small, which means that the magnitude of the 

electric fi eld in the space charge region must increase above the thermal-equilibrium 

value due to the applied voltage. The electric fi eld originates on positive charge and 

terminates on negative charge; this means that the number of positive and negative 

eVtotal

Ec

EFi

EFi

EFp

EFn

Ec

Ev

eVREv

e�Fp

e�Fn

p n

�

Figure 7.7 | Energy-band diagram of a pn junction under 

reverse bias.
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252 CHAPTER 7   The pn Junction

charges must increase if the electric fi eld increases. For given impurity doping con-

centrations, the number of positive and negative charges in the depletion region can 

be increased only if the space charge width W increases. The space charge width W 

increases, therefore, with an increasing reverse-biased voltage VR. We are assuming 

that the electric fi eld in the bulk n and p regions is zero. This assumption will become 

clearer in the next chapter when we discuss the current–voltage characteristics.

 In all of the previous equations, the built-in potential barrier can be replaced by 

the total potential barrier. The total space charge width can be written from Equa-

tion (7.31) as

 W �   �   2�s(Vbi � VR)   ___ 
e
    �   Na � Nd  __ 

Na Nd 
   �  �  1	2

  (7.34)

showing that the total space charge width increases as we apply a reverse-biased volt-

age. By substituting the total potential barrier Vtotal into Equations (7.28) and (7.29), 

the space charge widths in the n and p regions, respectively, can be found as a func-

tion of applied reverse-biased voltage.

Figure 7.8 | A pn junction, with an applied reverse-biased 

voltage, showing the directions of the electric fi eld induced 

by VR and the space charge electric fi eld.

p n

� �

W

VR

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

E

Eapp

EXAMPLE 7.3 Objective: Calculate the width of the space charge region in a pn junction when a reverse-

biased voltage is applied.

 Again consider a silicon pn junction at T � 300 K with doping concentrations of Na � 

1016 cm�3 and Nd � 1015 cm�3. Assume that ni � 1.5 � 1010 cm�3 and VR � 5 V.

■ Solution
The built-in potential barrier was calculated in Example 7.1 for this case and is Vbi � 0.635 V. 

The space charge width is determined from Equation (7.34). We have

 W �   �   2(11.7)(8.85 � 10�14)(0.635 � 5)   ______  

1.6 � 10�19
    �   1016 � 1015

 __ 
(1016)(1015)

   �  �  1	2

 

so that

 W � 2.83 � 10�4 cm � 2.83 �m
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 7.3   Reverse Applied Bias 253

 The magnitude of the electric fi eld in the depletion region increases with an ap-

plied reverse-biased voltage. The electric fi eld is still given by Equations (7.14) and 

(7.16) and is still a linear function of distance through the space charge region. Since 

xn and xp increase with reverse-biased voltage, the magnitude of the electric fi eld also 

increases. The maximum electric fi eld still occurs at the metallurgical junction.

 The maximum electric fi eld at the metallurgical junction, from Equations (7.14) 

and (7.16), is

 Emax �   
�eNd  xn  __ �s 

   �   
�eNaxp 

 __ �s 
   (7.35)

If we use either Equation (7.28) or (7.29) in conjunction with the total potential bar-

rier, Vbi � VR, then

 Emax � �   �    2e(Vbi � VR) 
  ___ �s 

    �   Na  Nd  __ 
Na � Nd 

   �  �  1	2

  (7.36)

We can show that the maximum electric fi eld in the pn junction can also be written as

 Emax �   
�2(Vbi � VR)

  ___ 
W

   (7.37)

where W is the total space charge width.

■ Comment
The space charge width has increased from 0.951 �m at zero bias to 2.83 �m at a reverse bias 

of 5 V.

■ EXERCISE PROBLEM
Ex 7.3  (a) A silicon pn junction at T � 300 K has doping concentrations of Na � 5 � 

1015 cm�3 and Nd � 5 � 1016 cm�3. A reverse-biased voltage of VR � 4 V is applied. 

 Determine Vbi, xn, xp, and W. (b) Repeat part (a) for VR � 8 V. 

(b) Vbi � 0.718, xn � 0.1432 �m, xp � 1.432 �m, W � 1.576 �m]

[Ans. (a) Vbi � 0.718 V, xn � 0.1054 �m, xp � 1.054 �m, W � 1.159 �m;

 

   DESIGN
   EXAMPLE 7.4
Objective: Design a pn junction to meet maximum electric fi eld and voltage specifi cations.

 Consider a silicon pn junction at T � 300 K with a p-type doping concentration of 

Na � 2 � 1017 cm�3. Determine the n-type doping concentration such that the maximum elec-

tric fi eld is �Emax � � 2.5 � 105 V/cm at a reverse-biased voltage of VR � 25 V.

■ Solution
The maximum electric fi eld is given by Equation (7.36). Neglecting Vbi compared to VR, we 

can write

  
 Emax  
  �   �   2eVR 
 _ �s 

    �   Na Nd   __ 
Na � Nd 

   �  �  1	2
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254 CHAPTER 7   The pn Junction

7.3.2  Junction Capacitance

Since we have a separation of positive and negative charges in the depletion region, a 

capacitance is associated with the pn junction. Figure 7.9 shows the charge densities in 

the depletion region for applied reverse-biased voltages of VR and VR � dVR. An increase 

or

 2.5 � 105 �   �   2(1.6 � 10�19 )(25)
  ____  

(11.7)(8.85 � 10�14)
    �   (2 � 1017 )Nd 

  ___  
2 � 1017 � Nd 

   �  �  1	2

  

which yields

 Nd � 8.43 � 1015 cm�3 

■ Conclusion
A smaller value of Nd results in a smaller value of �Emax� for a given reverse-biased voltage. 

The value of Nd determined in this example, then, is the maximum value that will meet the 

specifi cations.

■ EXERCISE PROBLEM
Ex 7.4  The maximum electric fi eld in a reverse-biased GaAs pn junction at T � 300 K is 

to be limited to  
 Emax  
  � 7.2 � 104 V/cm. The doping concentrations are Nd � 5 � 

1015 cm�3 and Na � 3 � 1016 cm�3. Determine the maximum reverse-biased voltage 

that can be applied. 

(Ans. VR � 3.21 V)

Figure 7.9 | Differential change in the space charge width with 

a differential change in reverse-biased voltage for a uniformly 

doped pn junction.

�eNd

�eNa

�dQ	

�dQ	

dxn

�xn

�xp

dxp

np

With applied VR

With applied VR � dVR

�

�

�
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 7.3   Reverse Applied Bias 255

in the reverse-biased voltage dVR will uncover additional positive charges in the n region 

and additional negative charges in the p region. The junction capacitance is defi ned as

 C	 �   
dQ	

 _ 
dVR

   (7.38)

where

 dQ	 � eNd dxn � eNa dxp (7.39)

The differential charge dQ	 is in units of C/cm2 so that the capacitance C	 is in units 

of farads per square centimeter F/cm2), or capacitance per unit area.

 For the total potential barrier, Equation (7.28) may be written as

 xn �   �   2�s(Vbi � VR)
 ___ e    �   Na  _ 

Nd 
   �   �     1 

 __ 
Na � Nd 

   �  �  1	2

  (7.40)

The junction capacitance can be written as

 C	 �   
dQ	

 _ 
dVR 

   � eNd   
dxn  _ 
dVR

   (7.41)

so that

 C	 �   �   e�sNaNd   ____  
2(Vbi � VR)(Na � Nd)

   �  1	2

  (7.42)

Exactly the same capacitance expression is obtained by considering the space charge 

region extending into the p region xp. The junction capacitance is also referred to as 

the depletion layer capacitance.

   EXAMPLE 7.5Objective: Calculate the junction capacitance of a pn junction.

 Consider the same pn junction as that in Example 7.3. Again assume that VR � 5 V.

■ Solution
The junction capacitance is found from Equation (7.42) as

 C	 �   �   (1.6 � 10�19)(11.7)(8.85 � 10�14)(1016)(1015)
    ________   

2(0.635 � 5)(1016 � 1015)
   �  1	2

 

or

 C	 � 3.66 � 10�9 F/cm2

If the cross-sectional area of the pn junction is, for example, A � 10�4 cm2, then the total junc-

tion capacitance is

 C � C	 � A � 0.366 � 10�12 F � 0.366 pF

■ Comment
The value of junction capacitance is usually in the pF, or smaller, range.
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256 CHAPTER 7   The pn Junction

 If we compare Equation (7.34) for the total depletion width W of the space 

charge region under reverse bias and Equation (7.42) for the junction capacitance C	, 
we fi nd that we can write

 C	 �   
�s  _ 
W

   (7.43)

Equation (7.43) is the same as the capacitance per unit area of a parallel plate capaci-

tor. Considering Figure 7.9, we may have come to this same conclusion earlier. Keep 

in mind that the space charge width is a function of the reverse-biased voltage so that 

the junction capacitance is also a function of the reverse-biased voltage applied to 

the pn junction.

7.3.3  One-Sided Junctions

Consider a special pn junction called the one-sided junction. If, for example, Na � 
Nd, this junction is referred to as a p�n junction. The total space charge width, from 

Equation (7.34), reduces to 

 W �   �   2�s(Vbi � VR)
 ___ 

eNd 
   �  1	2

  (7.44)

Considering the expressions for xn and xp, we have for the p�n junction

 xp � xn (7.45)

and

 W � xn (7.46)

Almost the entire space charge layer extends into the low-doped region of the junc-

tion. This effect can be seen in Figure 7.10.

 The junction capacitance of the p�n junction reduces to

 C	 �   �   e�s  Nd  __ 
2(Vbi � VR)

   �  1	2

  (7.47)

The depletion layer capacitance of a one-sided junction is a function of the doping 

concentration in the low-doped region. Equation (7.47) may be manipulated to give

   �   1 _ 
C	

   �  2  �   
2(Vbi � VR)

 __ 
e�sNd 

   (7.48)

which shows that the inverse capacitance squared is a linear function of applied 

 reverse-biased voltage.

■ EXERCISE PROBLEM
Ex 7.5  Consider a GaAs pn junction at T � 300 K doped to Na � 5 � 1015 cm�3 and Nd � 

2 � 1016 cm�3. (a) Calculate Vbi. (b) Determine the junction capacitance C	 for VR � 

4 V. (c) Repeat part (b) for VR � 8 V. 

[Ans. (a) Vbi � 1.16 V; (b) C	 � 8.48 � 10
�9

 F/cm
2
; (c) C	 � 6.36 � 10

�9
 F/cm

2
 ]
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 7.3   Reverse Applied Bias 257

 Figure 7.11 shows a plot of Equation (7.48). The built-in potential of the junc-

tion can be determined by extrapolating the curve to the point where (1/C	)2 � 0. 
The slope of the curve is inversely proportional to the doping concentration of the 

low-doped region in the junction; thus, this doping concentration can be experimen-

tally determined. The assumptions used in the derivation of this capacitance include 

uniform doping in both semiconductor regions, the abrupt junction approximation, 

and a planar junction.

Figure 7.11 | (1/C	)2 versus VR of a 

uniformly doped pn junction.

0 VR�Vbi

Slope �
2

e�sNd

2
1

C	

Figure 7.10 | Space charge density of a 

one-sided p�n junction.

�eNd

�eNa

�xn

�xp

p� n

�

�

�

   EXAMPLE 7.6Objective: Determine the impurity doping concentrations in a p�n junction given the 

parameters from Figure 7.11.

 Assume that the intercept and the slope of the curve in Figure 7.11 are Vbi � 0.725 V and 

6.15 � 1015 (F/cm2 )�2 (V)�1, respectively, for a silicon p�n junction at T � 300 K.

■ Solution
The slope of the curve in Figure 7.11 is given by 2/e �s Nd, so we may write 

 Nd �   2 _ e �s
   �   1 _ 

slope
   �   2  ________    

(1.6 � 10�19)(11.7)(8.85 � 10�14)(6.15 � 1015)
   

or

 Nd � 1.96 � 1015 cm�3 

From the expression for Vbi, which is

 Vbi � Vt ln  �   Na Nd  _ 
 n   i  

2 
   �  

we can solve for Na as

 Na �   
 n   i  

2 
 _ 

Nd

   exp  �   Vbi  _ 
Vt 

   �  �   
  � 1.5 � 1010  �  2 

  ___  
1.963 � 1015

   exp  �   0.725 __ 
0.0259

   �  
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258 CHAPTER 7   The pn Junction

 A one-sided pn junction is useful for experimentally determining the doping 

concentrations and built-in potential.

which yields

 Na � 1.64 � 1017 cm�3 

■ Comment
The results of this example show that Na � Nd; therefore the assumption of a one-sided 

 junction was valid.

■ EXERCISE PROBLEM
Ex 7.6  The experimentally measured junction capacitance of a one-sided silicon n�p junc-

tion biased at VR � 3 V and at T � 300 K is C � 0.105 pF. The built-in potential 

barrier is found to be Vbi � 0.765 V. The cross-sectional area is A � 10�5 cm2. Find 

the doping concentrations. 

(Ans. Na � 5.01 � 10
15

 cm
�3

, Nd � 3.02 � 10
17

 cm
�3

)

  TEST YOUR UNDERSTANDING

TYU 7.3  (a) A silicon pn junction at T � 300 K is reverse biased at VR � 8 V. The doping 

concentrations are Na � 5 � 1016 cm�3 and Nd � 5 � 1015 cm�3. Determine xn, xp, 
W, and �Emax�. (b) Repeat part (a) for a reverse-biased voltage of VR � 12 V.

xp � 1.73 � 10
�5

 cm, W � 1.90 � 10
�4

 cm,  
 Emax  
  � 1.34 � 10
5
 V/cm]

W � 1.57 � 10
�4

 cm,  
 Emax  
  � 1.11 � 10
5
 V/cm; (b) xn � 1.73 � 10

�4
 cm,

[Ans. (a) xn � 1.43 � 10
�4

 cm, xp � 1.43 � 10
�5

 cm,

TYU 7.4  A silicon pn junction at T � 300 K has doping concentrations of Nd � 3 � 

1016 cm�3 and Na � 8 � 1015 cm�3, and has a cross-sectional area of A � 5 � 

10�5 cm2. Determine the junction capacitance at (a) VR � 2 V and (b) VR � 5 V. 

[Ans. (a) 0.694 pF; (b) 0.478 pF]

7.4 | JUNCTION BREAKDOWN
In the last section, we determined the effects of applying a reverse-biased voltage 

across the pn junction. However, the reverse-biased voltage may not increase with-

out limit; at some particular voltage, the reverse-biased current will increase rapidly. 

The applied voltage at this point is called the breakdown voltage.
 Two physical mechanisms give rise to the reverse-biased breakdown in a pn junc-

tion: the Zener effect and the avalanche effect. Zener breakdown occurs in highly doped 

pn junctions through a tunneling mechanism. In a highly doped junction, the conduction 

and valence bands on opposite sides of the junction are suffi ciently close during reverse 

bias that electrons may tunnel directly from the valence band on the p side into the con-

duction band on the n side. This tunneling process is schematically shown in Figure 7.12a. 

 The avalanche breakdown process occurs when electrons and/or holes, moving 

across the space charge region, acquire suffi cient energy from the electric fi eld to 

create electron–hole pairs by colliding with atomic electrons within the depletion 

 region. The avalanche process is schematically shown in Figure 7.12b. The newly 
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 7.4   Junction Breakdown 259

created electrons and holes move in opposite directions due to the electric fi eld and 

thereby create a reverse-biased current. In addition, the newly generated electrons 

and/or holes may acquire suffi cient energy to ionize other atoms, leading to the ava-

lanche process. For most pn junctions, the predominant breakdown mechanism will 

be the avalanche effect.

 If we assume that a reverse-biased electron current In0 enters the depletion region 

at x � 0 as shown in Figure 7.13, the electron current In will increase with distance 

through the depletion region due to the avalanche process. At x � W, the electron 

current may be written as

 In (W ) � Mn In0  (7.49)

Figure 7.12 | (a) Zener breakdown mechanism in a reverse-biased pn junction; (b) avalanche breakdown 

process in a reverse-biased pn junction.
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Figure 7.13 | Electron and hole current 

components through the space charge 

region during avalanche multiplication.
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260 CHAPTER 7   The pn Junction

where Mn is a multiplication factor. The hole current is increasing through the deple-

tion region from the n to p region and reaches a maximum value at x � 0. The total 

current is constant through the pn junction in steady state.

 We can write an expression for the incremental electron current at some point x as

 dIn(x) � In(x)�n dx � Ip(x)�p dx  (7.50)

where �n and �p are the electron and hole ionization rates, respectively. The ioniza-

tion rates are the number of electron–hole pairs generated per unit length by an elec-

tron (�n) or by a hole (�p). Equation (7.50) may be written as

   
dIn(x)

 _ 
dx

   � In(x)�n � Ip(x)�p  (7.51)

The total current I is given by

 I � In(x) � Ip(x)  (7.52)

which is a constant. Solving for Ip(x) from Equation (7.52) and substituting into 

Equation (7.51), we obtain

   
dIn(x)

 _ 
dx

   � (�p � �n)In(x) � �pI  (7.53)

 If we make the assumption that the electron and hole ionization rates are equal so 

that

 �n � �p  �  (7.54)

then Equation (7.53) may be simplifi ed and integrated through the space charge 

 region. We will obtain

 In(W) � In(0) � I  
∫

0

 
 
W 
  � dx  (7.55)

Using Equation (7.49), Equation (7.55) may be written as

   
Mn In0 � In(0)

  ___ 
I
   �  

∫
0

 
 
W 
  � dx  (7.56)

 Since Mn In0 � I and since In(0) � In0, Equation (7.56) becomes

 1 �   1 _ 
Mn

   �  
∫

0

 
 
W 
  � dx  (7.57)

The avalanche breakdown voltage is defi ned to be the voltage at which Mn approaches 

infi nity. The avalanche breakdown condition is then given by

  
∫

0

 
 
W 
  �dx � 1  (7.58)

The ionization rates are strong functions of electric fi eld and, since the electric fi eld is 

not constant through the space charge region, Equation (7.58) is not easy to evaluate.

 If we consider, for example, a one-sided p�n junction, the maximum electric 

fi eld is given by

 Emax �   
eNd xn  __ �s 

   (7.59)
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 7.4   Junction Breakdown 261

The depletion width xn is given approximately as

 xn �   �   2�s VR 
 _ e   �   1 _ 

Nd

    �  1	2

   (7.60)

where VR is the magnitude of the applied reverse-biased voltage. We have neglected 

the built-in potential Vbi.

 If we now defi ne VR to be the breakdown voltage VB, the maximum electric fi eld, 

Emax, will be defi ned as a critical electric fi eld, Ecrit, at breakdown. Combining Equa-

tions (7.59) and (7.60), we may write

 VB �   
�s  E crit  

2
   
 _ 

2eNB 
   (7.61)

where NB is the semiconductor doping in the low-doped region of the one-sided junc-

tion. The critical electric fi eld, plotted in Figure 7.14, is a slight function of doping.

 We have been considering a uniformly doped planar junction. The breakdown 

voltage will decrease for a linearly graded junction. (See Section 7.5.) Figure 7.15 

shows a plot of the breakdown voltage for a one-sided abrupt junction and a linearly 

graded junction. If we take into account the curvature of a diffused junction as well, 

the breakdown voltage will be further degraded.

   DESIGN
EXAMPLE 7.7

Objective: Design an ideal one-sided n�p junction diode to meet a breakdown voltage 

specifi cation.

 Consider a silicon pn junction diode at T � 300 K. Assume that Nd � 3 � 1018 cm�3. 

Design the diode such that the breakdown voltage is VB � 100 V.

■ Solution
From Figure 7.15, we fi nd that the doping concentration in the low-doped side of a one-sided 

abrupt junction should be approximately 4 � 1015 cm�3 for a breakdown voltage of 100 V.

Figure 7.14 | Critical electric fi eld at breakdown in a one-

sided junction as a function of impurity doping concentrations.

(From Sze and Ng [14].)
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262 CHAPTER 7   The pn Junction

*7.5 | NONUNIFORMLY DOPED JUNCTIONS
In the pn junctions considered so far, we have assumed that each semiconductor 

 region has been uniformly doped. In actual pn junction structures, this is rarely true. 

In some electronic applications, specifi c nonuniform doping profi les are used to ob-

tain special pn junction capacitance characteristics.

Figure 7.15 | Breakdown voltage versus impurity concen-

tration in uniformly doped and linearly graded junctions. 

(From Sze [14].)
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 For a doping concentration of 4 � 1015 cm�3, the critical electric fi eld, from Figure 7.14, is 

approximately 3.7 � 105 V/cm. Then, using Equation (7.61), we fi nd the breakdown voltage as

 VB �   
�s  E crit  

2
  
 _ 

2eNB 
   �   

(11.7)(8.85 � 10�14)(3.7 � 105)2

   ______   
2(1.6 � 10�19)(4 � 1015)

   � 110 V

which correlates very well with the results from Figure 7.15.

■ Conclusion
As Figure 7.15 shows, the breakdown voltage increases as the doping concentration decreases 

in the low-doped region.

■ EXERCISE PROBLEM
Ex 7.7  A one-sided, planar, uniformly doped silicon pn junction diode is required to have 

a reverse-biased breakdown voltage of VB � 60 V. What is the maximum doping 

 concentration in the low-doped region such that this specifi cation is met?

(Ans. NB � 8 � 10
15

 cm
�3

)
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 7.5   Nonuniformly Doped Junctions 263

7.5.1  Linearly Graded Junctions

If we start with a uniformly doped n-type semiconductor, for example, and dif-

fuse acceptor atoms through the surface, the impurity concentrations will tend to be 

like those shown in Figure 7.16. The point x � x	 on the fi gure corresponds to the 

 metallurgical junction. The depletion region extends into the p and n regions from 

the metallurgical junction as we have discussed previously. The net p-type doping 

concentration near the metallurgical junction may be approximated as a linear func-

tion of distance from the metallurgical junction. Likewise, as a fi rst approximation, 

the net n-type doping concentration is also a linear function of distance extending 

into the n region from the metallurgical junction. This effective doping profi le is 

 referred to as a linearly graded junction.

 Figure 7.17 shows the space charge density in the depletion region of the lin-

early graded junction. For convenience, the metallurgical junction is placed at x � 0. 
The space charge density can be written as

 �(x) � eax (7.62)

where a is the gradient of the net impurity concentration.

 The electric fi eld and potential in the space charge region can be determined 

from Poisson’s equation. We can write

   d  E _ 
dx

   �   
�(x)

 _ �s 
   �   eax _ �s 

   (7.63)

so that the electric fi eld can be found by integration as

 E �  

∫
 

 

 

 
 

 

 

 
    eax _ �s 

   dx �   ea _ 
2�s 

    � x2 �  x 0
  2  �  (7.64)

The electric fi eld in the linearly graded junction is a quadratic function of distance 

rather than the linear function found in the uniformly doped junction. The maximum 

electric fi eld again occurs at the metallurgical junction. We may note that the electric 

fi eld is zero at both x � �x0 and at x � �x0. The electric fi eld in a nonuniformly 

p region n region
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Figure 7.16 | Impurity concentrations of 

a pn junction with a nonuniformly doped 

p region.
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Figure 7.17 | Space charge density in a 

linearly graded pn junction.
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264 CHAPTER 7   The pn Junction

doped semiconductor is not exactly zero, but the magnitude of this fi eld is small, so 

setting E � 0 in the bulk regions is still a good approximation.

 The potential is again found by integrating the electric fi eld as

 �(x) � � 

∫
 

 

 

 
 

 

 

 
  E dx (7.65)

If we arbitrarily set � � 0 at x � �x0, then the potential through the junction is

 �(x) �   �ea _ 
2�s 

    �   x3

 _ 
3
   �  x 0  

2 x �  �   ea _ 
3�s

  
 
 x 0  

3  (7.66)

The magnitude of the potential at x � �x0 will equal the built-in potential barrier for 

this function. We then have that

 �(x0) �   2 _ 
3
   ·   ea x 0  

3  
 _ �s    � Vbi (7.67)

 Another expression for the built-in potential barrier for a linearly graded junc-

tion can be approximated from the expression used for a uniformly doped junction. 

We can write

 Vbi � Vt ln  �   Nd (x0)Na(�x0)
  ___ 

 n i  
2 
   �  (7.68)

where Nd(x0) and Na(�x0) are the doping concentrations at the edges of the space 

charge region. We can relate these doping concentrations to the gradient, so that

 Nd (x0) � ax0 (7.69a)

and

 Na(�x0) � ax0 (7.69b)

Then the built-in potential barrier for the linearly graded junction becomes

 Vbi � Vt ln   �   ax0  _ ni 
   �  2  (7.70)

There may be situations in which the doping gradient is not the same on either side 

of the junction, but we will not consider that condition here.

 If a reverse-biased voltage is applied to the junction, the potential barrier in-

creases. The built-in potential barrier Vbi in the above equations is then replaced by 

the total potential barrier Vbi � VR. Solving for x0 from Equation (7.67) and using the 

total potential barrier, we obtain

 x0 �   �   3 _ 
2
   ·   �s  _ ea   (Vbi � VR) �  1	3

  (7.71)

 The junction capacitance per unit area can be determined by the same method that 

we used for the uniformly doped junction. Figure 7.18 shows the differential charge 
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 7.5   Nonuniformly Doped Junctions 265

dQ	, which is uncovered as a differential voltage dVR is applied. The junction capaci-

tance is then

 C	 �   
dQ	

 _ 
dVR 

   � (eax0)   
dx0  _ 
dVR 

   (7.72)

Using Equation (7.71), we obtain1

 C	 �   �   ea � s  
2  
 ___ 

12(Vbi � VR)
   �  1	3

  (7.73)

 We may note that C	 is proportional to (Vbi � VR)�1	3 for the linearly graded 

junction as compared to C	�(Vbi � VR)�1	2 for the uniformly doped junction. In the 

linearly graded junction, the capacitance is less dependent on reverse-biased voltage 

than in the uniformly doped junction.

7.5.2  Hyperabrupt Junctions

The uniformly doped junction and linearly graded junction are not the only possible 

doping profi les. Figure 7.19 shows a generalized one-sided p�n junction where the 

generalized n-type doping concentration for x 
 0 is given by

 N � Bxm (7.74)

The case of m � 0 corresponds to the uniformly doped junction, and m � �1 cor-

responds to the linearly graded junction just discussed. The cases of m � �2 and 

m � �3 shown would approximate a fairly low-doped epitaxial n-type layer grown 

x � 0

�x0

�dQ	

x0

dx0

� (C/cm3) �dQ	 � �(x0) dx0 � eax0 dx0

dx0

�

�

Figure 7.18 | Differential change in space charge width with 

a differential change in reverse-biased voltage for a linearly 

graded pn junction.

1In a more exact analysis, Vbi in Equation (7.73) is replaced by a gradient voltage. However, this  analysis 

is beyond the scope of this text.
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266 CHAPTER 7   The pn Junction

on a much more heavily doped n� substrate layer. When the value of m is negative, we 

have what is referred to as a hyperabrupt junction. In this case, the n-type doping is 

larger near the metallurgical junction than in the bulk semiconductor. Equation (7.74) 

is used to approximate the n-type doping over a small region near x � x0 and does not 

hold at x � 0 when m is negative.

 The junction capacitance can be derived using the same analysis method as be-

fore and is given by

 C	 �   �   eB � s  
(m�1)  
 ___  

(m � 2)(Vbi � VR)
   �  1	(m�2)

  (7.75)

When m is negative, the capacitance becomes a very strong function of reverse-biased 

voltage, a desired characteristic in varactor diodes. The term varactor comes from 

the words variable reactor and means a device whose reactance can be varied in a 

controlled manner with bias voltage.

 If a varactor diode and an inductance are in parallel, the resonant frequency of 

the LC circuit is

 fr �   1 __ 
2� �

___
 LC  
   (7.76)

The capacitance of the diode, from Equation (7.75), can be written in the form

 C � C0(Vbi � VR
 ) �1	(m�2)  (7.77)

Figure 7.19 | Generalized doping profi les of a one-sided 

p�n junction. 

(From Sze [14].)
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 7.6   Summary 267

In a circuit application, we would, in general, like to have the resonant frequency be 

a linear function of reverse-biased voltage VR, so we need

 C � V �2 (7.78)

From Equation (7.77), the parameter m required is found from

   1 __ 
m � 2

   � 2 (7.79a)

or

 m � �   3 _ 
2
   (7.79b)

A specifi c doping profi le will yield the desired capacitance characteristic.

7.6 | SUMMARY

■ A uniformly doped pn junction is initially considered, in which one region of a 

 semiconductor is uniformly doped with acceptor impurities and the adjacent region is 

uniformly doped with donor impurities. 

■ A space charge region, or depletion region, is formed on either side of the metallurgi-

cal junction separating the n and p regions. This region is essentially depleted of any 

mobile electrons or holes. A net positive charge density, due to the positively charged 

donor impurity ions, exists in the n region and a net negative charge density, due to the 

negatively charged acceptor impurity ions, exists in the p region.

■ An electric fi eld exists in the depletion region due to the net space charge density. The 

direction of the electric fi eld is from the n region to the p region.

■ A potential difference exists across the space charge region. Under zero applied bias, 

this potential difference, known as the built-in potential barrier, maintains thermal 

 equilibrium and holds back majority carrier electrons in the n region and majority 

 carrier holes in the p region.

■ An applied reverse-biased voltage (n region positive with respect to the p region) 

 increases the potential barrier, the space charge width, and the magnitude of the 

electric fi eld.

■ As the reverse-biased voltage changes, the amount of charge in the depletion region 

changes. This change in charge with voltage defi nes the junction capacitance.

■ Avalanche breakdown occurs when a suffi ciently large reverse-biased voltage is applied 

to the pn junction. A large reverse-biased current may then be induced in the pn junction. 

The breakdown voltage, as a function of the doping concentrations in the pn junction, is 

derived. In a one-sided pn junction, the breakdown voltage is a function of the doping 

concentration in the low-doped region.

■ The linearly graded junction represents a nonuniformly doped pn junction. Expres-

sions for the electric fi eld, built-in potential barrier, and junction capacitance are 

 derived. The functional relationships differ from those of the uniformly doped 

junction.

■ Specifi c doping profi les can be used to obtain specifi c capacitance characteristics. A 

hyperabrupt junction is one in which the doping decreases away from the metallurgi-

cal junction. This type of junction is advantageous in varactor diodes that are used in 

 resonant circuits.
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268 CHAPTER 7   The pn Junction

GLOSSARY OF IMPORTANT TERMS
abrupt junction approximation  The assumption that there is an abrupt discontinuity in 

space charge density between the space charge region and the neutral semiconductor region.

avalanche breakdown  The process whereby a large reverse-biased pn junction current is 

created due to the generation of electron–hole pairs by the collision of electrons and/or 

holes with atomic electrons within the space charge region.

built-in potential barrier  The electrostatic potential difference between the p and n regions 

of a pn junction in thermal equilibrium.

critical electric fi eld  The peak electric fi eld in the space charge region at breakdown.

depletion layer capacitance  Another term for junction capacitance.

depletion region  Another term for space charge region.

hyperabrupt junction  A pn junction in which the doping concentration on one side de-

creases away from the metallurgical junction to achieve a specifi c capacitance– voltage 

characteristic.

junction capacitance  The capacitance of the pn junction under reverse bias.

linearly graded junction  A pn junction in which the doping concentrations on either side of 

the metallurgical junction are approximated by a linear distribution.

metallurgical junction  The interface between the p- and n-doped regions of a pn junction.

one-sided junction  A pn junction in which one side of the junction is much more heavily 

doped than the adjacent side.

reverse bias  The condition in which a positive voltage is applied to the n region with re-

spect to the p region of a pn junction so that the potential barrier between the two regions 

increases above the thermal-equilibrium built-in potential barrier.

space charge region  The region on either side of the metallurgical junction in which there is a 

net charge density due to ionized donors in the n region and ionized acceptors in the p region.

space charge width  The width of the space charge region, a function of doping concentra-

tions and applied voltage.

varactor diode  A diode whose reactance can be varied in a controlled manner with bias 

voltage.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Describe why and how the space charge region is formed.

■ Draw the energy-band diagram of a zero-biased and reverse-biased pn junction.

■ Defi ne and derive the expression of the built-in potential barrier voltage.

■ Derive the expression for the electric fi eld in space charge region of the pn junction.

■ Describe what happens to the parameters of the space charge region when a reverse-

biased voltage is applied.

■ Defi ne and explain the junction capacitance.

■ Describe the characteristics and properties of a one-sided pn junction.

■ Describe the avalanche breakdown mechanism in a reverse-biased pn junction.

■ Describe how a linearly graded junction is formed.

■ Defi ne a hyperabrupt junction.
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REVIEW QUESTIONS

 1. Defi ne the built-in potential voltage and describe how it maintains thermal equilibrium.

 2. Why is an electric fi eld formed in the space charge region? Why is the electric fi eld a 

linear function of distance in a uniformly doped pn junction?

 3. Where does the maximum electric fi eld occur in the space charge region?

 4. Why is the space charge width larger in the lower doped side of a pn junction?

 5. What is the functional dependence of the space charge width on reverse-biased voltage?

 6. Why does the space charge width increase with reverse-biased voltage?

 7. Why does a capacitance exist in a reverse-biased pn junction? Why does the capaci-

tance decrease with increasing reverse-biased voltage?

 8. What is a one-sided pn junction? What parameters can be determined in a one-sided 

pn junction?

 9. Why does the breakdown voltage of a pn junction decrease as the doping concentration 

increases?

 10. What is a linearly graded junction?

 11. What is a hyperabrupt junction and what is one advantage or characteristic of such a 

junction?

PROBLEMS

Section 7.2  Zero Applied Bias

 7.1 (a) Calculate Vbi in a silicon pn junction at T � 300 K for (a) Na � 2 � 1015 cm�3 

and Nd � (i) 2 � 1015, (ii) 2 � 1016, and (iii) 2 � 1017 cm�3. (b) Repeat part (a) for 
Na � 2 � 1017 cm�3.

 7.2 Calculate the built-in potential barrier, Vbi, for Si, Ge, and GaAs pn junctions if they 

each have the following dopant concentrations at T � 300 K:

(a) Nd � 1014 cm�3   Na � 1017 cm�3

(b) Nd � 5 � 1016  Na � 5 � 1016

(c) Nd � 1017      Na � 1017

 7.3 (a) Plot the built-in potential barrier for a symmetrical (Na � Nd) silicon pn junction at 

T � 300 K over the range 1014 � Na � Nd � 1017 cm�3. (b) Repeat part (a) for a GaAs 

pn junction. (c) Repeat parts (a) and (b) for T � 400 K.

 7.4 An abrupt silicon pn junction at zero bias has dopant concentrations of Na � 1017 cm�3 

and Nd � 5 � 1015 cm�3. T � 300 K. (a) Calculate the Fermi level on each side of the 

junction with respect to the intrinsic Fermi level. (b) Sketch the equilibrium energy-

band diagram for the junction and determine Vbi from the diagram and the results of 

part (a). (c) Calculate Vbi using Equation (7.10), and compare the results to part (b). 

(d ) Determine xn, xp, and the peak electric fi eld for this junction.

 7.5 Repeat problem 7.4 for the case when the doping concentrations are Na � Nd � 2 � 
1016 cm�3.

 7.6 A silicon pn junction in thermal equilibrium at T � 300 K is doped such that 

EF � EFi � 0.365 eV in the n region and EFi � EF � 0.330 eV in the p region. 

nea29583_ch07_241-275.indd   269nea29583_ch07_241-275.indd   269 12/11/10   11:32 AM12/11/10   11:32 AM



270 CHAPTER 7   The pn Junction

(a) Sketch the energy-band diagram for the pn junction. (b) Find the impurity doping 

concentration in each region. (c) Determine Vbi.

 7.7 Consider a uniformly doped GaAs pn junction with doping concentrations of 
Na � 2 � 1015 cm�3 and Nd � 4 � 1016 cm�3. Plot the built-in potential barrier 

Vbi versus temperature over the range 200 � T � 400 K.

 7.8 (a) Consider a uniformly doped silicon pn junction at T � 300 K. At zero bias, 25 per-

cent of the total space charge region is in the n-region. The built-in potential barrier is 

Vbi � 0.710 V. Determine (i) Na, (ii) Nd, (iii) xn, (iv) xp, and (v) �Emax�. (b) Repeat part (a) 

for a GaAs pn junction with Vbi � 1.180 V.

 7.9 Consider the impurity doping profi le shown in Figure P7.9 in a silicon pn junction. 

For zero applied voltage, (a) determine Vbi, (b) calculate xn and xp, (c) sketch the ther-

mal equilibrium energy-band diagram, and (d) plot the electric fi eld versus  distance 

through the junction.

7.10 Consider a uniformly doped silicon pn junction with doping concentrations Na � 2 � 

1017 cm�3 and Nd � 4 � 1016 cm�3. (a) Determine Vbi at T � 300 K. (b) Determine the 

temperature at which Vbi increases by 2 percent. (Trial and error may have to be used.)

7.11 The doping concentrations in a uniformly doped silicon pn junction are Na � 4 � 

1016 cm�3 and Nd � 2 � 1015 cm�3. The measured built-in potential barrier is Vbi � 

0.550 V. Determine the temperature at which this result occurs.

7.12 An “isotype” step junction is one in which the same impurity type doping changes 

from one concentration value to another value. An n-n isotype doping profi le is shown 

in Figure P7.12. (a) Sketch the thermal equilibrium energy-band diagram of the 

 isotype junction. (b) Using the energy-band diagram, determine the built-in potential 

barrier. (c) Discuss the charge distribution through the junction.

7.13 A particular type of junction is an n region adjacent to an intrinsic region. This 

 junction can be modeled as an n-type region to a lightly doped p-type region. Assume 

the doping concentrations in silicon at T � 300 K are Nd � 1016 cm�3 and Na � 
1012 cm�3. For zero applied bias, determine (a) Vbi, (b) xn, (c) xp, and (d) �Emax�. Sketch 

the electric fi eld versus distance through the junction.

7.14 We are assuming an abrupt depletion approximation for the space charge region. That 

is, no free carriers exist within the depletion region and the semiconductor abruptly 

changes to a neutral region outside the space charge region. This approximation is 

�4 � 1015

�1015
0

1016

(Na � Nd) (cm�3)

p type

n type

2 �m

Figure P7.9 | Figure for Problem 7.9.

1016

1015

0

Nd (cm�3)

Figure P7.12 | Figure for Problem 7.12.
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 adequate for most applications, but the abrupt transition does not exist. The space 

charge region changes over a distance of a few Debye lengths, where the Debye 

length in the n region is given by

LD �   �   �skT
 _ 

e2Nd 
   �  1	2

 

 Calculate LD and fi nd the ratio of LD  /xn for the following conditions. The p-type 

 doping concentration is Na � 8 � 1017 cm�3 and the n-type doping concentration is 

(a) Nd � 8 � 1014 cm�3, (b) Nd � 2.2 � 1016 cm�3, and (c) Nd � 8 � 1017 cm�3.

7.15 Examine the electric fi eld versus distance through a uniformly doped silicon pn junction 

at T � 300 K as a function of doping concentrations. Assume zero applied bias. Sketch 

the electric fi eld versus distance through the space charge region and calculate  
 Emax  
  
for: (a) Na � 1017 cm�3 and 1014 � Nd � 1017 cm�3 and (b) Na � 1014 cm�3 and 1014 � 

Nd � 1017 cm�3. (c) What can be said about the results for Nd � 100 Na or Na � 100 Nd?

Section 7.3  Reverse Applied Bias

7.16 An abrupt silicon pn junction at T � 300 K has impurity doping concentrations of 
Na � 5 � 1016 cm�3 and Nd � 1015 cm�3. Calculate (a) Vbi, (b) W at (i) VR � 0 and 

(ii) VR � 5 V, and (c)  
 Emax  
  at (i) VR � 0 and (ii) VR � 5.

7.17 Consider the pn junction described in Problem 7.10 for T � 300 K. The cross- 

sectional area of the junction is 2 � 10�4 cm2 and the applied reverse-biased voltage is 

VR � 2.5 V. Calculate (a) Vbi, (b) xn, xp, W, (c)  
 Emax  
 , and (d) the junction capacitance.

7.18 An ideal one-sided silicon p�n junction at T � 300 K is uniformly doped on both 

sides of the metallurgical junction. It is found that the doping relation is Na � 80 Nd 

and the built-in potential barrier is Vbi � 0.740 V. A reverse-biased voltage of VR � 10 V 

is applied. Determine (a) Na, Nd; (b) xp, xn; (c)  
 Emax  
 ; and (d)  C  j  
′ .

7.19 A silicon n�p junction is biased at VR � 5 V. (a) Determine the change in built-in 

potential barrier if the doping concentration in the p region increases by a factor of 3. 

(b) Determine the ratio of junction capacitance when the acceptor doping is 3Na com-

pared to that when the acceptor doping is Na. (c) Why does the junction capacitance 

increase when the doping concentration increases?

7.20 (a) The peak electric fi eld in a reverse-biased silicon pn junction is  
 Emax  
  � 3 � 105  V/cm. 

The doping concentrations are Nd � 4 � 1015 cm�3 and Na � 4 � 1017 cm�3. Find the 

magnitude of the reverse-biased voltage. (b) Repeat part (a) for Nd � 4 � 1016 cm�3 and 

Na � 4 � 1017 cm�3. (c) Repeat part (a) for Nd � Na � 4 � 1017 cm�3.

7.21 Consider two p�n silicon junctions at T � 300 K reverse biased at VR � 5 V. The 

impurity doping concentrations in junction A are Na � 1018 cm�3 and Nd � 1015 cm�3, 

and those in junction B are Na � 1018 cm�3 and Nd � 1016 cm�3. Calculate the ratio of 

the following parameters for junction A to junction B: (a) W, (b)  
 Emax  
 , and (c)  C  j  
′ .

7.22 Consider a uniformly doped GaAs pn junction at T � 300 K. The junction capacitance 

at zero bias is Cj(0) and the junction capacitance with a 10-V reverse-biased  voltage is 

Cj (10). The ratio of the capacitances is

  
Cj (0)

 __ 
Cj  (10)

   � 3.13

 Also under reverse bias, the space charge width into the p region is 0.2 of the total 

space charge width. Determine (a) Vbi and (b) Na, Nd.
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7.23 A GaAs pn junction at T � 300 K has impurity doping concentrations of Na � 2 � 1016 

cm�3 and Nd � 5 � 1015 cm�3. It is determined that the ratio of junction capacitance at 

two reverse-biased voltages is  C  j  
′  (VR1)	 C  j  

′ (VR2) � 1.5, where VR1 � 0.5 V. Determine VR2.

7.24 (a) The impurity doping concentrations in a silicon pn junction at T � 300 K are 
Na � 2 � 1015 cm�3 and Nd � 4 � 1016 cm�3. The cross-sectional area of the pn junc-

tion is 5 � 10�4 cm2. Determine the junction capacitance at (i) VR � 0 and (ii) VR � 

5 V. (b) Repeat part (a) for a GaAs pn junction.

7.25 An abrupt silicon pn junction at T � 300 K is uniformly doped with Na � 2 � 

1017 cm�3 and Nd � 5 � 1015 cm�3. The cross-sectional area of the pn junction is 8 � 

10�4 cm2. An inductance is placed in parallel with the pn junction. (a) With a reverse-

biased voltage of VR � 10 V applied to the pn junction, the resonant frequency of the 

circuit is f � 1.25 MHz. What is the value of the inductance? (b) Using the results of 

part (a), what is the resonant frequency if the reverse-biased voltage is (i) VR � 1 V 

and (ii) VR � 5 V?

7.26 (a) A uniformly doped silicon p�n junction at T � 300 K is to be designed such that, at 

a reverse-biased of VR � 10 V, the maximum electric fi eld is limited to  
 Emax  
  � 2.5 � 

105 V/cm. Determine the maximum doping concentration in the n region. (Use an ap-

proximate value for Vbi.) (b) Repeat part (a) if the maximum electric fi eld is limited to  


 Emax  
  � 105 V/cm.

7.27 (a) A GaAs pn junction at T � 300 K, with a cross-sectional area of 10�4 cm2, is to be 

 designed that meets the following specifi cations. At a reverse-biased voltage of VR � 2 V, 

20 percent of the total space charge width is to be in the p region and the total junction 

 capacitance is to be 0.6 pF. Determine Na, Nd, and W. (b) Repeat part (a) if VR � 5 V.

7.28 A silicon pn junction at T � 300 K has the doping profi le shown in Figure P7.28. 

 Calculate (a) Vbi, (b) xn and xp at zero bias, and (c) the applied bias required so that 

xn � 30 �m. 

7.29 Consider a silicon pn junction with the doping profi le shown in Figure P7.29. 

T � 300 K. (a) Calculate the applied reverse-biased voltage required so that the space 

charge region extends entirely through the p region. (b) Determine the space charge 

width into the n� region with the reverse-biased voltage calculated in part (a). (c) Cal-

culate the peak electric fi eld for this applied voltage.

x � 0

�5 � 1015

�1014

(Na � Nd) (cm�3)

Figure P7.28 | Figure for Problem 7.28.

500

n� p p�

x (�m)

�1016

1014

1016

(Na � Nd) (cm�3)

Figure P7.29 | Figure for Problem 7.29.
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7.30 A silicon p�n junction has doping concentrations of Na � 2 � 1017 cm�3 and Nd � 

2 � 1015 cm�3. The cross-sectional area is 10�5 cm2. Calculate (a) Vbi and (b) the junc-

tion capacitance at (i) VR � 1 V, (ii) VR � 3 V, and (iii) VR � 5 V. (c) Plot 1	C 2 versus 

VR and show that the slope can be used to fi nd Nd and the intercept at the voltage axis 

yields Vbi.

7.31 The total junction capacitance of a GaAs pn junction at T � 300 K is found to be 

1.10 pF at VR � 1 V. The doping concentration in one region is measured and found 

to be 8 � 1016 cm�3, and the built-in potential is found to be Vbi � 1.20 V. Determine 

(a) the doping in the other region of the pn junction and (b) the cross-sectional area. 

(c) The reverse-biased voltage is changed and the capacitance is found to be 0.80 pF. 

What is the value of VR?

7.32 Examine how the capacitance C	 and the function (1/C	)2 vary with reverse-biased 

voltage VR as the doping concentrations change. In particular, consider these plots ver-

sus Na for Na � 100 Nd and versus Nd for Nd � 100 Na.

*7.33 A pn junction has the doping profi le shown in Figure P7.33. Assume that xn 
 x0 for 

all reverse-biased voltages. (a) What is the built-in potential across the junction? 

(b) For the abrupt junction approximation, sketch the charge density through the junc-

tion. (c) Derive the expression for the electric fi eld through the space charge region.

*7.34 A silicon PIN junction has the doping profi le shown in Figure P7.34. The “I” cor-

responds to an ideal intrinsic region in which there is no impurity doping concentra-

tion. A reverse-biased voltage is applied to the PIN junction so that the total depletion 

width extends from �2 �m to �2 �m. (a) Using Poisson’s equation, calculate the 

magnitude of the electric fi eld at x � 0. (b) Sketch the electric fi eld through the PIN 

junction. (c) Calculate the reverse-biased voltage that must be  applied.

Section 7.4  Junction Breakdown

7.35 Consider a silicon n�p junction diode. The critical electric fi eld for breakdown in sili-

con is approximately Ecrit � 4 � 105 V/cm. Determine the maximum p-type doping 

concentration such that the breakdown voltage is (a) 40 V and (b) 20 V.

7.36 Design an abrupt silicon n�p junction diode that has a reverse breakdown voltage of 

80 V.

7.37 (a) The n-type doping concentration in an abrupt p�n GaAs junction diode is Nd � 

1016 cm�3. Determine the breakdown voltage. (b) Repeat part (a) for Nd � 1015 cm�3.

Na � Nd

Na0

�Nd0

x0

x
Nd0

�
2

Figure P7.33 | Figure for Problem 7.33.

x (�m)

i region

�1

�1�2

5 � 1015

(Nd � Na) (cm�3)

�2

�5 � 1015

Figure P7.34 | Figure for Problem 7.34.

*Asterisks next to problems indicate problems that are more diffi cult.
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7.38  (a) A symmetrically doped silicon pn junction diode has doping concentrations of 
Na � Nd � 2 � 1016 cm�3. Assuming the critical electric fi eld is Ecrit � 4 � 105 V/cm, 

determine the breakdown voltage. (b) Repeat part (a) if the doping concentrations are 
Na � Nd � 5 � 1015 cm�3.

7.39 An abrupt silicon p�n junction has an n-region doping concentration of Nd � 5 � 

1015 cm�3. What must be the minimum n-region width such that avalanche break down 

occurs before the depletion region reaches an ohmic contact (punchthrough)?

7.40 A silicon pn junction diode is doped with Na � Nd � 1018 cm�3. Zener breakdown 

 occurs when the peak electric fi eld reaches 106 V/cm. Determine the reverse-biased 

breakdown voltage.

7.41 A diode will very often have the doping profi le shown in Figure P7.29, which is 

known as an n�pp� diode. Under reverse bias, the depletion region must remain 

within the p region to avoid premature breakdown. Assume the p-region doping 

is 1015 cm�3. Determine the reverse-biased voltage such that the depletion region 

remains within the p region and does not reach breakdown if the p-region width is 

(a) 75 �m and (b) 150 �m. For each case, state whether the maximum depletion 

width or the  breakdown voltage is reached fi rst.

7.42 Consider a silicon pn junction at T � 300 K whose doping profi le varies linearly from 

Na � 1018 cm�3 to Nd � 1018 cm�3 over a distance of 2 �m. Estimate the breakdown voltage.

Section 7.5  Nonuniformly Doped Junctions

7.43 Consider a linearly graded junction. (a) Starting with Equation (7.62), derive the 

 expression for the electric fi eld given in Equation (7.64). (b) Derive the expression for 

the potential through the space charge region given by Equation (7.66).

7.44 The built-in potential barrier of a linearly graded silicon pn junction at T � 300 K is 

Vbi � 0.70 V. The junction capacitance measured at VR � 3.5 V is C	 � 7.2 � 10�9 F/cm2. 
Find the gradient, a, of the net impurity concentration.

Summary and Review

7.45 (a) A one-sided silicon n�p junction at T � 300 K is doped at Nd � 3 � 1017 cm�3. 

Design the junction such that Cj � 0.45 pF at VR � 5 V. (b) Calculate the junction 

 capacitance at (i) VR � 2.5 V and (ii) VR � 0 V.

7.46 A one-sided p�n junction with a cross-sectional area of 10�5 cm2 has a measured built-

in potential of Vbi � 0.8 V at T � 300 K. A plot of (1/Cj)2 versus VR is linear for VR � 
1 V and is essentially constant for VR 
 1 V. The capacitance is Cj � 0.082 pF at VR � 
1 V. Determine the doping concentrations on either side of the  metallurgical junction 

that will produce this capacitance characteristic.

*7.47 Silicon, at T � 300 K, is doped at Nd1 � 1015 cm�3 for x � 0 and Nd2 � 5 � 1016 cm�3 

for x 
 0 to form an n � n step junction. (a) Sketch the energy-band  diagram. (b) Derive 

an expression for Vbi. (c) Sketch the charge density, electric fi eld, and potential through 

the junction. (d) Explain where the charge density came from and is located.

*7.48 A diffused silicon pn junction has a linearly graded junction on the p side with a � 
2 � 1019 cm�4, and a uniform doping of 1015 cm�3 on the n side. (a) If the  depletion 

width on the p side is 0.7 �m at zero bias, fi nd the total depletion width, built-in 

 potential, and maximum electric fi eld at zero bias. (b) Plot the potential  function 

through the junction.
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8
The pn Junction Diode

I
n the last chapter, we discussed the electrostatics of the pn junction in thermal 

equilibrium and under reverse bias. We determined the built-in potential barrier 

at thermal equilibrium and calculated the electric fi eld in the space charge region. 

We also considered the junction capacitance.

 In this chapter, we consider the pn junction with a forward-bias voltage applied 

and determine the current–voltage characteristics. The potential barrier of the pn 

junction is lowered when a forward-bias voltage is applied, allowing electrons and 

holes to fl ow across the space charge region. When holes fl ow from the p region 

across the space charge region into the n region, they become excess minority carrier 

holes and are subject to the excess  minority carrier diffusion, drift, and recombina-

tion processes discussed in Chapter 6. Likewise, when electrons from the n region 

fl ow across the space charge region into the p region, they become excess minority 

carrier electrons and are subject to these same processes. ■

8.0 | PREVIEW
In this chapter, we will:

■ Consider the process by which the potential barrier of a pn junction is lowered 

when a forward-bias voltage is applied, so holes and electrons can fl ow across 

the junction generating a diode current.

■ Derive the boundary conditions for excess holes in the n region and excess-

electrons in the p region, and analyze the behavior of these excess carriers 

under a forward bias.

■ Derive the ideal current–voltage relation of the forward-biased pn junction diode.

■ Describe and analyze nonideal effects in the pn junction diode such as high-

level injection, and generation and recombination currents.

■ Develop a small-signal equivalent circuit of the pn junction diode. This equiva-

lent circuit is used to relate small time-varying currents and voltages in the pn 

junction.

C H A P T E R
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■ Discuss large signal diode switching characteristics.

■ Describe a specialized pn junction called a tunnel diode.

8.1 | pn JUNCTION CURRENT
When a forward-bias voltage is applied to a pn junction, a current will be induced 

in the device. We initially consider a qualitative discussion of how charges fl ow in 

the pn junction and then consider the mathematical derivation of the current–voltage 

 relationship.

8.1.1 Qualitative Description of Charge Flow in a pn Junction

We can qualitatively understand the mechanism of the current in a pn junction by 

again considering the energy-band diagrams. Figure 8.1a shows the energy-band dia-

gram of a pn junction in thermal equilibrium that was developed in the last chapter. 

We argued that the potential barrier seen by the electrons, for example, holds back 

the large concentration of electrons in the n region and keeps them from fl owing into 

the p region. Similarly, the potential barrier seen by the holes holds back the large 

concentration of holes in the p region and keeps them from fl owing into the n region. 

The potential barrier, then, maintains thermal equilibrium.

 Figure 8.1b shows the energy-band diagram of a reverse-biased pn junction. The 

potential of the n region is positive with respect to the p region so the Fermi energy 

Figure 8.1 � A pn junction and its associated energy-band diagram for (a) zero bias, (b) reverse bias, and (c) forward bias.

p n

W

p n

W

�   VR     � �   Va     �

p

EEE

n

W

Ec
eVbi

Ev

EFp EFn EFp

EFn

e(Vbi � VR)
EFp

EFn

e(Vbi � Va)

Hole flow

Electron flow

(a) (b) (c)

nea29583_ch08_276-330.indd   277nea29583_ch08_276-330.indd   277 12/11/10   12:37 PM12/11/10   12:37 PM



278 CHAPTER 8   The pn Junction Diode

in the n region is lower than that in the p region. The total potential barrier is now 

larger than that for the zero-bias case. We argued in the last chapter that the increased 

 potential barrier continues to hold back the electrons and holes so that there is still 

 essentially no charge fl ow and hence essentially no current.

 Figure 8.1c shows the energy-band diagram for the case when a positive voltage 

is applied to the p region with respect to the n region. The Fermi level in the p region 

is now lower than that in the n region. The total potential barrier is now  reduced. The 

smaller potential barrier means that the electric fi eld in the depletion  region is also 

reduced. The smaller electric fi eld means that the electrons and holes are no longer 

held back in the n and p regions, respectively. There will be a diffusion of holes from 

the p region across the space charge region where they will fl ow into the n region. 

Similarly, there will be a diffusion of electrons from the n region across the space 

charge region where they will fl ow into the p region. The fl ow of charge generates a 

current through the pn junction.

 The injection of holes into the n region means that these holes are minority 

carriers. Likewise, the injection of electrons into the p region means that these 

electrons are minority carriers. The behavior of these minority carriers is described 

by the ambipolar transport equations that were discussed in Chapter 6. There will 

be diffusion as well as recombination of excess carriers in these regions. The dif-

fusion of carriers implies that there will be diffusion currents. The mathematical 

derivation of the pn junction current–voltage relationship is considered in the next 

section.

8.1.2  Ideal Current–Voltage Relationship

The ideal current–voltage relationship of a pn junction is derived on the basis of four 

assumptions. (The last assumption has three parts, but each part deals with current.) 

They are:

 1. The abrupt depletion layer approximation applies. The space charge regions 

have abrupt boundaries, and the semiconductor is neutral outside of the 

 depletion region.

 2. The Maxwell–Boltzmann approximation applies to carrier statistics.

 3. The concepts of low injection and complete ionization apply.

4a. The total current is a constant throughout the entire pn structure.

4b. The individual electron and hole currents are continuous functions through the 

pn structure.

4c. The individual electron and hole currents are constant throughout the depletion 

region.

 Notation can sometimes appear to be overwhelming in the equations in this 

chapter. Table 8.1 lists some of the various electron and hole concentration terms 

that appear. Many terms have already been used in previous chapters but are repeated 

here for convenience.
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8.1.3  Boundary Conditions

Figure 8.2 shows the conduction-band energy through the pn junction in thermal 

equilibrium. The n region contains many more electrons in the conduction band than 

the p region; the built-in potential barrier prevents this large density of electrons 

from fl owing into the p region. The built-in potential barrier maintains equilibrium 

between the carrier distributions on either side of the junction.

 An expression for the built-in potential barrier was derived in the last chapter 

and was given by Equation (7.10) as

 Vbi � Vt ln  �   Na Nd  _ 
 n i  

2 
   � 

Table 8.1 | Commonly used terms and notation for this chapter

Term Meaning

Na Acceptor concentration in the p region of the pn junction
Nd Donor concentration in the n region of the pn junction
nn 0 � Nd  Thermal-equilibrium majority carrier electron concentration in the 

n region
pp 0 � Na Thermal-equilibrium majority carrier hole concentration in the p region
np 0 �  n i  

2  /Na  Thermal-equilibrium minority carrier electron concentration in the 
p region

pn 0 �  n i  
2  /Nd Thermal-equilibrium minority carrier hole concentration in the n region

np Total minority carrier electron concentration in the p region
pn Total minority carrier hole concentration in the n region
np(�xp)  Minority carrier electron concentration in the p region at the space 

charge edge
pn(xn)  Minority carrier hole concentration in the n region at the space charge 

edge
�np � np � np 0 Excess minority carrier electron concentration in the p region
�pn � pn � pn 0 Excess minority carrier hole concentration in the n region

Figure 8.2 | Conduction-band energy through a pn 

junction.
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280 CHAPTER 8   The pn Junction Diode

 If we divide the equation by Vt � kT �e, take the exponential of both sides, and 

then take the reciprocal, we obtain

   
 n i  

2  
 _ 

Na Nd

   � exp  �   �eVbi  _ 
kT

   �   (8.1)

If we assume complete ionization, we can write

 nn 0 � Nd  (8.2)

where nn0 is the thermal-equilibrium concentration of majority carrier electrons in the 

n region. In the p region, we can write

 np 0 �   
 n i  

2  
 _ 

Na

    (8.3)

where np0 is the thermal-equilibrium concentration of minority carrier electrons. Sub-

stituting Equations (8.2) and (8.3) into Equation (8.1), we obtain

 np 0 � nn 0 exp  �   �eVbi  _ 
kT

   �   (8.4)

This equation relates the minority carrier electron concentration on the p side of the 

junction to the majority carrier electron concentration on the n side of the junction in 

thermal equilibrium.

 If a positive voltage is applied to the p region with respect to the n region, the 

potential barrier is reduced. Figure 8.3a shows a pn junction with an applied voltage 

Va. The electric fi eld in the bulk p and n regions is normally very small. Essentially 

all of the applied voltage is across the junction region. The electric fi eld Eapp induced 

by the  applied voltage is in the opposite direction to the thermal-equilibrium space 

charge  electric fi eld, so the net electric fi eld in the space charge region is reduced 

below the  equilibrium value. The delicate balance between diffusion and the E-fi eld 

Figure 8.3 | (a) A pn junction with an applied forward-bias voltage showing the directions of the electric fi eld induced 

by Va
 and the space charge electric fi eld. (b) Energy-band diagram of the forward- biased pn junction.
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force achieved at thermal equilibrium is upset. The electric fi eld force that prevented 

majority carriers from crossing the space charge region is reduced; majority carrier 

electrons from the n side are now injected across the depletion region into the p mate-

rial, and majority carrier holes from the p side are injected across the depletion region 

into the n material. As long as the bias Va is applied, the injection of carriers across 

the space charge region continues and a current is created in the pn junction. This 

bias condition is known as  forward bias; the energy-band diagram of the forward-

biased pn junction is shown in Figure 8.3b.

 The potential barrier Vbi in Equation (8.4) can be replaced by (Vbi � Va) when the 

junction is forward biased. Equation (8.4) becomes

 np � nn 0 exp  �   �e (Vbi � Va) 
  ___ 

kT
   �  � nn 0 exp  �   �eVbi  _ 

kT
   �  exp  �   �eVa  _ 

kT
   �   (8.5)

If we assume low injection, the majority carrier electron concentration nn0, for ex-

ample, does not change signifi cantly. However, the minority carrier concentration, 

np, can deviate from its thermal-equilibrium value np0 by orders of magnitude. Using 

Equation (8.4), we can write Equation (8.5) as

 np � np 0 exp  �   eVa  _ 
kT

   �   (8.6)

 When a forward-bias voltage is applied to the pn junction, the junction is no longer 

in thermal equilibrium. The left side of Equation (8.6) is the total minority carrier elec-

tron concentration in the p region, which is now greater than the thermal equilibrium 

value. The forward-bias voltage lowers the potential barrier so that majority carrier 

electrons from the n region are injected across the junction into the p region, thereby 

 increasing the minority carrier electron concentration. We have produced  excess 

 minority carrier electrons in the p region.

 When the electrons are injected into the p region, these excess carriers are sub-

ject to the diffusion and recombination processes we discussed in Chapter 6. Equa-

tion (8.6), then, is the expression for the minority carrier electron concentration at the 

edge of the space charge region in the p region.

 Exactly the same process occurs for majority carrier holes in the p region, which 

are injected across the space charge region into the n region under a forward-bias 

voltage. We can write that

 pn � pn0 exp  �   eVa  _ 
kT

   �   (8.7)

where pn is the concentration of minority carrier holes at the edge of the space charge 

region in the n region. Figure 8.4 shows these results. By applying a forward-bias 

voltage, we create excess minority carriers in each region of the pn junction.
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Hole injection

Electron injection

p n [eVa

kT
pn(xn) � pn0exp [

[eVa

kT
np(�xp) � np0exp [

pn0
np0

�xp xnx � 0

Figure 8.4 | Excess minority carrier concentrations at the 

space charge edges generated by the forward-bias voltage.

EXAMPLE 8.1 Objective: Calculate the minority carrier concentrations at the edge of the space charge 

regions in a forward-biased pn junction.

 Consider a silicon pn junction at T � 300 K. Assume the doping concentration in the 

n region is Nd � 1016 cm�3 and the doping concentration in the p region is Na � 6 � 1015 cm�3, 

and assume that a forward bias of 0.60 V is applied to the pn junction. 

■ Solution
From Equations (8.6) and (8.7) and from Figure 8.4, we have

np (�xp) � npo exp  �   eVa  _ 
kT

   �   and  pn(xn) � pno exp  �   eVa  _ 
kT

   � 
The thermal-equilibrium minority carrier concentrations are 

npo �   
 n i  

2 
 _ 

Na

   �   
(1.5 � 1010)2

 ___ 
6 � 1015

   � 3.75 � 10 4 cm�3 

and

pno �   
 n i  

2 
 _ 

Nd

   �   
(1.5 � 1010)2

 ___ 
1016

   � 2.25 � 10 4 cm�3

We then have

np (�xp) � 3.75 � 10 4 exp  �   0.60
 __ 

0.0259
   � � 4.31 � 1014 cm�3

and

pn(xn)� 2.25 � 10 4 exp  �   0.60
 __ 

0.0259
   �  � 2.59 � 1014 cm�3

■ Comment
The minority carrier concentrations can increase by many orders of magnitude when a rela-

tively small forward-bias voltage is applied. Low injection still applies, however, since the 

excess minority carrier concentrations at the space-charge edges are much less than the 

 thermal-equilibrium majority carrier concentrations.
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 The minority carrier concentrations at the space charge edges, given by Equa-

tions (8.6) and (8.7), were derived assuming that a forward-bias voltage (Va � 0) 

was  applied across the pn junction. However, nothing in the derivation prevents 

Va from being negative (reverse bias). If a reverse-biased voltage greater than a few 

tenths of a volt is applied to the pn junction, then we see from Equations (8.6) and 

(8.7) that the minority carrier concentrations at the space charge edge are essen-

tially zero. The  mino rity carrier concentrations for the reverse-biased condition drop 

below the thermal-equilibrium values.

8.1.4  Minority Carrier Distribution

We developed, in Chapter 6, the ambipolar transport equation for excess minority 

carrier holes in an n region. This equation, in one dimension, is

 Dp   
�2 (�pn) 

 __ 
�x2

   � �pE    
�(�pn) 

 __ 
�x   � g	 �   

�pn 
 _ �p0

   �   
�(�pn) 

 __ 
�t    (8.8)

where �pn � pn � pn0 is the excess minority carrier hole concentration and is the dif-

ference between the total and thermal equilibrium minority carrier concentrations. 

The ambipolar transport equation describes the behavior of excess carriers as a func-

tion of time and spatial coordinates.

 In Chapter 5, we calculated drift current densities in a semiconductor. We deter-

mined that relatively large currents could be created with fairly small electric fi elds. 

As a fi rst approximation, we assume that the electric fi eld is zero in both the neutral 

p and n regions. In the n region for x � xn, we have that E � 0 and g	 � 0. If we also 

assume steady state so �(�pn) /�t � 0, then Equation (8.8) reduces to

   
d 2 (�pn) 

 __ 
dx2

   �   
�pn 

 _ 
L2

p 
   � 0   (x � xn)  (8.9)

where L2
p � Dp �p0. For the same set of conditions, the excess minority carrier electron 

concentration in the p region is determined from

   
d 2(�np) 

 __ 
dx2

   �   
�np 

 _ 
 L n  

2 
   � 0  (x 
 xp)  (8.10)

where L2
n � Dn�n0.

■ EXERCISE PROBLEM
Ex 8.1  A silicon pn junction at T � 300 K is doped with impurity concentrations of 

Nd � 2 � 1016 cm�3 and Na � 5 � 1016 cm�3. The junction is forward biased at 

Va � 0.650 V. Determine the minority carrier concentrations at the space charge 

edges. Does low injection still apply? 

[Ans. np(�xp) � 3.57 � 10
14

 cm
�3

, pn(xn) � 8.92 � 10
14

 cm
�3

, yes]
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284 CHAPTER 8   The pn Junction Diode

 The boundary conditions for the total minority carrier concentrations are

 pn(xn) � pn0 exp  �   eVa  _ 
kT

   �   (8.11a)

 np(�xp) � np0 exp  �   eVa  _ 
kT

   �   (8.11b)

 pn(x → ��) � pn0  (8.11c)

 np(x → ��) � np0  (8.11d)

As minority carriers diffuse from the space charge edge into the neutral semicon-

ductor regions, they recombine with majority carriers. We assume that the lengths 

Wn and Wp shown in Figure 8.3a are very long, meaning in particular that Wn � Lp 

and Wp � Ln. The excess minority carrier concentrations must approach zero at 

distances far from the space charge region. The structure is referred to as a long pn 

junction.

 The general solution to Equation (8.9) is

 �pn (x) � pn (x) � pn0 � Aex�Lp � Be�x�Lp  (x � xn) (8.12)

and the general solution to Equation (8.10) is

 �np(x) � np(x) � np0 � Cex�Ln � De�x�Ln  (x  �xp) (8.13)

 Applying the boundary conditions from Equations (8.11c) and (8.11d), the 

 coeffi cients A and D must be zero. The coeffi cients B and C may be determined from 

the boundary conditions given by Equations (8.11a) and (8.11b). The excess carrier 

concentrations are then found to be, for (x � xn),

 �pn(x) � pn(x) � pn0 � pn0  � exp  �   eVa  _ 
kT

   �  � 1 �  exp  �   xn � x 
 __ 

Lp 
   �  (8.14)

and, for (x  �xp),

 �np(x) � np(x) � np0 � np0  � exp  �   eVa  _ 
kT

   �  � 1 �  exp  �   xp � x 
 __ 

Ln 
   �  (8.15)

The minority carrier concentrations decay exponentially with distance away from the 

junction to their thermal-equilibrium values. Figure 8.5 shows these results. Again, 

we have assumed that both the n-region and the p-region lengths are long compared 

to the minority carrier diffusion lengths.

 In Chapter 6, we discussed the concept of quasi-Fermi levels, which apply to 

excess carriers in a nonequilibium condition. Since excess electrons exist in the neu-

tral p region and excess holes exist in the neutral n region, we can apply quasi-Fermi 

levels to these regions. We had defi ned quasi-Fermi levels in terms of carrier concen-

trations as

 p � po � �p � ni exp  �   EFi � EFp 
 __ 

kT
   �  (8.16)
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and

 n � no � �n � ni exp  �   EFn � EFi  __ 
kT

   �  (8.17)

 Figure 8.6 shows the quasi-Fermi levels through the pn junction. From Equa-

tions (8.14) and (8.15), the carrier concentrations are exponential functions of 

distance, and from Equations (8.16) and (8.17), the carrier concentrations are expo-

nential functions of the quasi-Fermi levels. The quasi-Fermi levels are then linear 

functions of distance in the neutral p and n regions as shown in Figure 8.6.

 We may note that close to the space charge edge in the p region, EFn � EFi � 0 

which means that �n � ni. Further from the space charge edge, EFn � EFi 
 0 which 

means that �n 
 ni and the excess electron concentration is approaching zero. The 

same discussion applies to the excess hole concentration in the n region.

 At the space charge edge at x � xn, we can write, for low injection

 no pn (xn) � no pno exp  �   Va  _ 
Vt 

   �  �  n i  
2  exp  �   Va  _ 

Vt 
   �  (8.18)

Figure 8.5 | Steady-state minority carrier concentrations in a 

pn junction under forward bias.

p

np(x) pn(x)

n

pn0
np0

�xp xnx � 0

Figure 8.6 | Quasi-Fermi levels through a forward-biased 

pn junction.

p n

Ec

EFi

EFp

Ev

Ec

EFi

EFn

Ev

0�xp xn
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286 CHAPTER 8   The pn Junction Diode

Combining Equations (8.16) and (8.17), we can write

 np �  n i  
2  exp  �   EFn � EFp 

 __ 
kT

   �  (8.19)

Comparing Equations (8.18) and (8.19), the difference in quasi-Fermi levels is re-

lated to the applied bias Va and represents the deviation from thermal equilibrium. 

The difference between EFn and EFp is nearly constant through the depletion region.

 To review, a forward-bias voltage lowers the built-in potential barrier of a pn 

junction so that electrons from the n region are injected across the space charge re-

gion, creating excess minority carriers in the p region. These excess electrons begin 

diffusing into the bulk p region where they can recombine with majority carrier holes. 

The excess minority carrier electron concentration then decreases with  distance from 

the junction. The same discussion applies to holes injected across the space charge 

region into the n region.

8.1.5  Ideal pn Junction Current

The approach we use to determine the current in a pn junction is based on the three 

parts of the fourth assumption stated earlier in this section. The total current in the 

junction is the sum of the individual electron and hole currents that are constant 

through the depletion region. Since the electron and hole currents are continuous 

functions through the pn junction, the total pn junction current will be the minority 

carrier hole diffusion current at x � xn plus the minority carrier electron diffusion 

current at x � �xp. The gradients in the minority carrier concentrations, as shown in 

Figure 8.5, produce diffusion currents, and since we are assuming the electric fi eld 

to be zero at the space charge edges, we can neglect any minority carrier drift cur-

rent component. This approach in determining the pn junction current is shown in 

Figure 8.7.

Figure 8.7 | Electron and hole current densities through the 

space charge region of a pn junction.

p

Current
density

n

JTotal � Jp(xn) � Jn(�xp)

Jn(�xp)

Jp(xn)

�xp xnx � 0
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 8.1   pn Junction Current 287

 We can calculate the minority carrier hole diffusion current density at x � xn 

from the relation

 Jp (xn) � �eDp
      dpn(x) 

 __
 dx    �  

 x�xn
  (8.20)

Since we are assuming uniformly doped regions, the thermal-equilibrium carrier 

concentration is constant, so the hole diffusion current density may be written as

 Jp (xn) � �eDp      d(�pn(x)) 
 __ 

dx
    �  

 x�xn
  (8.21)

Taking the derivative of Equation (8.14) and substituting into Equation (8.21), we 

obtain

 Jp(xn) �   
eDp pn0 

 __ 
Lp 

    � exp  �   eVa  _ 
kT

   �  �1 �  (8.22)

The hole current density for this forward-bias condition is in the �x direction, which 

is from the p to the n region.

 Similarly, we may calculate the electron diffusion current density at x � �xp. 

This may be written as

 Jn(�xp) � eDn
        d(�np(x)) 

 
__

 dx   �   x��xp

  (8.23)

Using Equation (8.15), we obtain

 Jn (�xp) �   
eDn np0 

 __ 
Ln 

    � exp  �   eVa  _ 
kT

   �  �1 �  (8.24)

The electron current density is also in the �x direction.

 An assumption we made at the beginning was that the individual electron and 

hole currents were continuous functions and constant through the space charge re-

gion. The total current is the sum of the electron and hole currents and is constant 

through the entire junction. Figure 8.7 again shows a plot of the magnitudes of these 

currents.

 The total current density in the pn junction is then

 J � Jp(xn) � Jn(�xp) �  �   eDp pn0 
 __ 

Lp 
   �   

eDn np0 
 __ 

Ln 
   �   � exp  �   eVa  _ 

kT
   �  �1 �  (8.25)

Equation (8.25) is the ideal current–voltage relationship of a pn junction.

 We may defi ne a parameter Js as

 Js �  �   eDp pn0 
 __ 

Lp 
   �   

eDn np0 
 __ 

Ln 
   �  (8.26)
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288 CHAPTER 8   The pn Junction Diode

so that Equation (8.25) may be written as

 J � Js  � exp  �   eVa  _ 
kT

   �  �1 �  (8.27)

Equation (8.27), known as the ideal-diode equation, gives a good description of the 

current–voltage characteristics of the pn junction over a wide range of currents and 

voltages. Although Equation (8.27) was derived assuming a forward-bias voltage 

(Va � 0), there is nothing to prevent Va from being negative (reverse bias). Equa-

tion (8.27) is plotted in Figure 8.8 as a function of forward-bias voltage Va. If the 

voltage Va becomes negative (reverse bias) by a few kT�eV, then the reverse-biased 

current density becomes independent of the reverse-biased voltage. The parameter 

Js is then referred to as the reverse-saturation current density. The current–voltage 

characteristics of the pn junction diode are obviously not bilateral.

Figure 8.8 | Ideal I–V characteristic of a pn junction diode.

p n

J

J

J

Va

Va

Va

�Js

� �

� �

EXAMPLE 8.2 Objective: Determine the ideal reverse-saturation current density in a silicon pn junction 

at T � 300 K.

 Consider the following parameters in a silicon pn junction:

 Na � Nd � 1016 cm�3   ni � 1.5 � 1010 cm�3

 Dn � 25 cm2 /s           �p0 � �n0 � 5 � 10�7 s

 Dp � 10 cm2/s       �r � 11.7

■ Solution
The ideal reverse-saturation current density is given by

 Js �   
eDn np0 

 __ 
Ln 

   �   
eDp pn0 

 __ 
Lp 
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which may be rewritten as

Js � e n i  
2   �   1  _ 

Na 
    	

___

   Dn  _ �n0

     �   1  _ 
Nd

    	
___

   
Dp 

 _ �p0

      �  
Then

Js � (1.6 � 10�19)(1.5 � 1010)2  �   1 _ 
1016

   	
________

   25 __ 
5 � 10�7

     �   1 _ 
1016

    	
________

   10 __ 
5 � 10�7 

     � 
or Js � 4.16 � 10�11 A/cm2

■ Comment
The ideal reverse-biased saturation current density is very small. If the pn junction cross- 

sectional area were A � 10�4 cm2, for example, then the ideal reverse-biased diode current 

would be Is � 4.15 � 10�15 A.

■ EXERCISE PROBLEM
Ex 8.2  Consider a GaAs pn junction diode at T � 300 K. The parameters of the device are 

Nd � 2 � 1016 cm�3, Na � 8 � 1015 cm�3, Dn � 210 cm2/s, Dp � 8 cm2/s, �no � 10�7 s, 

and �po � 5 � 10�8 s. Determine the ideal reverse-saturation current density. 

(Ans. Js � 3.30 � 10
�18

 A/cm
2
)

 If the forward-bias voltage in Equation (8.27) is positive by more than a few 

kT �eV, then the (�1) term in Equation (8.27) becomes negligible. Figure 8.9 shows 

the forward-bias current–voltage characteristic when the current is plotted on a log 

scale. Ideally, this plot yields a straight line when Va is greater than a few kT �eV. The 

forward-bias current is an exponential function of the forward-bias voltage.

ln
 (J

)

Va

Js

Figure 8.9 | Ideal I–V 

characteristic of a 

pn junction diode with 

the current plotted on 

a log scale.
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290 CHAPTER 8   The pn Junction Diode

EXAMPLE 8.3 Objective: Design a pn junction diode to produce particular electron and hole current densi-

ties at a given forward-bias voltage.

 Consider a silicon pn junction diode at T � 300 K. Design the diode such that Jn � 20 A /cm2 

and Jp � 5 A /cm2 at Va � 0.65 V. Assume the remaining semiconductor parameters are as 

given in Example 8.2.

■ Solution
The electron diffusion current density is given by Equation (8.24) as

Jn �   
eDn np0 

 __ 
Ln 

    � exp  �   eVa  _ 
kT

   �  � 1 �  � e 	
___

   Dn  _ �n0      �   
 n i  

2  
 _ 

Na

    � exp  �   eVa  _ 
kT

   �  � 1 � 
Substituting the numbers, we have

20 � (1.6 � 10�19) 	
_________

    25  __ 
5 � 10�7

     �   
(1.5 � 1010)2 

 ___ 
Na 

    � exp  �   0.65  __ 
0.0259

   �  � 1 � 
which yields

Na � 1.01 � 1015 cm�3

The hole diffusion current density is given by Equation (8.22) as

Jp �   
eDp pn 0 

 __ 
Lp 

    � exp  �   eVa 
 _ 

kT
   �  � 1 �  � e  	

___

   
Dp 

 _ �p 0 
     �   

 n i  
2  
 _ 

Nd 
    � exp  �   eVa  _ 

kT
   �  � 1 � 

Substituting the numbers, we have

5 � (1.6 � 10�19)  	
________

   
10 
 __ 

5 � 10�7 
     �   

(1.5 � 1010)2 
 ___ 

Nd 
    � exp  �   0.65  __ 

0.0259
   �  � 1 � 

which yields

Nd � 2.55 � 1015 cm�3

■ Comment
The relative magnitude of the electron and hole current densities through a diode can be varied 

by changing the doping concentrations in the device.

■ EXERCISE PROBLEM
Ex 8.3  Using the parameters given in Ex 8.2 for the GaAs diode, determine the electron 

and hole current densities at the space charge edges, and determine the total current 

density in the diode for a forward-bias voltage of Va � 1.05 V.

[Ans. Jn (�xp) � 1.20 A/cm
2
, Jp (xn) � 0.1325 A/cm

2
, JT � 1.33 A/cm

2
]

8.1.6  Summary of Physics

We have been considering the case of a forward-bias voltage being applied to a pn 

junction. The forward-bias voltage lowers the potential barrier so that electrons and 

holes are injected across the space charge region. The injected carriers become minor-

ity carriers which then diffuse from the junction and recombine with majority carriers.

 We calculated the minority carrier diffusion current densities at the edge of the 

space charge region. We can reconsider Equations (8.14) and (8.15) and determine 
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the minority carrier diffusion current densities as a function of distance through the 

p and n regions. These results are

 Jp(x) �   
eDp pn0 

 __ 
Lp 

    � exp  �   eVa  _ 
kT

   �  �1 �  exp  �   xn � x 
 __ 

Lp 
   �   (x � xn) (8.28)

and

 Jn(x) �   
eDn np0 

 __ 
Ln 

    � exp  �   eVa  _ 
kT

   �  �1 �  exp  �   xp � x 
 __ 

Ln 
   �   (x  �xp) (8.29)

 The minority carrier diffusion current densities decay exponentially in each 

 region. However, the total current through the pn junction is constant. The differ-

ence between total current and minority carrier diffusion current is a majority carrier 

current. Figure 8.10 shows the various current components through the pn structure. 

The drift of majority carrier holes in the p region far from the junction, for example, 

is to supply holes that are being injected across the space charge  region into the 

n region and also to supply holes that are lost by recombination with excess minor-

ity carrier electrons. The same discussion applies to the drift of  electrons in the 

n region.

 We have seen that excess carriers are created in a forward-biased pn junction. 

From the results of the ambipolar transport theory derived in Chapter 6, the behavior 

of the excess carriers is determined by the minority carrier parameters for low injec-

tion. In determining the current–voltage relationship of the pn junction, we consider 

the fl ow of minority carriers since we know the behavior and characteristics of these 

particles. It may seem strange, at times, that we concern ourselves so much with 

 minority carriers rather than with the vast number of majority carriers, but the reason 

for this can be found in the results derived from the ambipolar transport  theory.

Figure 8.10 | Ideal electron and hole current components through a pn junction under 

forward bias.

p n
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292 CHAPTER 8   The pn Junction Diode

 The fact that we now have drift current densities in the p and n regions implies 

that the electric fi eld in these regions is not zero as we had originally assumed. We 

can calculate the electric fi eld in the neutral regions and determine the validity of our 

    zero-fi eld approximation.

EXAMPLE 8.4 Objective: Calculate the electric fi eld in a neutral region of a silicon diode to produce a 

given majority carrier drift current density.

 Consider a silicon pn junction at T � 300 K with the parameters given in Example 8.2 

and with an applied forward-bias voltage Va � 0.65 V.

■ Solution
The total forward-bias current density is given by

 J � Js  � exp  �   eV 
 _ 

kT
   �  �1 � 

We determined the reverse-saturation current density in Example 8.2, so we can write

 J � (4.155 � 10 �11)  � exp  �   0.65 __ 
0.0259

   �  �1 �  � 3.295 A /cm2 

The total current far from the junction in the n region will be majority carrier electron drift 

current, so we can write

J � Jn � e�n Nd E 

The doping concentration is Nd � 1016 cm�3, and, if we assume �n � 1350 cm2 /V-s, then the 

electric fi eld must be

E �   
Jn 
 __ 

e�n Nd

   �   
3.295 

  _____  
(1.6 � 10�19)(1350)(1016)

   � 1.525 V /cm 

■ Comment
We assumed, in the derivation of the current–voltage equation, that the electric fi eld in the 

neutral p and n regions was zero. Although the electric fi eld is not zero, this example shows 

that the magnitude is very small—thus the approximation of zero electric fi eld is very good.

■ EXERCISE PROBLEM
Ex 8.4  Determine the electric fi eld in the neutral n region and neutral p region for 

the GaAs pn junction diode described in Ex 8.3. 

(Ans. En � 0.0694 V/cm, Ep � 3.25 V /cm)

8.1.7  Temperature Effects

The ideal reverse-saturation current density Js, given by Equation (8.26), is a func-

tion of the thermal-equilibrium minority carrier concentrations np0 and pn0. These 

minority carrier concentrations are proportional to  n i  
2 , which is a very strong func-

tion of temperature. For a silicon pn junction, the ideal reverse-saturation current 

density will increase by approximately a factor of 4 for every 10�C increase in 

temperature.
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 The forward-bias current–voltage relation is given by Equation (8.27). This  relation 

includes Js as well as the exp  (eVa /kT) factor, making the forward-bias  current–voltage 

relation a function of temperature also. As temperature increases, less forward-bias 

voltage is required to obtain the same diode current. If the voltage is held constant, the 

diode current will increase as temperature increases. The change in forward-bias cur-

rent with temperature is less sensitive than the reverse-saturation current.

   EXAMPLE 8.5Objective: Determine the change in the forward-bias voltage on a pn junction with a change 

in temperature to maintain a constant diode current.

 Consider a silicon pn junction initially biased at 0.60 V at T � 300 K. Assume the tem-

perature increases to T � 310 K. Calculate the change in the forward-bias voltage required to 

maintain a constant current through the junction.

■ Solution
The forward-bias current can be written as follows:

 J � exp  �   �Eg 
 _ 

kT
   �  exp  �   eVa  _ 

kT
   �  

If the temperature changes, we may take the ratio of the diode currents at the two temperatures. 

This ratio is

  
J2 

 _
 

J1

   �   
exp (�Eg �kT2) exp (eVa2  �kT2)  

   _____   
exp (�Eg  �kT1) exp (eVa1  �kT1)

   

If current is to be held constant, then J1 � J2, and we must have

  
Eg � eVa2  

 __ 
kT2

   �   
Eg � eVa1  

 __ 
kT1

   

For T1 � 300 K, T2 � 310 K, Eg � 1.12 eV, and Va1 � 0.60 V. We then fi nd

   
1.12 � Va2  __ 

310
   �   1.12 � 0.60  __ 

300
   

which yields

 Va2 � 0.5827 V

■ Comment
The change in the forward-bias voltage is �17.3 mV for a 10°C temperature change.

■ EXERCISE PROBLEM
Ex 8.5  Repeat Example 8.5 for a GaAs pn junction diode biased at Va � 1.050 V for T � 

300 K. 

 

(Ans. �12.3 mV)

8.1.8  The “Short” Diode

We assumed in the previous analysis that both p and n regions were long compared 

with the minority carrier diffusion lengths. In many pn junction structures, one 

 region may, in fact, be short compared with the minority carrier diffusion length. 

Figure 8.11 shows one such example: the length Wn is assumed to be much smaller 

than the minority carrier hole diffusion length, Lp.
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294 CHAPTER 8   The pn Junction Diode

 The steady-state excess minority carrier hole concentration in the n region is 

determined from Equation (8.9), which is given as

   
d 2 (�pn)  

 __ 
dx2

   �   
�pn  

 _ 
 L p  

2 
   � 0 

The original boundary condition at x � xn still applies, given by Equation (8.11a) as

 pn(xn) � pn0 exp  �   eVa   _ 
kT

   � 
A second boundary condition needs to be determined. In many cases we assume that 

an ohmic contact exists at x � (xn � Wn), implying an infi nite surface- recombination 

velocity and therefore an excess minority carrier concentration of zero. The second 

boundary condition is then written as

 pn(x � xn � Wn) � pn0  (8.30)

 The general solution to Equation (8.9) is again given by Equation (8.12), which 

was

 �pn (x) � pn(x) � pn0 � A e x  �Lp  � B e �x �Lp   (x � xn) 

In this case, because of the fi nite length of the n region, both terms of the general 

solution must be retained. Applying the boundary conditions of Equations (8.11b) 

and (8.30), the excess minority carrier concentration is given by

 �pn(x) � pn0  � exp  �   eVa   _ 
kT

   �  �1 �    sinh [(xn � Wn � x)  �Lp]  
  ____  

sinh[Wn  �Lp]
    (8.31)

Equation (8.31) is the general solution for the excess minority carrier hole concentra-

tion in the n region of a forward-biased pn junction. If Wn � Lp, the assumption for the 

long diode, Equation (8.31) reduces to the previous result given by Equation (8.14). If 

Wn � Lp, we can approximate the hyperbolic sine terms by

 sinh  �   xn � Wn � x  
 ___ 

Lp 
   �  �  �   xn � Wn � x 

 ___ 
Lp 

   �   (8.32a)

and

 sinh  �   Wn  _ 
Lp 

   �  �  �   Wn  _ 
Lp

   �   (8.32b)

Then Equation (8.31) becomes

 �pn(x) � pn0  � exp  �   eVa  _ 
kT

   �  � 1 �   �   xn � Wn � x 
 ___ 

Wn 
   �  (8.33)

Figure 8.11 | Geometry of a “short” diode.

p n

Wn

�xp xn0
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 8.2   Generation–Recombination Currents and High-Injection Levels 295

The minority carrier concentration becomes a linear function of distance.

 The minority carrier hole diffusion current density is given by

Jp � �eDp   
d[�pn(x)] 

 __ 
dx

   

so that in the short n region, we have

 Jp(x) �   
eDppn0 

 __ 
Wn 

    � exp  �   eVa  _ 
kT

   �  � 1 �   (8.34)

The minority carrier hole diffusion current density now contains the length Wn in the 

denominator, rather than the diffusion length Lp. The diffusion current density is larger 

for a short diode than for a long diode since Wn � Lp. In addition, since the  minority 

carrier concentration is approximately a linear function of distance through the n  re gion, 

the minority carrier diffusion current density is a constant. This constant current implies 

that there is no recombination of minority carriers in the short region.

TYU 8.1 The doping concentrations in a GaAs pn junction diode at T � 300 K are 

Nd � 5 � 1015 cm�3 and Na � 5 � 1016 cm�3. The minority carrier concentration 

at either space charge edge is to be no larger than 10 percent of the respective 

majority carrier concentration. Calculate the maximum forward-bias voltage that 

can be applied to this junction and still meet the required specifi cations.

[Ans. Va(max) � 1.067 V]

TYU 8.2 A silicon pn junction at T � 300 K has the following parameters: Na � 5 � 

1016 cm�3, Nd � 1 � 1016 cm�3, Dn � 25 cm2 /s, Dp � 10 cm2 /s, �n0 � 5 � 10�7 s, 

and �p0 � 1 � 10�7 s. The cross-sectional area is A � 10�3 cm2 and the forward-

bias voltage is Va � 0.625 V. Calculate the (a) minority electron diffusion cur-

rent at the space charge edge, (b) minority hole diffusion current at the space 

charge edge, and (c) total current in the pn junction diode.

[Ans. (a) 0.154 mA; (b) 1.09 mA; (c) 1.24 mA]

TYU 8.3 Consider the silicon pn junction diode described in TYU 8.2. The p region is 

long and the n region is short with Wn � 2 �m. (a) Calculate the electron and 

hole currents in the  depletion region. (b) Why has the hole current increased 

compared to that found in TYU 8.2? 

 

[Ans. (a) In � 0.154 mA. IP � 5.44 mA; (b) The hole density gradient has increased.]

TEST YOUR UNDERSTANDING

8.2 |  GENERATION–RECOMBINATION CURRENTS 
AND HIGH-INJECTION LEVELS

In the derivation of the ideal current–voltage relationship, we assumed low injection 

and neglected any effects occurring within the space charge region. High-level injec-

tion and other current components generated within the space charge region cause 
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296 CHAPTER 8   The pn Junction Diode

the I–V relationship to deviate from the ideal expression. The additional currents are 

generated from the recombination processes discussed in Chapter 6.

8.2.1 Generation–Recombination Currents

The recombination rate of excess electrons and holes, given by the Shockley– Read–

Hall recombination theory, was written as

 R �   
Cn Cp Nt (np �  n i  

2 ) 
  _____  

Cn(n � n	) � Cp (p � p	)
    (8.35)

The parameters n and p are, as usual, the concentrations of electrons and holes, 

 respectively.

Reverse-Biased Generation Current For a pn junction under reverse bias, we 

have argued that the mobile electrons and holes have essentially been swept out of 

the space charge region. Accordingly, within the space charge region, n � p � 0. 

The recombination rate from Equation (8.35)  becomes

 R �   
�CnCp Nt

 n i  
2  
 ___ 

Cn n	 � Cp p	
    (8.36)

 The negative sign implies a negative recombination rate; hence, we are really 

generating electron–hole pairs within the reverse-biased space charge region. The 

recombination of excess electrons and holes is the process whereby we are trying to 

reestablish thermal equilibrium. Since the concentration of electrons and holes is es-

sentially zero within the reverse-biased space charge region, electrons and holes are 

being generated via the trap level to also try to reestablish thermal equilibrium. This 

generation process is schematically shown in Figure 8.12. As the electrons and holes 

Figure 8.12 | Generation process in a reverse-biased pn 

junction.
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are generated, they are swept out of the space charge region by the electric fi eld. The 

fl ow of charge is in the direction of a reverse-biased current. This reverse-biased 
generation current, caused by the generation of electrons and holes in the space 

charge  region, is in addition to the ideal reverse-biased saturation current.

 We may calculate the density of the reverse-biased generation current by con-

sidering Equation (8.36). If we make a simplifying assumption and let the trap level 

be at the intrinsic Fermi level, then from Equations (6.92) and (6.97), we have that n	 
� ni and p	 � ni. Equation (8.36) now becomes

 R �   
�ni  ___  

   1 _ 
NtCp 

   �   1  _ 
NtCn 

  
    (8.37)

Using the defi nitions of lifetimes from Equations (6.103) and (6.104), we may write 

Equation (8.37) as

 R �   
�ni  __ 

�p0 � �n0

    (8.38)

 If we defi ne a new lifetime as the average of �p0 and �n0, or

 �0 �   
�p0 � �n0 

 __ 
2
    (8.39)

then the recombination rate can be written as

 R �   
�ni  _ 
2�0

   
 �G  (8.40)

The negative recombination rate implies a generation rate, so G is the generation rate 

of electrons and holes in the space charge region.

 The generation current density may be determined from

 Jgen �  
∫

0

 
 
W 
e Gdx   (8.41)

where the integral is over the space charge region. If we assume that the generation 

rate is constant throughout the space charge region, then we obtain

 Jgen �   
eniW 

 _ 
2�0

    (8.42)

 The total reverse-biased current density is the sum of the ideal reverse saturation 

current density and the generation current density, or

 JR � Js � Jgen  (8.43)

The ideal reverse-saturation current density Js is independent of the reverse-biased 

voltage. However, Jgen is a function of the depletion width W, which in turn is a func-

tion of the reverse-biased voltage. The actual reverse-biased current density, then, is 

no longer independent of the reverse-biased voltage.
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298 CHAPTER 8   The pn Junction Diode

EXAMPLE 8.6 Objective: Determine the relative magnitudes of the ideal reverse-saturation current density 

and the generation current density in a reverse-biased pn junction.

 Consider a silicon pn junction at T � 300 K with parameters Dn � 25 cm2 /s, Dp � 10 cm2 /s, 

Na � Nd � 1016 cm�3, and �0 � �n0 � �p0 � 5 � 10�7 s. Assume the diode is reverse biased at 

VR � 5 V.

■ Solution
The ideal reverse-saturation current density was calculated in Example 8.2 and was found to 

be Js � 4.155 � 10�11 A /cm2.

 The built-in potential is found as

Vbi � Vt ln  �   Na Nd  _ 
 n i  

2 
   �  � (0.0259) ln  �   (1016)(1016) 

 ___ 
(1.5 � 1010)2

   �  � 0.695 V

The depletion width is found to be

 W �   �   2 ∈s (Vbi � VR) 
  ___ e     �   Na � Nd  __ 

Na Nd 
   �  �  1 �2

  

 �   �   2(11.7)(8.85 � 10�14)(0.695 � 5) 
   ______  

1.6 � 10�19
    �   1016 � 1016  __ 

(1016)(1016)
   �  �  1 �2

 

  � 1.214 � 10�4 cm

 The generation current density is then found to be

Jgen �   
eniW 

 _ 
2�0

   �   
(1.6 � 10�19)(1.5 � 1010)(1.214 � 10�4) 

    _______   
2(5 � 10�7)

   

or

Jgen � 2.914 � 10�7 A /cm2 

The ratio of the two currents is

   
Jgen 

 _ 
Js

  �   2.914 � 10�7   ___  
4.155 � 10�11

    7 � 103 

■ Comment
Comparing the solutions for the two current densities, it is obvious that, for the silicon  pn junc-

tion diode at room temperature, the generation current density is approximately four orders 

of magnitude larger than the ideal saturation current density. The generation current is the 

dominant reverse-biased current in a silicon pn junction diode.

■ EXERCISE PROBLEM
Ex 8.6  Consider a GaAs pn junction diode at T � 300 K with parameters Nd � 8 � 1016 cm�3, 

Na � 2 � 1015 cm�3, Dn � 207 cm2 /s, Dp � 9.80 cm2 /s, and �0 � �p0 � �n0 � 5 � 

10�8 s. (a) Calculate the ideal reverse-biased saturation current density. (b) Find the 

reverse-biased generation current density if the diode is reverse biased at VR � 5 V. 

(c) Determine the ratio of  J gen  to Js. 

[Ans. (a) 1.677 � 10
�17

 A /cm
2
; (b) 6.166 � 10

�10
 A /cm

2
; (c) 3.68 � 10

7
]
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Forward-Bias Recombination Current For the reverse-biased pn junction, elec-

trons and holes are essentially completely swept out of the space charge region so 

that n � p � 0. Under forward bias, however, electrons and holes are injected across 

the space charge region, so we do, in fact, have some excess carriers in the space 

charge region. The possibility exists that some of these electrons and holes will re-

combine within the space charge region and not become part of the minority carrier 

distribution.

 The recombination rate of electrons and holes is again given from Equa-

tion (8.35) as

 R �   
CnCp Nt  � np �  n i  

2  �  
  _____  

Cn(n � n	) � Cp( p � p	)
  

Dividing both numerator and denominator by CnCp Nt and using the defi nitions of �n0  
and �p0, we may write the recombination rate as

 R �   
np �  n i  

2  
  _____  

�p0 (n � n	) � �n0
 (p � p	)

    (8.44)

 Figure 8.13 shows the energy-band diagram of the forward-biased pn junc-

tion. Shown in the fi gure are the intrinsic Fermi level and the quasi-Fermi levels 

for  electrons and holes. From the results of Chapter 6, we may write the electron 

concentration as

 n � ni exp  �   EFn � EFi  __ 
kT

   �   (8.45)

and the hole concentration as

 p � ni exp  �   EFi � EFp 
 __ 

kT
   �   (8.46)

where EFn and EFp are the quasi-Fermi levels for electrons and holes, respectively.

Figure 8.13 | Energy-band diagram of a forward-biased pn 

junction including quasi-Fermi levels.
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300 CHAPTER 8   The pn Junction Diode

 From Figure 8.13, we may note that

 (EFn � EFi) � (EFi � EFp) � eVa  (8.47)

where Va is the applied forward-bias voltage. Again, if we assume that the trap level 

is at the intrinsic Fermi level, then n	 � p	 � ni. Figure 8.14 shows a plot of the 

 relative magnitude of the recombination rate as a function of distance through the 

space charge region. This plot was generated using Equations (8.44), (8.45), (8.46), 

and (8.47). A very sharp peak occurs at the metallurgical junction (x � 0).

 At the center of the space charge region, we have

 EFn � EFi � EFi � EFp �   
eVa  _ 
2
    (8.48)

Equations (8.45) and (8.46) then become

 n � ni exp  �   eVa  _ 
2kT

   �  (8.49)

and

 p � ni exp  �   eVa  _ 
2kT

   �  (8.50)

If we assume that n	 � p	 � ni and that �n0 � �p0 � �0, then Equation (8.44) 

becomes

 Rmax �   
ni  _ 

2�0 
     

[exp (eVa �kT) � 1] 
  ____  

[exp (eVa �2kT) � 1]
    (8.51)

which is the maximum recombination rate for electrons and holes that occurs at the 

center of the forward-biased pn junction. If we assume that Va � kT /e, we may 

Figure 8.14 | Relative magnitude of the 

recombination rate through the space 

charge region of a forward-biased pn 

junction.
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 neglect the (�1) term in the numerator and the (�1) term in the denominator. 

Equation (8.51) then becomes

 Rmax �   
ni  _ 

2�0

   exp  �   eVa  _ 
2kT

   �  (8.52)

The recombination current density may be calculated from

 Jrec �  
∫

0

 
 
W 
eR dx    (8.53)

where again the integral is over the entire space charge region. In this case, however, 

the recombination rate is not a constant through the space charge region. We have 

calculated the maximum recombination rate at the center of the space charge region, 

so we may write

 Jrec � ex	  
ni  _ 

2�0

   exp  �   eVa  _ 
2kT

   �  (8.54)

where x	 is a length over which the maximum recombination rate is effective.  How ever, 

since �0 may not be a well-defi ned or known parameter, it is customary to write

 Jrec �   
eW ni  _ 
2�0

   exp  �   eVa  _ 
2kT

   �  � Jr 0 exp  �   eVa  _ 
2kT

   �  (8.55)

where W is the space charge width.

Total Forward-Bias Current The total forward-bias current density in the pn 

junction is the sum of the recombination and the ideal diffusion current densities. 

Figure 8.15 shows a plot of the minority carrier hole concentration in the neutral 

p

�p

pn(0)

n

Recombination

pn0

pn(0) � pn0 exp (eVa

kT )
pn(x)� exp (�x

Lp )

x � 0

Figure 8.15 | Because of recombination, additional holes 

from the p region must be injected into the space charge region 

to establish the minority carrier hole concentration in the 

n region.
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302 CHAPTER 8   The pn Junction Diode

n region. This distribution yields the ideal hole diffusion current density and is a 

function of the minority carrier hole diffusion length and the applied junction volt-

age. The distribution is established as a  result of holes being injected across the space 

charge region. If, now, some of the injected holes in the space charge region are lost 

due to recombination, then additional holes must be injected from the p region to 

make up for this loss. The fl ow of these additional injected carriers, per unit time, 

results in the recombination current. This added component is schematically shown 

in the fi gure.

 The total forward-bias current density is the sum of the recombination and the 

ideal diffusion current densities, so we can write

 J � Jrec � JD  (8.56)

where Jrec is given by Equation (8.55) and JD is given by

 JD � Js exp  �   eVa  _ 
kT

   �  (8.57)

The (�1) term in Equation (8.27) has been neglected. The parameter Js is the ideal 

reverse-saturation current density, and from previous discussion, the value of Jr0 

from the recombination current is larger than the value of Js.

 If we take the natural log of Equations (8.55) and (8.57), we obtain

 ln Jrec � ln Jr0 �   
eVa  _ 
2kT

   � ln Jr0 �   
Va  _ 
2Vt 

   (8.58a)

and

 ln JD � ln Js �   
eVa  _ 
kT

   � ln Js �   
Va  _ 
Vt

    (8.58b)

Figure 8.16 shows the recombination and diffusion current components plotted on 

a log current scale as a function of Va /Vt. The slopes of the two curves are not the 

same. Also shown in the fi gure is the total current density—the sum of the two 

current components. We may notice that, at a low current density, the recombina-

tion current dominates, and at a higher current density, the ideal diffusion current 

dominates.

 In general, the diode current–voltage relationship may be written as

 I � Is  � exp  �   eVa  _ 
nkT

   �  � 1 �   (8.59)

where the parameter n is called the ideality factor. For a large forward-bias voltage, 

n � 1 when diffusion dominates, and for low forward-bias voltage, n � 2 when 

 recombination dominates. There is a transition region where 1 
 n 
 2.

8.2.2 High-Level Injection

In the derivation of the ideal diode I–V relationship, we assumed that low injection 

was valid. Low injection implies that the excess minority carrier concentrations are 

always much less than the majority carrier concentration.
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 However, as the forward-bias voltage increases, the excess carrier concentra-

tions increase and may become comparable or even greater than the majority carrier 

concentration. From Equation (8.18), we can write

 np �  n i  
2  exp  �   Va 

 _
 Vt 
   � 

We have that n � no � �n and p � po � �p, so that

 (no � �n)(po � �p) �  n i  
2  exp  �   Va  _ 

Vt 
   �   (8.60)

 Under high-level injection, we may have �n � no and �p � po so that Equa-

tion (8.60) becomes approximately

 (�n)(�p)   n i  
2  exp  �   Va 

 _
 Vt 
   �   (861)

Since �n � �p, then

 �n � �p  ni exp  �   Va 
 _
 

2Vt 
   �   (8.62)

The diode current is proportional to the excess carrier concentration so that, under 

high-level injection, we have

 I � exp  �   Va 
 _
 

2Vt 
   �  (8.63)

Figure 8.16 | Ideal diffusion, recombination, and total 

current in a forward-biased pn junction.
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304 CHAPTER 8   The pn Junction Diode

In the high-level injection region, it takes a larger increase in diode voltage to pro-

duce a given increase in diode current.

 The diode forward-bias current, from low-bias levels to high-bias levels, is plot-

ted in Figure 8.17. This plot shows the effect of recombination at low-bias voltages 

and high-level injection at high-bias voltages.

Va
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)

High-level injectionRecombination
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b

a c

Figure 8.17 | Forward-bias current versus voltage from low 

forward bias to high forward bias.

  TEST YOUR UNDERSTANDING

TYU 8.4 Consider a silicon pn junction diode at T � 300 K with parameters Na � 2 � 

1015 cm�3, Nd � 8 � 1016 cm�3, Dp � 10 cm2 /s, Dn � 25 cm2 /s, and �0 � �p0 � 

�n0 � 10�7 s. The diode is forward biased at Va � 0.35 V. (a) Calculate the ideal 

diode current density. (b) Find the forward-biased recombination current density. 

(c) Determine the ratio of recombination current to the ideal diffusion current. 

[Ans. (a) 2.137 � 10
�4

 A /cm
2
; (b) 5.020 � 10

�4
 A /cm

2
; (c) 2.35]

8.3 |  SMALL-SIGNAL MODEL OF THE 
pn JUNCTION

We have been considering the dc characteristics of the pn junction diode. When 

semiconductor devices with pn junctions are used in linear amplifi er circuits, for 

example, sinusoidal signals are superimposed on the dc currents and voltages, so that 

the small-signal characteristics of the pn junction become important.
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8.3.1  Diffusion Resistance

The ideal current–voltage relationship of the pn junction diode was given by Equa-

tion (8.27), where J and Js are current densities. If we multiply both sides of the 

equation by the junction cross-sectional area, we have

 ID � Is  � exp  �   eVa  _ 
kT

   �  � 1 �  (8.64)

where ID is the diode current and Is is the diode reverse-saturation current.

 Assume that the diode is forward-biased with a dc voltage V0 producing a dc 

diode current IDQ. If we now superimpose a small, low-frequency sinusoidal voltage 

as shown in Figure 8.18, then a small sinusoidal current will be produced, super-

imposed on the dc current. The ratio of sinusoidal current to sinusoidal voltage is 

called the incremental conductance. In the limit of a very small sinusoidal current 

and  voltage, the small-signal incremental conductance is just the slope of the dc 

 current–voltage curve, or

 gd �      dID 
 _ 

dVa 
   �   

Va�V0

   (8.65)

The reciprocal of the incremental conductance is the incremental resistance, defi ned as

 rd �      dVa  _ 
dID 

   �   
ID�IDQ

   (8.66)

where IDQ is the dc quiescent diode current.

I

VaV0
�Is

IQ

�V

�I

Slope � 1
rd

Figure 8.18 | Curve showing the concept of the 

small-signal diffusion resistance.
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306 CHAPTER 8   The pn Junction Diode

 If we assume that the diode is biased suffi ciently far in the forward-bias region, 

then the (�1) term can be neglected and the incremental conductance becomes

 gd �      dID 
 _ 

dVa 
   �  

Va�V0

  �  �   e  _ 
kT

   �  Is exp  �   eV0  _ 
kT

   �  �   
IDQ 

 _ 
Vt 

   (8.67)

The small-signal incremental resistance is then the reciprocal function, or

 rd �   
Vt  _ 
IDQ 

   (8.68)

The incremental resistance decreases as the bias current increases, and is inversely 

proportional to the slope of the I–V characteristic as shown in Figure 8.18. The incre-

mental resistance is also known as the diffusion resistance.

8.3.2  Small-Signal Admittance

In the last chapter, we considered the pn junction capacitance as a function of the 

 reverse-biased voltage. When the pn junction diode is forward-biased, another ca-

pacitance becomes a factor in the diode admittance. The small-signal admittance, or 

impedance, of the pn junction under forward bias is derived using the minority car-

rier diffusion current relations we have already considered.

Qualitative Analysis  Before we delve into the mathematical analysis, we can 

qualitatively understand the physical processes that lead to a diffusion capacitance, 

which is one component of the junction admittance. Figure 8.19a schematically 

shows a pn junction forward biased with a dc voltage. A small ac voltage is also 

Figure 8.19 | (a) A pn junction with an ac voltage superimposed on a forward-biased 

dc value; (b) the hole concentration versus time at the space charge edge; (c) the hole 

concentration versus distance in the n region at three different times.

Holes

p n

x � 0

t0 t1

t2
Time

pn0 exp (Vdc � v̂
Vt )

pn0 exp (Vdc � v̂
Vt )

p n

Va� �

Vdc

� �
���

vac � v̂ sin �t(a) (b)

pn0

p

(c)

n

x � 0

t � t0
t � t2

t � t1
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superimposed on the dc voltage so that the total forward-biased voltage can be writ-

ten as Va � Vdc � �̂ sin �t.
 As the voltage across the junction changes, the number of holes injected across 

the space charge region into the n region also changes. Figure 8.19b shows the 

hole concentration at the space charge edge as a function of time. At t � t0, the ac 

voltage is zero so that the concentration of holes at x � 0 is just given by pn(0) � 

pn0 exp (Vdc �Vt), which is what we have seen previously.

 Now, as the ac voltage increases during its positive half cycle, the concentration 

of holes at x � 0 will increase and reach a peak value at t � t1, which corresponds to 

the peak value of the ac voltage. When the ac voltage is on its negative half cycle, the 

total voltage across the junction decreases so that the concentration of holes at x � 0 

decreases. The concentration reaches a minimum value at t � t2, which corresponds 

to the time that the ac voltage reaches its maximum negative value. The minority 

carrier hole concentration at x � 0, then, has an ac component superimposed on the 

dc value as indicated in Figure 8.19b.

 As previously discussed, the holes at the space charge edge (x � 0) diffuse into 

the n region where they recombine with the majority carrier electrons. We assume 

that the period of the ac voltage is large compared to the time it takes carriers to 

diffuse into the n region. The hole concentration as a function of distance into the 

n region can then be treated as a steady-state distribution. Figure 8.19c shows the 

steady-state hole concentrations at three different times. At t � t0, the ac voltage is 

zero, so the t � t0 curve corresponds to the hole distribution established by the dc 

voltage. The t � t1 curve corresponds to the distribution established when the ac volt-

age has reached its peak positive value, and the t � t2 curve corresponds to the dis-

tribution established when the ac voltage has reached its maximum negative value. 

The shaded areas represents the charge �Q that is alternately charged and discharged 

during the ac voltage cycle.

 Exactly the same process is occurring in the p region with the electron concentra-

tion. The mechanism of charging and discharging of holes in the n region and electrons 

in the p region leads to a capacitance. This capacitance is called diffusion capacitance. 

The physical mechanism of this diffusion capacitance is different from that of the 

junction capacitance discussed in the last chapter. We show that the magnitude of the 

diffusion capacitance in a forward-biased pn junction is usually substantially larger 

than the junction capacitance.

Mathematical Analysis  The minority carrier distribution in the pn junction will 

be derived for the case when a small sinusoidal voltage is superimposed on the 

dc junction voltage. We can then determine small signal, or ac, diffusion currents 

from these minority carrier functions. Figure 8.20 shows the minority carrier dis-

tribution in a pn junction when a forward-biased dc voltage is applied. The origin, 

x � 0, is set at the edge of the space charge region on the n side for convenience. 

The  minority carrier hole concentration at x � 0 is given by Equation (8.7) as pn(0) �   

pn0 exp (eVa �kT), where Va is the applied voltage across the junction.

 Now let

 Va � V0 � v1(t)  (8.69)
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308 CHAPTER 8   The pn Junction Diode

where V0 is the dc quiescent bias voltage and v1(t) is the ac signal voltage that is su-

perimposed on this dc level. We may now write

 pn(x � 0) � pn0 exp  �   e[V0 � v1(t)] 
 ___ 

kT
   �  � pn(0, t) (8.70)

Equation (8.70) may be written as

 pn(0, t) � pdc exp  �   ev1(t) 
 _ 

kT
   �   (8.71)

where

 pdc � pn0 exp  �   eV0  _ 
kT

   �  (8.72)

If we assume that �v1(t)� � (kT �e) � Vt,  then the exponential term in Equation (8.71) 

may be expanded into a Taylor series retaining only the linear terms, and the minor-

ity carrier hole concentration at x � 0 can be written as

 pn(0, t) � pdc  � 1 �   
v1(t) 

 _ 
Vt 

   �  (8.73)

 If we assume that the time-varying voltage v1(t) is a sinusoidal signal, we can 

write Equation (8.73) as

 pn(0, t) � pdc  � 1 �   
V̂1  _ 
Vt 

   e j�t  �  (8.74)

where V̂1 is the phasor of the applied sinusoidal voltage. Equation (8.74) will be used 

as the boundary condition in the solution of the time-dependent diffusion equation 

for the minority carrier holes in the n region.

 In the neutral n region (x � 0), the electric fi eld is assumed to be zero; thus, the 

behavior of the excess minority carrier holes is determined from the equation

 Dp   
�2(�pn) 

 __ 
�x2

    �   
�pn 

 _ �p0

   �   
�(�pn) 

 __ 
�t    (8.75)

Figure 8.20 | The dc characteristics of a forward-biased 

pn junction used in the small-signal admittance calculations.

p

np(x) pn(x)

n

pn0np0

pn(0) � pn0 exp [eVa

kT ]

x � 0
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 8.3   Small-Signal Model of the pn Junction 309

where �pn is the excess hole concentration in the n region. We are assuming that the 

ac signal voltage v1 (t) is sinusoidal. We then expect the steady-state solution for �pn 

to be of the form of a sinusoidal solution superimposed on the dc solution, or

 �pn(x, t) � �p0(x) � p1(x) e j�t   (8.76)

where �p0(x) is the dc excess carrier concentration and p1(x) is the magnitude of the 

ac component of the excess carrier concentration. The expression for �p0(x) is the 

same as that given in Equation (8.14).

 Substituting Equation (8.76) into the differential Equation (8.75), we obtain

 Dp  �   �2 � �p0(x) �  
 __ 

�x2 
   �   

�2p1(x) 
 __ 

�x2 
    e j�t  �  �   

�p0(x) � p1(x) e j�t  
  ___ �p0 

   � j�p1(x) e j�t   (8.77)

We may rewrite this equation, combining the time-dependent and time-independent 

terms, as

  �   Dp �2 � �p0(x) �  
  ___ 

�x2
    �   

�p0(x) 
 __ �p0 

   �  �  � Dp   
�2p1(x) 

 __ 
�x2 

   �   
p1(x) 

 _ �p0

  
 � j�p1(x) �   e j�t  � 0 (8.78)

If the ac component, p1(x), is zero, then the fi rst bracketed term is just the differential 

Equation (8.10), which is identically zero. Then we have, from the second bracketed 

term,

 Dp   
d 2p1(x) 

 __ 
dx2 

   �   
p1(x) 

 _ �p0 
   � j�p1(x) � 0  (8.79)

Noting that  L p  
2  � Dp�p0, Equation (8.79) may be rewritten in the form

   
d 2p1(x) 

 __ 
dx2 

   �   
(1 � j��p0) 

 __ 
 L p  

2 
   p1(x) � 0  (8.80)

or

   
d 2p1(x) 

 __ 
dx2 

   �  C p  
2  p1(x) � 0  (8.81)

where

  C p  
2  �   

(1 � j��p0)
 __ 

 L p  
2 
    (8.82)

The general solution to Equation (8.81) is

 p1(x) � K1
 e �Cpx  � K2

 e �Cpx   (8.83)

 One boundary condition is that p1(x → � �) � 0, which implies that the coef-

fi cient K2 � 0. Then

 p1(x) � K1e�Cp
 x  (8.84)

Applying the boundary condition at x � 0 from Equation (8.74), we obtain

 p1(0) � K1 � pdc  �    ̂V1  _ 
Vt 

   �  (8.85)
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310 CHAPTER 8   The pn Junction Diode

 The hole diffusion current density can be calculated at x � 0. This is given by

 Jp ��eDp
      �pn 

 _
 �x    �  x � 0

   (8.86)

If we consider a homogeneous semiconductor, the derivative of the hole concentra-

tion will be just the derivative of the excess hole concentration. Then

 Jp � �eDp      �(�pn) 
 __ 

�x    �  x � 0
  � �eDp

      �[�p0(x)] 
 __
 �x    �  x � 0

  � eDp      �p1(x) 
 __ 

�x 
   �  x � 0

  e j�t (8.87)

We can write this equation in the form

 Jp � Jp0 � jp(t)  (8.88)

where

 Jp0 � �eDp
      �[�p0(x)] 

 __
 �x    �   x � 0

  �   
eDp pn0 

 __ 
Lp 

    � exp  �   eV0  _ 
kT 

   �  � 1 �  (8.89)

Equation (8.89) is the dc component of the hole diffusion current density and is ex-

actly the same as in the ideal I–V relation derived previously.

 The sinusoidal component of the diffusion current density is then found from

 jp(t) �  Ĵp
 e j�t  � �eDp

      �p1(x) 
 __
 �x    e j�t  �  x � 0

  (8.90)

where Ĵp is the current density phasor. Combining Equations (8.90), (8.84), and 

(8.85), we have

 Ĵp � �eDp(�Cp)     � pdc
 �    V̂1  _ 
Vt 

   �  �   e �cpx  �  
x � 0

   (8.91)

We can write the total ac hole current phasor as

 Îp � A Ĵp � eADpCppdc  �   V̂1  _ 
Vt 

   �  (8.92)

where A is the cross-sectional area of the pn junction. Substituting the expression for 

Cp, we obtain

 Îp �   
eADp  pdc 

 __ 
L p 

    	
________

 1 � j��p0
   �   V̂1  _ 

Vt 
   �  (8.93)

If we defi ne

 Ip0 �   
eADp  pdc 

 __ 
L p 

   �   
eADp  pn 0 

 __ 
Lp 

   exp  �   eV0  _ 
kT

   �  (8.94)

then Equation (8.93) becomes

 Îp � Ip 0
 	

________
 1 � j��p  0
    �   V̂1  _ 

Vt 
   �  (8.95)

 Going through the same type of analysis for the minority carrier electrons in the 

p region, we obtain

 În � In0
 	

________
 1 � j��n0
    �   V̂1  _ 

Vt 
   �  (8.96)
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where

 In0 �   
eADn np0 

 __ 
Ln 

   exp  �   eV0  _ 
kT 

   �  (8.97)

 The total ac current phasor is the sum of  Îp and  ̂In. The pn junction admittance is 

the total ac current phasor divided by the ac voltage phasor, or

 Y �   Î  _ 
 ̂V1

   �   
Îp � În 

 _ 
V̂1

   �  �   1  _ 
Vt 

   �  � Ip0
 	

________
 1 � j��p0
   � In0

 	
________

 1 � j��n0
   �   (8.98)

 There is not a linear, lumped, fi nite, passive, bilateral network that can be syn-

thesized to give this admittance function. However, we may make the following 

 approximations. Assume that

 ��p0 � 1 (8.99a)

and

 ��n0 � 1 (8.99b)

These two assumptions imply that the frequency of the ac signal is not too large. 

Then we may write

  	
________

 1 � j��p0
   � 1 �   

j��p0 
 _ 

2
    (8.100a)

and

  	
________

 1 � j��n0
   � 1 �   

j��n0 
 _ 

2
   (8.100b)

 Substituting Equations (8.100a) and (8.100b) into the admittance Equa-

tion (8.98), we obtain

 Y �  �   1  _ 
Vt 

   �   � Ip0  � 1 �   
j��p0 

 _ 
2 

   �  � In0  � 1 �   
j��n0 

 _ 
2 

   �  �  (8.101)

If we combine the real and imaginary portions, we get

 Y �  �   1  _ 
Vt 

   �  (Ip0 � In0) � j�  �  �   1  _ 
2Vt 

   �  (Ip0�p0 � In0�n0) �   (8.102)

Equation (8.102) may be written in the form

 Y � gd � j�Cd  (8.103)

The parameter gd is called the diffusion conductance and is given by

 gd �  �   1  _ 
Vt 

   �  (Ip0 � In0) �   
IDQ 

 _ 
Vt 

   (8.104)

where IDQ is the dc bias current. Equation (8.104) is exactly the same conductance as 

we obtained previously in Equation (8.67). The parameter Cd is called the diffusion 
capacitance and is given by

 Cd �  �   1  _ 
2Vt 

   �  (Ip0�p0 � In0�n0)   (8.105)
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312 CHAPTER 8   The pn Junction Diode

 The physics of the diffusion capacitance may be seen in Figure 8.21. The dc 

values of the minority carrier concentrations are shown along with the changes due 

to the ac component of voltage. The � Q charge is alternately being charged and dis-

charged through the junction as the voltage across the junction changes. The change 

in the stored minority carrier charge as a function of the change in voltage is the dif-

fusion capacitance. One consequence of the approximations ��p0 � 1 and ��n0 � 1 

is that there are no “wiggles” in the minority carrier curves. The sinusoidal frequency 

is low enough so that the exponential curves are maintained at all times.

Figure 8.21 | Minority carrier concentration changes with changing 

forward-bias voltage.

p region n region

��Q��Q

pn0np0

pn(0) � pn0 exp [ (V0 � �̂ )]e
kTpn(0) � pn0 exp [ (V0 � �̂ )]e

kT

pn(0) � pn0 exp [eV0

kT ]

x � 0

EXAMPLE 8.7 Objective: Calculate the small-signal admittance parameters of a pn junction diode.

 This example is intended to give an indication of the magnitude of the diffusion capaci-

tance as compared with the junction capacitance considered in the last chapter. The diffusion 

resistance will also be calculated. Assume that Na � Nd so that pn0 � np0. This assumption 

implies that Ip0 � In0. Let T � 300 K, �p0 � 10�7 s, and Ip0 � IDQ � 1 mA.

■ Solution
The diffusion capacitance, with these assumptions, is given by

Cd �  �   1  _ 
2Vt 

   �  (Ip 0�p 0) �   1  __ 
(2)(0.0259)

   (10�3)(10�7) � 1.93 � 10�9 F 

The diffusion resistance is

rd �   
Vt  _ 
IDQ

   �   0.0259 V  __ 
1 mA

   � 25.9 � 

■ Comment
The value of 1.93 nF for the diffusion capacitance of a forward-biased pn junction is three to 

four  orders of magnitude larger than the junction capacitance of the reverse-biased pn junc-

tion, which we calculated in Example 7.5.
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 8.3   Small-Signal Model of the pn Junction 313

 The diffusion capacitance tends to dominate the capacitance terms in a forward- 

biased pn junction. The small-signal diffusion resistance can be fairly small if the 

diode current is a fairly large value. As the diode current decreases, the diffusion 

 resistance increases. We will consider the impedance of forward-biased pn junctions 

again when we discuss bipolar transistors.

8.3.3  Equivalent Circuit

The small-signal equivalent circuit of the forward-biased pn junction is derived from 

Equation (8.103). This circuit is shown in Figure 8.22a. We need to add the junction 

capacitance, which will be in parallel with the diffusion resistance and diffusion ca-

pacitance. The last element we add, to complete the equivalent circuit, is a series resis-

tance. The neutral n and p regions have fi nite resistances so the actual pn junction will 

include a series resistance. The complete equivalent circuit is given in Figure 8.22b.

 The voltage across the actual junction is Va and the total voltage applied to 

the pn diode is given by Vapp. The junction voltage Va is the voltage in the ideal 

 current–voltage expression. We can write the expression

 Vapp � Va � Irs  (8.106)

Figure 8.23 is a plot of the current–voltage characteristic from Equation (8.106) 

showing the effect of the series resistance. A larger applied voltage is required to 

■ EXERCISE PROBLEM
Ex 8.7  A silicon pn junction diode at T � 300 K has the following parameters: Nd � 8 � 

1016 cm�3, Na � 2 � 1015 cm�3, Dn � 25 cm2 /s, Dp � 10 cm2/s, �n0 � 5 � 10�7 s, 

and �p0 � 10�7 s. The cross-sectional area is A � 10�3 cm2. Determine the diffu-

sion resistance and diffusion capacitance if the diode is forward biased at (a) Va � 

0.550 V and (b) Va � 0.610 V. 

[Ans. (a) rd � 118 �, Cd � 2.07 nF; (b) rd � 11.6 �, Cd � 20.9 nF]

Figure 8.22 | (a) Small-signal equivalent circuit of ideal forward-

biased pn junction diode; (b) complete small-signal equivalent circuit 

of pn junction.
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314 CHAPTER 8   The pn Junction Diode

achieve the same current value when a series resistance is included. In most diodes, 

the series resistance will be negligible. In some semiconductor devices with pn junc-

tions, however, the series resistance will be in a feedback loop; in these cases, the 

resistance is multiplied by a gain factor and becomes non-negligible.

Figure 8.23 | Forward-biased I–V 

characteristics of a pn junction diode 

showing the effect of series resistance.

ln
 (I

)
Vapp

Ideal

Effect of rs

  TEST YOUR UNDERSTANDING

TYU 8.5 A GaAs pn junction diode at T � 300 K has the same parameters given in 

Ex 8.7 except that Dn � 207 cm2/s and Dp � 9.80 cm2/s. Determine the 

diffusion resistance and diffusion capacitance if the diode is forward biased 

at (a) Va � 0.970 V and (b) Va � 1.045 V. 

[Ans. (a) rd � 263 �, Cd � 0.940 nF; (b) rd � 14.6 �, Cd � 17.0 nF]

TYU 8.6 A silicon pn junction diode at T � 300 K has the same parameters as those 

 described in Ex 8.7. The neutral n-region and neutral p-region lengths are 

0.01 cm.  Estimate the series resistance of the diode (neglect ohmic contacts). 

(Ans. R � 66 �)

*8.4 | CHARGE STORAGE AND DIODE TRANSIENTS
The pn junction is typically used as an electrical switch. In forward bias, referred to 

as the on state, a relatively large current can be produced by a small applied voltage; 

in reverse bias, referred to as the off state, only a very small current will exist. Of 

primary interest in circuit applications is the speed of the pn junction diode in switch-

ing states. We qualitatively discuss the transients that occur and the charge storage 

effects. We simply state the equations that describe the switching times without any 

mathematical derivations.
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8.4.1  The Turn-off Transient

Suppose we want to switch a diode from the forward bias on state to the reverse-

biased off state. Figure 8.24 shows a simple circuit that will switch the applied bias 

at t � 0. For t 
 0, the forward-bias current is

 I � IF �   
VF � Va  __ 

RF

    (8.107)

The minority carrier concentrations in the device, for the applied forward voltage 

VF, are shown in Figure 8.25a. There is excess minority carrier charge stored in both 

the p and n regions of the diode. The excess minority carrier concentrations at the 

space charge edges are supported by the forward-bias junction voltage Va. When the 

voltage is switched from the forward- to the reverse-biased state, the excess minority 

carrier concentrations at the space charge edges can no longer be supported and they 

start to decrease, as shown in Figure 8.25b.

 The collapse of the minority carrier concentrations at the edges of the space 

charge region leads to large concentration gradients and diffusion currents in the 

 reverse-biased direction. If we assume, for the moment, that the voltage across the 

diode junction is small compared with VR, then the reverse-biased current is limited 

to  approximately

 I � �IR �   
�VR 

 _ 
RR

   (8.108)

The junction capacitances do not allow the junction voltage to change instantaneously. 

If the current IR were larger than this value, there would be a forward-bias voltage 

across the junction, which would violate our assumption of a reverse-biased current. 

Figure 8.24 | Simple circuit for switching a diode from 

forward to reverse bias.

p n
I

� �

� �

��

t � 0
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316 CHAPTER 8   The pn Junction Diode

If the current IR  were smaller than this value, there would be a reverse-biased volt-

age across the junction, which means that the junction voltage would have changed 

instantaneously. Since the reverse current is limited to the value given by Equation 

(8.108), the reverse-biased density gradient is constant; thus, the minority carrier con-

centrations at the space charge edge decrease with time as shown in  Figure 8.25b.

 This reverse current IR will be approximately constant for 0�  t  ts, where ts is 

called the storage time. The storage time is the length of time required for the  minority 

carrier concentrations at the space charge edge to reach the thermal- equilibrium val-

ues. After this time, the voltage across the junction will begin to change. The current 

characteristic is shown in Figure 8.26. The reverse current is the fl ow of the stored 

 minority carrier charge, which is the difference between the minority carrier concen-

trations at t � 0� and t � �, as shown in Figure 8.25b.

(a)

p

np(x	) pn(x)

n

pn0np0

xx	

Forward bias
diffusion

of electrons

Forward bias
diffusion
of holes

pn(x � 0) � pn0 exp (eVa

kT )np(x	 � 0) � np0 exp (eVa

kT )

x � 0x	 � 0

Figure 8.25 | (a) Steady-state forward-bias minority carrier 

concentrations; (b) minority carrier concentrations at various 

times during switching.

(b)

t � 0� t � 0�

t � � t � �

t � t1 t � t1

ts � t4 t4 � ts

t2
t3

t2

t3

Reverse bias
diffusion

of electrons

Reverse bias
diffusion
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Figure 8.26 | Current characteristic 

versus time during diode switching.
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 The storage time ts can be determined by solving the time-dependent continuity 

equation. If we consider a one-sided p�n junction, the storage time is determined 

from the equation

 erf   	
___

   
ts  _ �p 0 

     �   
IF 
 __ 

IF � IR 
   (8.109)

where erf (x) is known as the error function. An approximate solution for the storage 

time can be obtained as

 ts � �p 0 ln  � 1 �   
IF 

 _ 
IR 

   �  (8.110)

 The recovery phase for t � ts is the time required for the junction to reach its 

steady-state reverse-biased condition. The remainder of the excess charge is being 

 removed and the space charge width is increasing to the reverse-biased value. The 

decay time t2 is determined from

 erf  	
___

   
t2  _ �p 0 

     �   
exp (�t2 ��p 0) 

  ___ 
 	

______
 �t2 ��p 0
  
   � 1 � 0.1  �   IR 

 _ 
IF 

   �  (8.111)

The total turn-off time is the sum of ts and t2.

 To switch the diode quickly, we need to be able to produce a large reverse cur-

rent as well as have a small minority carrier lifetime. In the design of diode circuits, 

then, the designer must provide a path for the transient reverse-biased current pulse 

in order to be able to switch the diode quickly. These same effects will be considered 

when we discuss the switching of bipolar transistors.

8.4.2  The Turn-on Transient

The turn-on transient occurs when the diode is switched from its “off” state into the 

forward-bias “on” state. The turn-on can be accomplished by applying a forward-

bias current pulse. The fi rst stage of turn-on occurs very quickly and is the length of 

time required to narrow the space charge width from the reverse-biased value to its 

thermal-equilibrium value when Va � 0. During this time, ionized donors and accep-

tors are neutralized as the space charge width narrows.

 The second stage of the turn-on process is the time required to establish the 

 minority carrier distributions. During this time the voltage across the junction is in-

creasing toward its steady-state value. A small turn-on time is achieved if the minor-

ity carrier lifetime is small and if the forward-bias current is small.

TYU 8.7 A one-sided p�n silicon diode, which has a forward-bias current of IF � 1.75 mA, 

is switched to reverse bias with an effective reverse-biased voltage of VR � 2 V and 

an  effective series resistance of RR � 4 k�. The minority carrier hole lifetime is 

10�7 s. (a) Determine the storage time ts. (b) Calculate the decay time t2. (c) What is 

the turn-off time of the diode? 

[Ans. (a) 0.746 � 10
�7

 s; (b) 1.25 � 10
�7

 s; (c) � 2 � 10
�7

 s]

TEST YOUR UNDERSTANDING
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318 CHAPTER 8   The pn Junction Diode

*8.5 | THE TUNNEL DIODE
The tunnel diode is a pn junction in which both the n and p regions are degenerately 

doped. As we discuss the operation of this device, we will fi nd a region that exhibits 

a negative differential resistance. The tunnel diode was used in oscillator circuits in 

the past, but other types of solid-state devices are now used as high-frequency oscil-

lators; thus, the tunnel diode is really only of academic interest. Nevertheless, this 

device does demonstrate the phenomenon of tunneling we discussed in Chapter 2.

 Recall the degenerately doped semiconductors we discussed in Chapter 4: the 

Fermi level is in the conduction band of a degenerately doped n-type material and 

in the valence band of a degenerately doped p-type material. Then, even at T � 0 K, 

electrons will exist in the conduction band of the n-type material, and holes (empty 

states) will exist in the p-type material.

 Figure 8.27 shows the energy-band diagram of a pn junction in thermal equi-

librium for the case when both the n and p regions are degenerately doped. The 

depletion region width decreases as the doping increases and may be on the order 

of  approximately 100 Å for the case shown in Figure 8.27. The potential barrier 

at the junction can be approximated by a triangular potential barrier, as shown in 

Fig ure 8.28. This potential barrier is similar to the potential barrier used in Chapter 2 

to illustrate the tunneling phenomenon. The barrier width is small and the electric 

fi eld in the space charge region is quite large; thus, a fi nite probability exists that an 

electron may tunnel through the forbidden band from one side of the junction to the 

other.

 We may qualitatively determine the current–voltage characteristics of the 

 tunnel diode by considering the simplifi ed energy-band diagrams in Figure 8.29. 

Figure 8.27 | Energy-band diagram of a pn junction in 

thermal equilibrium in which both the n and p regions are 

degenerately doped.

Space
charge region

n region p region

EF EF
Ec
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Ev
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Figure 8.28 | Triangular potential 

barrier approximation of the potential 

barrier in the tunnel diode.
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 8.5   The Tunnel Diode 319

Figure 8.29 | Simplifi ed energy-band diagrams and I–V characteristics of the tunnel 

diode at (a) zero bias; (b) a slight forward bias; (c) a forward bias producing 

maximum tunneling current. (continued)

V

I

(a)

(b)

V

I

e�

(c)

V

I

e�

e�

nea29583_ch08_276-330.indd   319nea29583_ch08_276-330.indd   319 12/11/10   12:37 PM12/11/10   12:37 PM



320 CHAPTER 8   The pn Junction Diode

(d)

V

I

e�

(e)

e�

V

I

Figure 8.29 | (concluded) (d) A higher forward bias showing less tunneling current; (e) a 

forward bias for which the diffusion current dominates.

Figure 8.29a shows the energy-band diagram at zero bias, which produces zero 

current on the I–V diagram. If we assume, for simplicity, that we are near 0 K, then 

all energy states are fi lled below EF on both sides of the junction.

 Figure 8.29b shows the situation when a small forward-bias voltage is applied to 

the junction. Electrons in the conduction band of the n region are directly opposite to 

empty states in the valence band of the p region. There is a fi nite probability that some of 

these electrons will tunnel directly into the empty states, producing a forward-bias tun-

neling current as shown. With a slightly larger forward-bias voltage, as in Figure 8.29c, 

the maximum number of electrons in the n region will be opposite the maximum num-

ber of empty states in the p region; this will produce a maximum tunneling current.

 As the forward-bias voltage continues to increase, the number of electrons on 

the n side directly opposite empty states on the p side decreases, as in Figure 8.29d, 

and the tunneling current will decrease. In Figure 8.29e, there are no electrons on the 

n side directly opposite to available empty states on the p side. For this forward-bias 

voltage, the tunneling current will be zero and the normal ideal diffusion current will 

exist in the device as shown in the I–V characteristics.
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 8.6   Summary 321

 The portion of the curve showing a decrease in current with an increase in volt-

age is the region of differential negative resistance. The range of voltage and current 

for this region is quite small; thus, any power generated from an oscillator using this 

negative resistance property would also be fairly small.

 A simplifi ed energy-band diagram of the tunnel diode with an applied reverse-

biased voltage is shown in Figure 8.30a. Electrons in the valence band on the p side 

are  directly opposite empty states in the conduction band on the n side, so electrons 

can now tunnel directly from the p region into the n region, resulting in a large 

reverse-biased tunneling current. This tunneling current will exist for any reverse- 

biased voltage. The reverse-biased current will increase monotonically and rapidly 

with reverse-biased voltage as shown in Figure 8.30b.

8.6 | SUMMARY
■ When a forward-bias voltage is applied across a pn junction (p region positive with 

respect to the n region), the potential barrier is lowered so that holes from the p region 

and electrons from the n region can fl ow across the junction.

■ The boundary conditions relating the minority carrier hole concentration in the n region 

at the space charge edge and the minority carrier electron concentration in the p region 

at the space charge edge were derived.

■ The holes that are injected into the n region and the electrons that are injected into the 

p region now become excess minority carriers. The behavior of the excess minority 

carrier is described by the ambipolar transport equation developed and described in 

Chapter 6. Solving the ambipolar transport equation and using the boundary conditions, 

the steady-state minority carrier hole and electron concentrations in the n region and 

p region, respectively, were derived.

■ Gradients exist in the minority carrier hole and electron concentrations so that minor-

ity carrier diffusion currents exist in the pn junction. These diffusion currents yield the 

ideal current–voltage relationship of the pn junction diode.

(a)

e�

V

I

(b)

Figure 8.30 | (a) Simplifi ed energy-band diagram of a tunnel diode with a reverse-

biased voltage; (b) I–V characteristic of a tunnel diode with a reverse-biased voltage.
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322 CHAPTER 8   The pn Junction Diode

■ Excess carriers are generated in the space charge region of a reverse-biased pn junction. 

These carriers are swept out by the electric fi eld and create the reverse-biased generation 

current that is another component of the reverse-biased diode current. Excess carriers re-

combine in the space charge region of a forward-biased pn junction. This recombination 

process creates the forward-bias recombination current that is another component of the 

forward-bias diode current.

■ The small-signal equivalent circuit of the pn junction diode was developed. The two 

parameters of interest are the diffusion resistance and the diffusion capacitance.

■ When a pn junction is switched from forward bias to reverse bias, the stored excess mi-

nority carrier charge must be removed from the junction. The time required to remove this 

charge is called the storage time and is a limiting factor in the switching speed of a diode.

■ The I–V characteristics of a tunnel diode were developed showing a region of negative 

differential resistance.

GLOSSARY OF IMPORTANT TERMS
carrier injection  The fl ow of carriers across the space charge region of a pn junction when 

a voltage is applied.

diffusion capacitance  The capacitance of a forward-biased pn junction due to minority car-

rier storage effects.

diffusion conductance  The ratio of a low-frequency, small-signal sinusoidal current to volt-

age in a forward-biased pn junction.

diffusion resistance  The inverse of diffusion conductance.

forward bias  The condition in which a positive voltage is applied to the p region with re-

spect to the n region of a pn junction so that the potential barrier between the two regions 

is lowered below the thermal-equilibrium value.

generation current  The reverse-biased pn junction current produced by the thermal genera-

tion of electron–hole pairs within the space charge region.

high-level injection  The condition in which the excess carrier concentration becomes 

comparable to or greater than the majority carrier concentration.

“long” diode  A pn junction diode in which both the neutral p and n regions are long com-

pared with the respective minority carrier diffusion lengths.

recombination current  The forward-bias pn junction current produced as a result of the 

fl ow of electrons and holes that recombine within the space charge region.

reverse saturation current  The ideal reverse-biased current in a pn junction.

“short” diode  A pn junction diode in which at least one of the neutral p or n regions is short 

compared to the respective minority carrier diffusion length.

storage time  The time required for the excess minority carrier concentrations at the space 

charge edge to go from their steady-state values to zero when the diode is switched from 

forward to reverse bias.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Describe the mechanism of charge fl ow across the space charge region of a pn junction 

when a forward-bias voltage is applied.
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■ State the boundary conditions for the minority carrier concentrations at the edge of the 

space charge region.

■ Derive the expressions for the steady-state minority carrier concentrations in the 

pn junction.

■ Derive the ideal current–voltage relationship for a pn junction diode.

■ Describe the characteristics of a “short” diode.

■ Describe generation and recombination currents in a pn junction.

■ Defi ne high-level injection and describe its effect on the diode I–V characteristics.

■ Describe what is meant by diffusion resistance and diffusion capacitance.

■ Describe the turn-off transient response in a pn junction.

REVIEW QUESTIONS
 1. Sketch the energy bands in a zero-biased, reverse-biased, and forward-biased pn junction.

 2. Write the boundary conditions for the excess minority carriers in a pn junction (a) under 

forward bias and (b) under reverse bias.

 3. Sketch the steady-state minority carrier concentrations in a forward-biased pn junction.

 4. Explain the procedure that is used in deriving the ideal current–voltage relationship in a 

pn junction diode.

 5. Sketch the electron and hole currents through a forward-biased pn junction diode. Are 

currents near the junction primarily due to drift or diffusion? What about currents far 

from the junction?

 6. What is the temperature dependence of the ideal reverse-saturation current?

 7. What is meant by a “short” diode?

 8. Explain the physical mechanism of the (a) generation current and (b) recombination 

current.

 9. Sketch the forward-bias I–V characteristics of a pn junction diode showing the effects 

of recombination and high-level injection.

10. (a) Explain the physical mechanism of diffusion capacitance. (b) What is diffusion 

 resistance?

11. If a forward-biased pn junction is switched off, explain what happens to the stored 

 minority carriers. In which direction is the current immediately after the diode is 

switched off?

PROBLEMS
[Note: In the following problems, assume T � 300 K and the following parameters unless 

otherwise stated. For silicon pn junctions: Dn � 25 cm2/s, Dp � 10 cm2/s, �n0 � 5 � 10�7 s, 

�p0 � 10�7 s. For GaAs pn junctions: Dn � 205 cm2/s, Dp � 9.8 cm2/s, �n0 � 5 � 10�8 s, 

�p0 � 10�8 s.]

Section 8.1  pn Junction Current

8.1 (a) Consider an ideal pn junction diode at T � 300 K operating in the forward-bias 

 region. Calculate the change in diode voltage that will cause a factor of 10 increase 

in current. (b) Repeat part (a) for a factor of 100 increase in current.

nea29583_ch08_276-330.indd   323nea29583_ch08_276-330.indd   323 12/11/10   12:37 PM12/11/10   12:37 PM

Cotta
Rectangle



324 CHAPTER 8   The pn Junction Diode

8.2 A silicon pn junction has impurity doping concentrations of Nd � 2 � 1015 cm�3 and 
Na � 8 � 1015 cm�3. Determine the minority carrier concentrations at the edges of the 

space charge region for (a) Va � 0.45 V, (b) Va � 0.55 V, and (c) Va � �0.55 V.

8.3 The doping concentrations in a GaAs pn junction are Nd � 1016 cm�3 and Na � 4 � 

1016 cm�3. Find the minority carrier concentrations at the edges of the space charge 

region for (a) Va � 0.90 V, (b) Va � 1.10 V, and (c) Va � �0.95 V.

8.4 (a) The doping concentrations in a silicon pn junction are Nd � 5 � 1015 cm�3 and 
Na � 5 � 1016 cm�3. The minority carrier concentration at either space charge edge 

is to be no larger than 10 percent of the respective majority carrier concentration. 

(i) Determine the maximum forward-bias voltage that can be applied to the junction 

and still meet the required specifi cations. (ii) Is the n-region or p-region concentration 

the factor that limits the forward-bias voltage? (b) Repeat part (a) if the doping con-

centrations are Nd � 3 � 1016 cm�3 and Na � 7 � 1015 cm�3.

8.5 Consider a GaAs pn junction with doping concentrations Na � 5 � 1016 cm�3 and 
Nd � 1016 cm�3. The junction cross-sectional area is A � 10�3 cm2 and the applied 

forward-bias voltage is Va � 1.10 V. Calculate the (a) minority electron diffusion cur-

rent at the edge of the space charge region, (b) minority hole diffusion current at the 

edge of the space charge region, and (c) total current in the pn junction diode.

8.6 An n�p silicon diode at T � 300 K has the following parameters: Nd � 1018 cm�3, 

Na � 1016 cm�3, Dn � 25 cm2 /s, Dp � 10 cm2 /s, �n0 � �p0 � 1 �s, and A � 10�4 cm2. 

Determine the diode current for (a) a forward-bias voltage of 0.5 V and (b) a reverse-

biased voltage of 0.5 V.

8.7 An ideal germanium pn junction diode has the following parameters: Na � 4 � 1015 cm�3, 

Nd � 2 � 1017 cm�3, Dp � 48 cm2/s, Dn � 90 cm2/s, �p0 � �n0 � 2 � 10�6 s, and 

A � 10�4 cm2. Determine the diode current for (a) a forward-bias voltage of 0.25 V 

and (b) a reverse-biased voltage of 0.25 V.

8.8 A one-sided p� n silicon diode has doping concentrations of Na � 5 � 1017 cm�3 and 
Nd � 8 � 1015 cm�3. The minority carrier lifetimes are �n0 � 10�7 s and �p0 � 8 � 

10�8 s. The cross-sectional area is A � 2 � 10�4 cm2. Calculate the (a) reverse-biased 

saturation current, and (b) the forward-bias current at (i) Va � 0.45 V, (ii) Va � 0.55 V, 

and (iii) Va � 0.65 V.

8.9 Calculate the applied reverse-biased voltage at which the ideal reverse current in a pn 

junction diode at T � 300 K reaches 90 percent of its reverse-saturation current value.

8.10 Fill in the missing data in the following table.

 Case Va (V) I (mA) Is (mA) Js (mA/cm2) A (cm2)

 1 0.65 0.50   2 � 10�4

 2 0.70  2 � 10�12  1 � 10�3

 3  0.80  1 � 10�7 1 � 10�4

 4 0.72 1.20  2 � 10�8

8.11 Consider an ideal silicon pn junction diode. (a) What must be the ratio of Nd /Na so 

that 90 percent of the current in the depletion region is due to the fl ow of electrons? 

(b) Repeat part (a) if 80 percent of the current in the depletion region is due to the 

fl ow of holes.

8.12 A silicon pn junction diode is to be designed to operate at T � 300 K such that the 

diode current is I � 10 mA at a diode voltage of VD � 0.65 V. The ratio of electron 

current to total current is to be 0.10 and the maximum current density is to be no more 

than 20 A /cm2. Use the semiconductor parameters given in Example 8.2.
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8.13 An ideal silicon pn junction at T � 300 K is under forward bias. The minority car-

rier lifetimes are �n0 � 10�6 s and �p0 � 10�7 s. The doping concentration in the 

n region is Nd � 1016 cm�3. Plot the ratio of hole current to the total current crossing 

the space charge region as the p-region doping concentration varies over the range 

1015  Na  1018 cm�3. (Use a log scale for the doping concentrations.)

8.14 For a silicon pn junction at T � 300 K, assume �p0 � 0.1�n0 and �n � 2.4 �p. The ratio of 

electron current crossing the depletion region to the total current is defi ned as the elec-

tron injection effi ciency. Determine the expression for the electron injection effi ciency as 

a function of (a) Nd �Na and (b) the ratio of n-type conductivity to p-type conductivity.

8.15 A silicon pn junction with a cross-sectional area of 10�4 cm2 has the following proper-

ties at T � 300 K:

n region p region

Nd � 1017 cm�3 Na � 5 � 1015 cm�3

�p0 � 10�7 s �n0 � 10�6 s
�n � 850 cm2 /V-s �n � 1250 cm2 /V-s
�p � 320 cm2 /V-s �p � 420 cm2 /V-s 

 (a) Sketch the thermal equilibrium energy-band diagram of the pn junction, includ-

ing the values of the Fermi level with respect to the intrinsic level on each side of the 

junction. (b) Calculate the reverse-saturation current Is and determine the forward-bias 

current I at a forward-bias voltage of 0.5 V. (c) Determine the ratio of hole  current to 

total current at the space charge edge xn.

8.16 Consider an ideal silicon pn junction diode with the geometry shown in Figure P8.16. 

The doping concentrations are Na � 5 � 1016 cm�3 and Nd � 1.5 � 1016 cm�3, and 

the minority carrier lifetimes are �n0 � 2 � 10�7 s and �p0 � 8 � 10�8 s. The cross-

sectional area is A � 5 � 10�4 cm2. Calculate (a) the ideal reverse-saturation current 

due to holes, (b) the ideal reverse-saturation current due to electrons, (c) the hole con-

centration at x � xn for Va � 0.8Vbi, (d) the electron current at x � xn for Va � 0.8 Vbi, 

and (e) the electron current at x � xn � (1�2) Lp for Va � 0.8 Vbi.

8.17 Consider the ideal long silicon pn junction shown in Figure P8.17. T � 300 K. The 

n region is doped with 1016 donor atoms per cm3 and the p region is doped with 

5 � 1016 acceptor atoms per cm3. The minority carrier lifetimes are �n0 � 0.05 �s 

and �p0 � 0.01 �s. The minority carrier diffusion coeffi cients are Dn � 23 cm2 /s and 

Dp � 8 cm2 /s. The forward-bias voltage is Va � 0.610 V. Calculate (a) the excess hole 

concentration as a function of x for x � 0, (b) the hole diffusion current density at 

x � 3 � 10�4 cm, and (c) the electron current density at x � 3 � 10�4 cm.

8.18 The limit of low injection is normally defi ned to be when the minority carrier concen-

tration at the edge of the space charge region in the low-doped region becomes equal 

��Va

p

x � 0�xp xn x

n

Figure P8.16 | Figure for 

Problem 8.16.

p n

x � 0 x

W

Va

Figure P8.17 | Figure for 

Problem 8.17.
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326 CHAPTER 8   The pn Junction Diode

to one-tenth the majority carrier concentration in this region. Determine the value of 

the forward-bias voltage at which the limit of low injection is reached for the diode 

described in (a) Problem 8.7 and (b) Problem 8.8.

8.19 The cross-sectional area of a silicon pn junction is 10�3 cm2. The temperature of the 

diode is T � 300 K, and the doping concentrations are Nd � 1016 cm�3 and Na � 

8 � 1015 cm�3. Assume minority carrier lifetimes of �n0 � 10�6 s and �p0 � 10�7 s. 

Calculate the total number of excess electrons in the p region and the total number of 

excess holes in the n region for (a) Va � 0.3 V, (b) Va � 0.4 V, and (c) Va � 0.5 V.

8.20 Consider two ideal pn junctions at T � 300 K, having exactly the same electrical 

and physical parameters except for the bandgap energy of the semiconductor  materials. 

The fi rst pn junction has a bandgap energy of 0.525 eV and a forward-bias current of 

10 mA with Va � 0.255 V. For the second pn junction, “design” the  bandgap energy so 

that a forward-bias voltage of Va � 0.32 V will produce a current of 10 �A.

8.21 The reverse-biased saturation current is a function of temperature. (a) Assuming that 

Is varies with temperature only from the intrinsic carrier concentration, show that we 

can write Is � CT 3 exp (�Eg �kT) where C is a constant and a function only of the 

diode parameters. (b) Determine the increase in Is as the temperature increases from 

T � 300 K to T � 400 K for a (i) germanium diode and (ii) silicon diode.

8.22 Assume that the mobilities, diffusion coeffi cients, and minority carrier lifetime 

 parameters are independent of temperature (use the T � 300 K values). Assume that 

�n0 � 10�6 s, �p0 � 10�7 s, Nd � 5 � 1015 cm�3, and Na � 5 � 1016 cm�3. Plot the 

ideal reverse saturation current density from T � 200 K to T � 500 K for (a) silicon, 

(b) germanium, and (c) gallium arsenide ideal pn junctions. (Use a log scale for the 

current density.)

8.23 An ideal silicon pn junction diode has a cross-sectional area of A � 5 � 10�4 cm2. 

The doping concentrations are Na � 4 � 1015 cm�3 and Nd � 2 � 1017 cm�3. Assume 

that Eg � 1.12 eV as well as the diffusion coeffi cients and lifetimes are independent 

of temperature. The ratio of the magnitude of forward- to reverse-biased currents is to 

be no less than 2 � 104 with forward- and reverse-biased voltages of 0.50 V, and the 

maximum reverse-biased current is to be limited to 1.2 �A. Determine the maximum 

temperature at which the diode will meet these specifi cations and determine which 

specifi cation is the limiting factor.

8.24 (a) A silicon pn junction diode has the geometry shown in Figure 8.11 in which 

the n region is “short” with a length Wn � 0.7 �m. The doping  concentrations 

are Na � 2 � 1017 cm�3 and Nd � 2 � 1015 cm�3. The cross-sectional area is 

A � 10�3 cm2. Determine (i) the maximum forward-bias voltage such that 

 low injection is still valid, and (ii) the resulting current at this forward-bias 

 voltage. (b) Repeat part (a) if the  doping concentrations are reversed such that 
Na � 2 � 1015 cm�3 and Nd � 2 � 1017 cm�3.

*8.25 A p�n silicon diode is fabricated with a narrow n region as shown in Figure 8.11, in which 

Wn 
 Lp. Assume the boundary condition of pn � pn0 at x � xn � Wn. (a) Derive the 

 expression for the excess hole concentration �pn(x) as given by  Equation (8.31). (b) Using 

the results of part (a), show that the current density in the diode is given by

 J �   
eDp pn0 

 __ 
Lp 

   coth  �   Wn  _ 
Lp 

   �   � exp  �   eV  _ 
kT

   �  �1 � 

*Asterisks next to problems indicate problems that are more diffi cult.
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8.26 A silicon diode can be used to measure temperature by operating the diode at a fi xed 

forward-bias current. The forward-bias voltage is then a function of temperature. At 

T � 300 K, the diode voltage is found to be 0.60 V. Determine the diode voltage at 

(a) T � 310 K and (b) T � 320 K.

8.27 A forward-biased silicon diode is to be used as a temperature sensor. The diode is 

forward biased with a constant current source and Va is measured as a function of 

temperature. (a) Derive an expression for Va (T) assuming that D /L for electrons and 

holes, and Eg are independent of temperature. (b) If the diode is biased at ID � 0.1 mA 

and if Is � 10�15 A at T � 300 K, plot Va versus T for 20°C 
 T 
 200°C. (c) Repeat 

part (b) if ID � 1 mA. (d) Determine any changes in the results of parts (a) through 

(c) if the change in bandgap energy with temperature is taken into account.

Section 8.2  Generation–Recombination Currents

8.28 Consider a silicon pn junction diode with an applied reverse-biased voltage of VR � 

5V. The doping concentrations are Na � Nd � 4 � 1016 cm�3 and the cross-sectional 

area is A � 10�4 cm2. Assume minority carrier lifetimes of �0 � �n0 � �p0 � 10�7 s. 

Calculate the (a) ideal reverse-saturation current, (b) reverse-biased generation cur-

rent, and (c) the ratio of the generation current to ideal saturation current.

8.29 Consider the diode described in Problem 8.28. Assume that all parameters except ni 

are independent of temperature. (a) Determine the temperature at which Is and Igen 

will be equal. What are the values of Is and Igen at this temperature? (b) Calculate the 

forward-bias voltage at which the ideal diffusion current is equal to the recombination 

current at T � 300 K.

8.30 Consider a GaAs pn junction diode with a cross-sectional area of A � 2 � 10�4 cm2 

and doping concentrations of Na � Nd � 7 � 1016 cm�3. The electron and hole 

 mobility values are �n � 5500 cm2/V-s and �p � 220 cm2/V-s, respectively, and the 

lifetime values are �0 � �n0 � �p0 � 2 � 10�8 s. (a) Calculate the ideal diode current 

at a (i) reverse-biased voltage of VR � 3 V, (ii) forward-bias voltage of Va � 0.6 V, 

(iii) forward-bias voltage of Va � 0.8 V, and (iv) forward-bias voltage of Va � 1.0 V. 

(b) (i) Calculate the generation current at VR � 3 V. Assuming the recombination cur-

rent extrapolated to Va � 0 is Iro � 6 � 10�14 A, determine the generation current at 

(ii) Va � 0.6 V, (iii) Va � 0.8 V, and (iv) Va � 1.0 V.

8.31 Consider the pn junction diode described in Problem 8.30. Plot the diode recombina-

tion current and the ideal diode current (on a log scale) versus forward-bias voltage 

over the range 0.1  Va  1.0 V.

8.32 A silicon pn junction diode at T � 300 K has the following parameters: Na � Nd � 

1016 cm�3, �p0 � �n0 � �0 � 5 � 10�7 s, Dp � 10 cm2 /s, Dn � 25 cm2 /s, and a cross-

sectional area of 10�4 cm2. Plot the diode recombination current and the ideal diode 

current (on a log scale) versus forward-bias voltage over the range 0.1  Va  0.6 V.

8.33 Consider a GaAs pn diode at T � 300 K with Na � Nd � 1017 cm�3 and with a cross-

sectional area of 5 � 10�3 cm2. The minority carrier mobilities are �n � 3500 cm2 /V-s 

and �p � 220 cm2 /V-s. The electron–hole lifetimes are �n0 � �p0 � �0 � 10�8 s. Plot 

the diode forward-bias current including recombination  current  between diode volt-

ages of 0.1  VD  1.0 V. Compare this plot to that for an ideal diode.

*8.34 Starting with Equation (8.44) and using the suitable approximations, show that 

the max imum recombination rate in a forward-biased pn junction is given by 

Equation (8.52).
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328 CHAPTER 8   The pn Junction Diode

8.35 Consider, as shown in Figure P8.35, a uniformly doped silicon pn junction at 

T � 300 K with impurity doping concentrations of Na � Nd � 5 � 1015 cm�3 and 

minority  carrier lifetimes of �n0 � �p0 � �0 � 10�7 s. A reverse-biased voltage of 

VR � 10 V is applied. A light source is incident only on the space charge region, pro-

ducing an excess carrier generation rate of g	 � 4 � 1019 cm�3 s�1. Calculate the gen-

eration current density.

8.36 A long silicon pn junction diode has the following parameters: Nd � 1018 cm�3, 

Na � 3 � 1016 cm�3, �n0 � �p0 � �0 � 10�7 s, Dn � 18 cm2 /s, and Dp � 6 cm2 /s. A 

light source is incident on the space charge region such as shown in Figure P8.35, pro-

ducing a generation current density of JG � 25 mA /cm2. The diode is open  circuited. 

The generation current density forward biases the junction, inducing a  forward-bias 

current in the opposite direction to the generation current. A steady-state condition is 

reached when the generation current density and forward-bias current density are equal 

in magnitude. What is the induced forward-bias voltage at this steady-state condition?

Section 8.3  Small-Signal Model of the pn Junction

8.37 (a) Calculate the small-signal diffusion capacitance and diffusion resistance of a sili-

con pn junction diode biased at IDQ � 1.2 mA. Assume the minority carrier lifetimes 

are 0.5 �s in both the n and p regions. (b) Repeat part (a) for the case when the diode 

is biased at IDQ � 0.12 mA.

8.38 Consider the diode described in Problem 8.37. A sinusoidal signal voltage with a peak 

value of 50 mV is superimposed on the dc forward-bias voltage. Determine the mag-

nitude of charge that is being alternately charged and discharged in the n region.

8.39 Consider a p�n silicon diode at T � 300 K. The diode is forward biased at a current 

of 1 mA. The hole lifetime in the n region is 10�7 s. Neglecting the depletion capaci-

tance, calculate the diode impedance at frequencies of 10 kHz, 100 kHz, 1 MHz, and 

10 MHz.

8.40 Consider a silicon pn junction with parameters as described in Problem 8.8. (a) Cal-

culate and plot the depletion capacitance and diffusion capacitance over the voltage 

range �10  Va  0.75 V. (b) Determine the voltage at which the two  capacitances 

are equal.

8.41 Consider a p� n silicon diode at T � 300 K. The slope of the diffusion capacitance 

versus forward-bias current is 2.5 � 10�6 F /A. Determine the hole lifetime and the 

diffusion capacitance at a forward-bias current of 1 mA.

n

� �VR

p

W

Illumination

Figure P8.35 | Figure for 

Problem 8.35 and 8.36.
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8.42 A one-sided p� n silicon diode has doping concentrations of Na � 4 � 1017 cm�3 and 
Nd � 8 � 1015 cm�3. The diode cross-sectional area is A � 5 � 10�4 cm2. (a) The 

maximum diffusion capacitance is to be limited to 1 nF. Determine (i) the maximum 

current through the diode, (ii) the maximum forward-bias voltage, and (iii) the diffusion 

resistance. (b) Repeat part (a) if the maximum diffusion capacitance is limited to 0.25 nF.

8.43 A silicon pn junction diode at T � 300 K has a cross-sectional area of 10�2 cm2. The 

length of the p region is 0.2 cm and the length of the n region is 0.1 cm. The doping 

concentrations are Nd � 1015 cm�3 and Na � 1016 cm�3. Determine (a) approximately 

the series resistance of the diode and (b) the current through the diode that will pro-

duce a 0.1 V drop across this series resistance.

8.44 We want to consider the effect of a series resistance on the forward-bias voltage 

 required to achieve a particular diode current. (a) Assume the reverse-saturation 

 current in a diode is Is � 10�10 A at T � 300 K. The resistivity of the n region is 

0.2 �-cm and the resistivity of the p region is 0.1 �-cm. Assume the length of each 

neutral region is 10�2 cm and the cross-sectional area is 2 � 10�5 cm2. Determine 

the  required applied voltage to achieve a current of (i) 1 mA and (ii) 10 mA. 

(b) Repeat part (a) neglecting the series resistance.

8.45 (a) The reverse-saturation current in a diode is Is � 5 � 10�12 A. The maximum 

small-signal diffusion resistance is to be rd � 32 �. Determine the minimum forward-

bias voltage that can be applied to meet this specifi cation. (b) Repeat part (a) if the 

maximum small-signal diffusion resistance is to be rd � 60 �.

8.46 (a) An ideal silicon pn junction diode at T � 300 K is forward biased at 

Va � �20 mV. The reverse-saturation current is Is � 10�13 A. Calculate the small-

signal  diffusion  resistance. (b) Repeat part (a) for an applied reverse-biased voltage of 

Va � �20 mV.

Section 8.4  Charge Storage and Diode Transients

8.47 (a) In switching a pn junction from forward to reverse bias, assume that the ratio of 

reverse current, IR, to forward current, IF, is 0.2. Determine the ratio of storage time to 

minority carrier lifetime, ts /�p0. (b) Repeat part (a) if the ratio of IR to IF is 1.0.

8.48 A pn junction is switched from forward to reverse bias. The storage time is specifi ed 

to be �s � 0.3 �p0. (a) Determine the required ratio of IR to IF to meet this specifi cation. 

(b) Determine t2��p0.

8.49 Consider a diode with a junction capacitance of 18 pF at zero bias and 4.2 pF at a 

 reverse-biased voltage of VR � 10 V. The minority carrier lifetimes are 10�7 s. The 

diode is switched from a forward bias with a current of 2 mA to a reverse-biased volt-

age of 10 V applied through a 10 k� resistor. Estimate the turn-off time.

Section 8.5  The Tunnel Diode

8.50 Consider a silicon pn junction at T � 300 K with doping concentration of Nd � 

Na � 5 �1019 cm�3. Assuming the abrupt junction approximation is valid, determine 

the space charge width at a forward-bias voltage of Va � 0.40 V.

8.51 Sketch the energy-band diagram of an abrupt pn junction under zero bias in which the 

p region is degenerately doped and EC � EF in the n region. Sketch the forward- and 

reverse-biased current–voltage characteristics. This diode is sometimes called a back-
ward diode. Why?

nea29583_ch08_276-330.indd   329nea29583_ch08_276-330.indd   329 12/11/10   12:37 PM12/11/10   12:37 PM



330 CHAPTER 8   The pn Junction Diode

Summary and Review

8.52 (a) Explain physically why the diffusion capacitance is not important in a reverse- 

biased pn junction. (b) Consider a silicon, a germanium, and gallium arsenide pn junc-

tion. If the total current density is the same in each diode under forward bias,  discuss 

the expected relative values of electron and hole current densities.

*8.53 A silicon p� n junction diode is to be designed to have a breakdown voltage of at least 

60 V and to have a forward-bias current of ID � 50 mA while still operating under low 

injection. The minority carrier lifetimes are �0 � �n0 � �p0 � 2 � 10�7 s. Determine 

the doping concentrations and the minimum cross-sectional area.

*8.54 The donor and acceptor concentrations on either side of a silicon step junction are 

equal. (a) Derive an expression for the breakdown voltage in terms of the critical 

 electric fi eld and doping concentration. (b) If the breakdown voltage is to be VB � 

50 V, specify the range of allowed doping concentrations.
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9
Metal–Semiconductor and 

Semiconductor Heterojunctions

I
n the preceding two chapters, we have considered the pn junction and assumed 

that the semiconductor material was the same throughout the structure. This 

type of junction is referred to as a homojunction. We developed the electrostat-

ics of the junction and derived the current–voltage relationship. In this chapter, we 

consider the metal–semiconductor junction and the semiconductor heterojunction, in 

which the material on each side of the junction is not the same. These junctions can 

also produce diodes.

 Semiconductor devices, or integrated circuits, must make contact with the out-

side world. This contact is made through nonrectifying metal–semiconductor junc-

tions, or ohmic contacts. An ohmic contact is a low-resistance junction providing 

current conduction in both directions. We examine in this chapter the conditions that 

yield metal–semiconductor ohmic contacts. ■

9.0 | PREVIEW
In this chapter, we will:

■ Determine the energy-band diagram of a metal–semiconductor junction.

■ Investigate the electrostatics of the rectifying metal–semiconductor junction, 

which is known as the Schottky barrier diode.

■ Derive the ideal current–voltage relation of the Schottky barrier diode.

■ Discuss differences in the current transport mechanism between the Schottky 

barrier diode and pn junction diode, and discuss differences in turn-on voltage 

and switching times.

■ Discuss ohmic contacts, which are low-resistance, nonrectifying metal–

semiconductor junctions.

■ Investigate the characteristics of a semiconductor heterojunction.

C H A P T E R
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9.1 | THE SCHOTTKY BARRIER DIODE
One of the fi rst practical semiconductor devices used in the early 1900s was the 

metal–semiconductor diode. This diode, also called a point contact diode, was made 

by touching a metallic whisker to an exposed semiconductor surface. These metal– 

semiconductor diodes were not easily reproduced or mechanically reliable and were 

replaced by the pn junction in the 1950s. However, semiconductor and vacuum 

technology is now used to fabricate reproducible and reliable metal–semiconductor 

contacts. In this section, we consider the metal–semiconductor rectifying contact, 

or Schottky barrier diode. In most cases, the rectifying contacts are made on n-type 

semiconductors; for this reason, we concentrate on this type of diode.

9.1.1  Qualitative Characteristics

The ideal energy-band diagram for a particular metal and n-type semiconductor be-

fore making contact is shown in Figure 9.1a. The vacuum level is used as a refer-

ence level. The parameter �m is the metal work function (measured in volts), �s is 

Figure 9.1 | (a) Energy-band diagram of a metal and 

semi conductor before contact; (b) ideal energy-band 

diagram of a metal–n-semiconductor junction for �m � �s.
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 9.1   The Schottky Barrier Diode 333

the semiconductor work function, and � is known as the electron affi nity. The work 

functions of various metals are given in Table 9.1 and the electron affi nities of sev-

eral semiconductors are given in Table 9.2. In Figure 9.1a, we have assumed that 

�m > �s . The ideal thermal-equilibrium metal–semiconductor energy-band diagram, 

for this situation, is shown in Figure 9.1b. Before contact, the Fermi level in the 

semiconductor was above that in the metal. In order for the Fermi level to become a 

constant through the system in thermal equilibrium, electrons from the semiconduc-

tor fl ow into the lower energy states in the metal. Positively charged donor atoms 

remain in the semiconductor, creating a space charge region.

 The parameter �B0 is the ideal barrier height of the semiconductor contact, the 

potential barrier seen by electrons in the metal trying to move into the semiconductor. 

This barrier is known as the Schottky barrier and is given, ideally, by

 �B0 � (�m � �)  (9.1)

On the semiconductor side, Vbi is the built-in potential barrier. This barrier, similar 

to the case of the pn junction, is the barrier seen by electrons in the conduction band 

trying to move into the metal. The built-in potential barrier is given by

 Vbi � �B0 � �n  (9.2)

which makes Vbi a slight function of the semiconductor doping, as is the case in a 

pn junction.

 If we apply a positive voltage to the semiconductor with respect to the metal, the 

semiconductor-to-metal barrier height increases, while �B0 remains constant in this 

idealized case. This bias condition is the reverse bias. If a positive voltage is applied 

to the metal with respect to the semiconductor, the semiconductor-to-metal barrier 

Vbi is reduced while �B0 again remains essentially constant. In this situation, electrons 

can more easily fl ow from the semiconductor into the metal since the barrier has been 

reduced. This bias condition is the forward bias. The energy-band diagrams for the 

reverse and forward bias are shown in Figures 9.2a,b where VR is the magnitude of 

the reverse-biased voltage and Va is the magnitude of the forward-bias voltage.

Table 9.1 | Work functions of some elements

Element Work function, �m

Ag, silver 4.26
Al, aluminum 4.28
Au, gold 5.1
Cr, chromium 4.5
Mo, molybdenum 4.6
Ni, nickel 5.15
Pd, palladium 5.12
Pt, platinum 5.65
Ti, titanium 4.33
W, tungsten 4.55

Table 9.2 |  Electron affi nity of some 

semiconductors

Element Electron affi nity, �

Ge, germanium 4.13
Si, silicon 4.01
GaAs, gallium arsenide 4.07
AlAs, aluminum arsenide 3.5
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334 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

 The energy-band diagrams versus voltage for the metal–semiconductor junction 

shown in Figure 9.2 are very similar to those of the pn junction given in the previ-

ous chapter. Because of this similarity, we expect the current–voltage characteristics 

of the Schottky barrier junction to be similar to the exponential behavior of the pn 

junction diode. The current mechanism here, however, is due to the fl ow of majority 

carrier electrons. In forward bias, the barrier seen by the electrons in the semiconduc-

tor is reduced, so majority carrier electrons fl ow more easily from the semiconductor 

into the metal. The forward-bias current is in the direction from metal to semicon-

ductor: It is an exponential function of the forward-bias voltage Va .

9.1.2  Ideal Junction Properties

We can determine the electrostatic properties of the junction in the same way as we 

do for the pn junction. The electric fi eld in the space charge region is determined 

from Poisson’s equation. We have that

   dE _ 
dx

   �   
�(x)

 _ �s    (9.3)

where �(x) is the space charge volume density and �s is the permittivity of the semi-

conductor. If we assume that the semiconductor doping is uniform, then by integrat-

ing Equation (9.3), we obtain

 E �  

∫
 

 
 
  
  
eNd  _ �s 

   dx �   
eNdx _ �s    � C1  (9.4)

where C1 is a constant of integration. The electric fi eld is zero at the space charge 

edge in the semiconductor, so the constant of integration can be found as

 C1 � �   
eNd xn  _ �s 

   (9.5)

(a)

e�B0

Ec

EF

Ev

x � 0

x � xn

e(Vbi � VR)

(b)

e�B0

Ec

EF

Ev

x � 0 x � xn

e(Vbi � Va) 

Figure 9.2 | Ideal energy-band diagram of a metal–semiconductor junction (a) under reverse bias and (b) under 

forward bias.
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The electric fi eld can then be written as

 E � �   
eNd  _  �s 

   (xn � x) (9.6)

which is a linear function of distance, for the uniformly doped semiconductor, and 

reaches a peak value at the metal–semiconductor interface. Since the E-fi eld is zero 

 inside the metal, a negative surface charge must exist in the metal at the metal– 

semiconductor junction.

 The space charge region width, W, may be calculated as we do for the pn junc-

tion. The result is identical to that of a one-sided p�n junction. For the uniformly 

doped semiconductor, we have

 W � xn �   �   2�s(Vbi � VR)
 ___ 

eNd 
   �  1�2

  (9.7)

where VR is the magnitude of the applied reverse-biased voltage. We are again as-

suming an abrupt junction approximation.

   EXAMPLE 9.1Objective: Determine the theoretical barrier height, built-in potential barrier, and maximum 

electric fi eld in a metal–semiconductor diode for zero applied bias.

 Consider a contact between tungsten and n-type silicon doped to Nd � 1016 cm�3 at 

T � 300 K.

■ Solution
The metal work function for tungsten (W) from Table 9.1 is �m � 4.55 V and the electron af-

fi nity for silicon from Table 9.2 is � � 4.01 V. The barrier height is then

 �B0 � �m � � � 4.55 � 4.01 � 0.54 V

where �B0 is the ideal Schottky barrier height. We can calculate �n as

 �n �   kT _ e   ln  �   Nc  _ 
Nd 

   �  � 0.0259 ln  �   2.8 � 1019

 __ 
1016

   �  � 0.206 V

Then

 Vbi � �B0 � �n � 0.54 � 0.206 � 0.334 V

The space charge width at zero bias is

 xn �   �   2�s Vbi  _ 
eNd 

   �  1�2

  �   �   2(11.7)(8.85 � 10�14)(0.334)
   _____  

(1.6 � 10�19)(1016)
   �  1�2

 

or

 xn � 0.208 � 10�4 cm

Then the maximum electric fi eld is

 �Emax� �   
eNd xn  _ �s 

   �   
(1.6 � 10�19)(1016)(0.208 � 10�4)

   ______   
(11.7)(8.85 � 10�14)

  

or fi nally

 �Emax� � 3.21 � 104 V/cm
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 A junction capacitance can also be determined in the same way as we do for the 

pn junction. We have that

 C� � eNd   
dx n  _ 
dVR 

   �   �   e�s Nd  __ 
2 (Vbi � VR)

   �  1�2

   (9.8)

where C� is the capacitance per unit area. If we square the reciprocal of Equation (9.8), 

we obtain

   �   1  _ 
C�

   �  2  �   
2(Vbi � VR)

 __ 
e�sNd 

   (9.9)

We can use Equation (9.9) to obtain, to a fi rst approximation, the built-in potential 

barrier Vbi , and the slope of the curve from Equation (9.9) to yield the semiconductor 

doping Nd . We can calculate the potential �n and then determine the Schottky barrier 

�B0 from Equation (9.2).

■ Comment
The values of space charge width and electric fi eld are very similar to those obtained for a pn 

junction.

■ EXERCISE PROBLEM
Ex 9.1  Consider an ideal tungsten-to-n-type GaAs junction. Assume the GaAs is doped to 

a concentration of Nd = 5 � 1015 cm�3 . Determine the theoretical barrier height, the 

built-in potential barrier, and maximum electric fi eld for the case of zero applied bias.

 

(Ans. �B0 � 0.48 V, Vbi � 0.3623 V, �Emax � � 2.24 � 10
4
 V/cm)

EXAMPLE 9.2 Objective: To calculate the semiconductor doping concentration and Schottky barrier height 

from the silicon diode  experimental capacitance data shown in Figure 9.3. Assume T � 300 K.

■ Solution
The intercept of the tungsten–silicon curve is approximately at Vbi � 0.40 V. From Equa-

tion (9.9), we can write

   
d(1�C�)2

 __ 
dVR 

   �   
�(1�C�)2

 __ 
�VR 

   �   2 _ 
e�s Nd 

  

Then, from the fi gure, we have

   
�(1�C�)2

 __ 
�VR 

   � 4.4 � 1013 

so that

 Nd �   2  ________    
(1.6 � 10�19)(11.7)(8.85 � 10�14)(4.4 � 1013)

   � 2.7 � 1017 cm�3

We can calculate

 �n �   kT _ e   ln  �   Nc  _ 
Nd 

   �  � (0.0259) ln  �   2.8 � 1019

 __ 
2.7 � 1017 

   �  � 0.12 V

so that

 �Bn � Vbi � �n � 0.40 � 0.12 � 0.52 V

where �Bn is the actual Schottky barrier height.
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 We can see that the built-in potential barrier of the gallium arsenide Schottky 

diode is larger than that of the silicon diode. This experimental result is normally 

observed for all types of metal contacts.

■ Comment
The experimental value of 0.52 V can be compared with the ideal barrier height of 

�B0 � 0.54 V found in Example 9.1. These results agree fairly well. For other metals, the 

discrepancy  between experiment and theory is larger.

■ EXERCISE PROBLEM
Ex 9.2  Repeat Example 9.2 for the GaAs diode capacitance data shown in Figure 9.3. 

(Ans. Vbi 	 0.64 V, Nd � 4.62 � 10
18

 cm
�3

)
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Figure 9.3 | 1�C 2 versus VR for W–Si and W–GaAs 

Schottky barrier diodes. 

(From Sze and Ng [15].)

TYU 9.1 Consider an ideal chromium-to-n-type silicon Schottky diode at T � 300 K. 

 Assume the semiconductor is doped at a concentration of Nd � 3 � 1015 cm�3. 

Determine the (a) ideal Schottky barrier height, (b) built-in potential barrier, 

(c) peak electric fi eld with an applied reverse-biased voltage of VR � 5 V, and (d) 

junction capacitance per unit area for VR � 5 V.  

(d) C� � 6.88 � 10
�9

 F/cm
2
 ] 

 

[Ans. (a) �B0 � 0.49 V; (b) Vbi � 0.253 V; (c) �Emax� � 6.98 � 10
4
 V/cm; 

TEST YOUR UNDERSTANDING
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338 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

9.1.3  Nonideal Effects on the Barrier Height

Schottky Barrier Lowering Several effects alter the actual Schottky barrier height 

from the theoretical value given by Equation (9.1). The fi rst such effect that we con-

sider is the Schottky effect, or image-force-induced lowering of the potential barrier.

 An electron in a dielectric material at a distance x from the metal will create an 

electric fi eld. The electric fi eld can be determined by adding an image charge, �e, inside 

the metal located at the same distance, �x �, from the interface. This image effect is shown 

in Figure 9.4a. Note that the E–fi eld lines are perpendicular to the metal surface as we 

expect. The force on the electron, due to the coulomb attraction with the image force, is

 F �   �e2

 __ 
4��s(2x)2 

   � �eE (9.10)

x

x � 0

Metal Dielectric

��

(a) (b)

E(x)

x

EF

(c)

EF

E(x)

xm

x � 0

eE

��

e�B0

e�Bn

x

Figure 9.4 | (a) Image charge and electric fi eld lines at a metal–dielectric interface. 

(b) Distortion of the potential barrier due to image forces with zero electric fi eld and (c) with 

a constant electric fi eld.

TYU 9.2 Repeat TYU 9.1 for an ideal palladium-to-n-type GaAs Schottky diode with the 

same  impurity concentration. 

 (d) C� � 6.86 � 10
�9

 F/cm
2
]

[Ans. (a) �B0 � 1.05 V; (b) Vbi � 0.919 V; (c) �Emax� � 7 � 10
4
 V/cm;
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The potential can then be found as

 ��(x) � � 
∫

x

 
 
	 
E dx�  � � 

∫
x

 
 
	 
  e __ 
4��s � 4(x�)2

   dx�  �   �e __ 
16��s x

   (9.11)

where x� is the integration variable and where we have assumed that the potential is 

zero at x � �.
 The potential energy of the electron is �e�(x): Figure 9.4b is a plot of the 

 potential energy assuming that no other electric fi elds exist. With an electric fi eld 

 present in the dielectric, the potential is modifi ed and can be written as

 ��(x) �   �e __ 
16��s x

   � Ex (9.12)

The potential energy of the electron, including the effect of a constant electric fi eld, 

is plotted in Figure 9.4c. The peak potential barrier is now lowered. This lowering of 

the potential barrier is the Schottky effect, or image force–induced lowering.

 We can fi nd the Schottky barrier lowering, ��, and the position of the maximum 

barrier, xm , from the condition that

   
d[e�(x)]

 __ 
dx

   � 0 (9.13)

We fi nd that

 xm �  �
_______

   e __ 
16��s E

     (9.14)

and

 �� �  �
_____

   eE _ 
4� �s 

     (9.15)

   EXAMPLE 9.3Objective: Calculate the Schottky barrier lowering and the position of the maximum barrier 

height.

 Consider a gallium arsenide metal–semiconductor contact in which the electric fi eld in 

the semiconductor is assumed to be E � 6.8 � 104 V/cm.

■ Solution
The Schottky barrier lowering is given by Equation (9.15), which in this case yields

�� �  �
_____

   eE _ 
4��s 

     �  �
_____________________

    
(1.6 � 10�19)(6.8 � 104)

  ____  
4� (13. 1)(8.85 � 10�14)

     � 0.0273 V

The position of the maximum barrier height is

 xm �  �
_______

   e __ 
16��sE 

     �  �
______________________________

     
(1.6 � 10�19)

  ______   
16�(13.1)(8.85 � 10�14)(6.8 � 104)

    

or

 xm � 2 � 10�7 cm � 20 Å
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340 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

Interface States Figure 9.5 shows the measured barrier heights in gallium arsenide 

and silicon Schottky diodes as a function of metal work functions. There is a mono-

tonic relation between the measured barrier height and the metal work function, but 

the curves do not fi t the simple relation given in Equation (9.1). The barrier height 

of the metal–semiconductor junction is determined by both the metal work function 

and the  semi conductor surface or interface states.

 A more detailed energy-band diagram of a metal to n-type semiconductor contact 

in thermal equilibrium is shown in Figure 9.6. We assume that a narrow  interfacial 

layer of insulator exists between the metal and semiconductor. The interfacial layer 

can support a potential difference, but will be transparent to the fl ow of electrons be-

tween the metal and semiconductor. The semiconductor also shows a distribution of 

surface states at the metal–semiconductor interface. We assume that all states below 

■ Comment
Although the Schottky barrier lowering may seem like a small value, the barrier height and 

the barrier lowering will appear in exponential terms in the current–voltage relationship. A 

small change in the barrier height can thus have a signifi cant effect on the current in a Schottky 

barrier diode.

■ EXERCISE PROBLEM
Ex 9.3  Consider the Schottky diode described in Example 9.1. Calculate the Schottky 

barrier lowering for a reverse-biased voltage of (a) VR � 1 V and (b) VR � 5 V. 

[Ans. (a) �� � 0.0281 V; (b) �� � 0.0397 V]
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Figure 9.5 | Experimental barrier heights as a function of 

metal work functions for GaAs and Si.

(From Crowley and Sze [2].)
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 9.1   The Schottky Barrier Diode 341

the surface potential �0 are donor states, which will be neutral if the state contains 

an electron and positively charged if the state does not contain an electron. We also 

assume that all states above �0 are acceptor states, which will be neutral if the state 

does not contain an electron and negatively charged if the state contains an electron.

 The diagram in Figure 9.6 shows some acceptor states above �0 and below EF. 
These states tend to contain electrons and are negatively charged. We may assume 

that the surface state density is constant and equal to Dit states /cm2-eV. The relation 

between the surface potential, surface state density, and other semiconductor param-

eters is found to be

 (Eg � e�0 � e�Bn) �   1 _ 
eDit 

    �
______________

  2e�sNd(�Bn � �n)   �   
�i  _ 

eDit�
   [�m � (� � �Bn)]

 (9.16)

 We consider two limiting cases.

Case 1  Let Dit → 	. In this case, the right side of Equation (9.16) goes to zero. We 

then have

 �Bn �   1 _ e   (Eg � e�0) (9.17)

The barrier height is now fi xed by the bandgap energy and the potential �0. The barrier 

height is totally independent of the metal work function and the semiconductor electron 

affi nity. The Fermi level becomes “pinned” at the surface, at the surface potential �0.

Case 2  Let Dit � → 0. Equation (9.16) reduces to

 �Bn � (�m � �)

which is the original ideal expression.

 The Schottky barrier height is a function of the electric fi eld in the semiconduc-

tor through the barrier lowering effect. The barrier height is also a function of the sur-

face states in the semiconductor. The barrier height, then, is modifi ed from the ideal 

theoretical value. Since the surface state density is not predictable with any degree of 

certainty, the barrier height must be an experimentally determined parameter.

e�Bn

e�Vox

e�m

e�0

Qss

e�n

eVbi

Eg

EF

�

e�

Figure 9.6 | Energy-band diagram of a metal–semiconductor 

junction with an interfacial layer and interface states.
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342 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

9.1.4  Current–Voltage Relationship

The current transport in a metal–semiconductor junction is due mainly to majority 

carriers as opposed to minority carriers in a pn junction. The basic process in the 

 rectifying contact with an n-type semiconductor is by transport of electrons over the 

 potential barrier, which can be described by the thermionic emission theory.

 The thermionic emission characteristics are derived by assuming that the bar-

rier height is much larger than kT, so that the Maxwell–Boltzmann  approximation 

applies and that thermal equilibrium is not affected by this process. Figure 9.7 shows 

the one-dimensional barrier with an applied forward-bias voltage Va and two electron 

current density components. The current  J s → m  is the electron current density due to 

the fl ow of electrons from the semiconductor into the metal, and the current  J m → s  is 

the electron current density due to the fl ow of electrons from the metal into the semi-

conductor. The subscripts of the currents indicate the direction of electron fl ow. The 

conventional current direction is opposite to electron fl ow.

EF

Ev

E�c
Ec
EF

n

� �Va

eVa

e(Vbi � Va)

e�Bn
e�n

e��

I

I

x

� �

�

�

�

�

�

�

Va

Jm s Js m

Figure 9.7 | Energy-band diagram of a forward-biased metal–

semiconductor junction including the image lowering effect.

  TEST YOUR UNDERSTANDING

TYU 9.3 Determine the Schottky barrier lowering and the position of the maximum barrier 

height for the junction described in TYU 9.1. Use the value of the electric fi eld 

found in TYU 9.1. 

(Ans. �� � 0.0293 eV, xm � 21 Å)
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 The current density  J s → m  is a function of the concentration of electrons which 

have x-directed velocities suffi cient to overcome the barrier. We may write

  J s → m  � e  
∫

 E  c  ′  

 
 
� 
vx dn  (9.18)

where  E c  �  is the minimum energy required for thermionic emission into the metal, 

vx is the carrier velocity in the direction of transport, and e is the magnitude of the 

electronic charge. The incremental electron concentration is given by

 dn � gc (E ) fF (E ) dE (9.19)

where gc (E) is the density of states in the conduction band and fF (E) is the Fermi–

Dirac probability function. Assuming that the Maxwell–Boltzmann approximation 

applies, we may write

 dn �   
4� (2 m n  * )3�2

 __ 
h3 

    �
______

 E � Ec
   exp  �   �(E � EF)

 __ 
kT 

   �  dE (9.20)

 If all of the electron energy above Ec is assumed to be kinetic energy, then we have

   1 _ 
2
    m n  *  v2 � E � Ec (9.21)

The net current density in the metal-to-semiconductor junction can be written as

 J �  J s → m  �  J m → s  (9.22)

which is defi ned to be positive in the direction from the metal to the semiconductor. 

We fi nd that

 J �  � A* T 2 exp  �   �e�Bn 
 __ 

kT
   �  �   � exp  �   eVa  _ 

kT
   �  � 1 �  (9.23)

where

 A* �   
4�e m n  *  k2

 __ 
h3

   (9.24)

The parameter A* is called the effective Richardson constant for thermionic  emission.

 Equation (9.23) can be written in the usual diode form as

 J � JsT  � exp  �   eVa  _ 
kT

   �  � 1 �  (9.25)

where JsT is the reverse-saturation current density and is given by

 JsT � A*T 2 exp  �   �e�Bn 
 __ 

kT 
   �  (9.26)

We may recall that the Schottky barrier height �Bn changes because of the  image-force 

lowering. We have that �Bn � �B0 � ��. Then we can write Equation (9.26) as
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344 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

 JsT � A*T 2 exp  �   �e�B0 
 __ 

kT
   �  exp  �   e��

 _ 
kT 

   �  (9.27)

The change in barrier height, ��, will increase with an increase in the electric fi eld, 

or with an increase in the applied reverse-biased voltage. Figure 9.8 shows a typical 

 reverse-biased current–voltage characteristic of a Schottky barrier diode. The reverse-

biased current increases with reverse-biased voltage because of the barrier lowering 

effect. This fi gure also shows the Schottky barrier diode going into breakdown.
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Figure 9.8 | Experimental and theoretical 

reverse-biased currents in a PtSi–Si diode. 

(From Sze and Ng [15].)

EXAMPLE 9.4 Objective: Determine the effective Richardson constant from the current–voltage 
characteristics.

 Consider the tungsten–silicon diode curve in Figure 9.9 and assume a barrier height of 

�Bn � 0.67 V. From the fi gure, JsT � 6 � 10�5 A/cm2.

■ Solution
We have that

 JsT � A* T 2 exp  �   �e�Bn  __ 
kT 

   � 
so that

 A* �   
JsT  _ 
T 2 

   exp  �   �e�Bn 
 __ 

kT 
   � 

Then

 A* �   6 � 10�5

 __ 
(300)2

   exp  �   0.67 __ 
0.0259

   �  � 114 A/K2-cm2

■ Comment
The experimentally determined value of A* is a very strong function of �Bn , since �Bn is in the expo-

nential term. A small change in �Bn will change the value of the Richardson constant  substantially.
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 9.1   The Schottky Barrier Diode 345

 We may note that the reverse-saturation current densities of the tungsten–silicon 

and tungsten–gallium arsenide diodes in Figure 9.9 differ by approximately two or-

ders of magnitude. This two order of magnitude difference will be refl ected in the 

effective Richardson constant, assuming the barrier heights in the two diodes are 

essentially the same. The defi nition of the effective Richardson constant, given by 

Equa tion (9.24), contains the electron effective mass, which differs substantially be-

tween silicon and gallium arsenide. The fact that the effective mass is in the expres-

sion for the Richardson constant is a direct result of using the effective density of 

states function in the thermionic emission theory. The net result is that A* and JsT will 

vary widely between silicon and gallium arsenide.

9.1.5   Comparison of the Schottky Barrier Diode 
and the pn Junction Diode

Although the ideal current–voltage relationship of the Schottky barrier diode given 

by Equation (9.25) is of the same form as that of the pn junction diode, there are two 

important differences between a Schottky diode and a pn junction diode: The fi rst is 

in the magnitudes of the reverse-saturation current densities and the second is in the 

switching characteristics.
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Figure 9.9 | Forward-bias current density JF 

versus Va for Wi–Si and W–GaAs diodes.

(From Sze and Ng [15].)

■ EXERCISE PROBLEM
Ex 9.4  Calculate the ideal Richardson constant for a free electron. 

(Ans. A* � 120 A�K
2
-cm

2
)
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346 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

 The reverse-saturation current density of the Schottky barrier diode was given 

by Equation (9.26) and is

 JsT � A* T 2 exp  �   �e�Bn  __ 
kT 

   � 
The ideal reverse-saturation current density of the pn junction diode can be written as

 Js �   
eDn npo 

 __ 
Ln 

   �   
eDp pno 

 __ 
Lp 

   (9.28)

The form of the two equations is vastly different, and the current mechanism in the 

two devices is different. The current in a pn junction is determined by the diffusion 

of minority carriers while the current in a Schottky barrier diode is determined by 

thermionic emission of majority carriers over a potential barrier.

EXAMPLE 9.5 Objective: Calculate the ideal reverse-saturation current densities of a Schottky barrier 

diode and a pn junction diode.

 Consider a tungsten barrier on silicon with a measured barrier height of e�Bn � 0.67 eV. 

The effective Richardson constant is A* � 114 A  /K 2-cm2. Let T � 300 K.

■ Solution
If we neglect the barrier lowering effect, we have for the Schottky barrier diode

 JsT � A* T 2 exp  �   �e�Bn  __ 
kT

   �  � (114)(300)2 exp  �   �0.67 __ 
0.0259

   �  � 5.98 � 10�5 A/cm2

Consider a silicon pn junction with the following parameters at T � 300 K.

 Na � 1018 cm�3 Nd � 1016 cm�3

 Dp � 10 cm2/s Dn � 25 cm2/s

 	po � 10�7 s 	no � 10�7 s

We can then calculate the following parameters:

 Lp � 1.0 � 10�3 cm Ln � 1.58 � 10�3 cm

 pno � 2.25 � 104 cm�3 npo � 2.25 � 102 cm�3

The ideal reverse-saturation current density of the pn junction diode can be determined from 

Equation (9.28) as

Js �   
(1.6 � 10�19)(25)(2.25 � 102)

   _____  
(1.58 � 10�3)

   �   
(1.6 � 10�19)(10)(2.25 � 104)

   _____  
(1.0 � 10�3)

  

 � 5.7 � 10�13 � 3.6 � 10�11 � 3.66 � 10�11 A/cm2

■ Comment
The ideal reverse-saturation current density of the Schottky barrier junction is orders of 

 magnitude larger than that of the ideal pn junction diode.

■ EXERCISE PROBLEM
Ex 9.5  Using the results of Example 9.5, determine the forward-bias voltages required to pro-

duce a current of 10 
A in each diode. Assume each cross-sectional area is 10�4 cm2.

(Ans. pn junction, Va � 0.5628 V; Schottky junction, Va � 0.1922 V)
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 9.1   The Schottky Barrier Diode 347

 Recall that the reverse-biased current in a silicon pn junction diode is dominated 

by the generation current. A typical generation current density is approximately 

10�7 A/cm2, which is still two to three orders of magnitude less than the reverse-

saturation current density of the Schottky barrier diode. A generation current also 

exists in the reverse-biased Schottky barrier diode; however, the generation current 

is negligible compared with the JsT value.

 Since JsT � Js , the forward-bias characteristics of the two types of diodes will 

also be different. Figure 9.10 shows typical I–V characteristics of a Schottky barrier 

diode and a pn junction diode. The effective turn-on voltage of the Schottky diode is 

less than that of the pn junction diode.

Figure 9.10 | Comparison of forward-

bias I–V characteristics between a 

Schottky diode and a pn junction diode.
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   EXAMPLE 9.6Objective: Calculate the forward-bias voltage required to induce a forward-bias current 

density of 10 A/cm2 in a Schottky barrier diode and a pn junction diode.

 Consider diodes with the parameters given in Example 9.5. We can assume that the pn 

junction diode will be suffi ciently forward biased so that the ideal diffusion current will domi-

nate. Let T � 300 K.

■ Solution
For the Schottky barrier diode, we have

 J � JsT  � exp  �   eVa  _ 
kT

   �  � 1 � 
Neglecting the (�1) term, we can solve for the forward-bias voltage. We fi nd

 Va �  �   kT _ e   �  ln  �   J _ 
JsT 

   �  � Vt ln  �   J _ 
JsT 

   �  � (0.0259) ln  �   10 ___ 
5.98 � 10�5 

   �  � 0.312 V

 For the pn junction diode, we have

Va � Vt ln  �   J _ 
Js 

   �  � (0.0259) ln  �   10 ___  
3.66 � 10�11 

   �  � 0.682 V
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348 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

 The actual difference between the turn-on voltages will be a function of the 

barrier height of the metal–semiconductor contact and the doping concentrations in 

the pn junction, but the relatively large difference will always be realized. We will 

consider one application that utilizes the difference in turn-on voltage in Chapter 12, 

in what is referred to as a Schottky clamped transistor.
 The second major difference between a Schottky barrier diode and a pn junction 

diode is in the frequency response, or switching characteristics. In our discussion, we 

have considered the current in a Schottky diode as being due to the injection of major-

ity carriers over a potential barrier. The energy-band diagram of Figure 9.1, for ex-

ample, shows that there can be electrons in the metal directly adjacent to empty states 

in the semiconductor. If an electron from the valence band of the semiconductor were 

to fl ow into the metal, this effect would be equivalent to holes being injected into the 

semiconductor. This injection of holes would create excess minority carrier holes in 

the n region. However, calculations as well as measurements have shown that the ratio 

of the minority carrier hole current to the total current is extremely low in most cases.

 The Schottky barrier diode, then, is a majority carrier device. This fact means that 

there is no diffusion capacitance associated with a forward-biased Schottky diode. 

The elimination of the diffusion capacitance makes the Schottky diode a higher-

frequency device than the pn junction diode. Also, when switching a Schottky diode 

from forward to reverse bias, there is no minority carrier stored charge to  remove, as 

is the case in the pn junction diode. Since there is no minority carrier storage time, 

the Schottky diodes can be used in fast-switching applications. A typical switching 

time for a Schottky diode is in the picosecond range, while for a pn junction it is 

normally in the nanosecond range.

■ Comment
A comparison of the two forward-bias voltages shows that the Schottky barrier diode has a 

turn-on voltage that, in this case, is approximately 0.37 V smaller than the turn-on voltage of 

the pn junction diode.

■ EXERCISE PROBLEM
Ex 9.6  A pn junction diode and a Schottky diode have equal cross-sectional areas and have 

forward-bias currents of 0.5 mA. The reverse-saturation current of the Schottky 

diode is 5 � 10�7 A. The difference in forward-bias voltage between the two diodes 

is 0.30 V. Determine the reverse-saturation current of the pn junction diode.

(Ans. 4.66 � 10
�12

 A)

  TEST YOUR UNDERSTANDING

TYU 9.4 (a) The reverse-saturation currents of a pn junction and a Schottky diode are 

10�14 A and 10�9 A, respectively. Determine the required forward-bias voltages 

in the pn  junction diode and Schottky diode to produce a current of 100 
A in 

each diode. (b) Repeat part (a) for forward bias currents of 1 mA. 

[Ans. (a) 0.596 V, 0.298 V; (b) 0.656 V, 0.358 V]
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9.2 | METAL–SEMICONDUCTOR OHMIC CONTACTS
Contacts must be made between any semiconductor device, or integrated circuit, and 

the outside world. These contacts are made via ohmic contacts. Ohmic contacts are 

metal-to-semiconductor contacts, but in this case they are not rectifying contacts. An 

ohmic contact is a low-resistance junction providing conduction in both directions 

between the metal and the semiconductor. Ideally, the current through the ohmic 

contact is a linear function of applied voltage, and the applied voltage should be very 

small. Two general types of ohmic contacts are possible: The fi rst type is the ideal 

nonrectifying barrier, and the second is the tunneling barrier. We defi ne in this sec-

tion a specifi c contact resistance that is used to characterize ohmic contacts.

9.2.1  Ideal Nonrectifying Barrier

We have considered an ideal metal-n-type semiconductor contact in Figure 9.1 for 

the case when �m > �s. Figure 9.11 shows the same ideal contact for the opposite 

case of �m < �s. In Figure 9.11a we see the energy levels before contact, and in 

 Figure 9.11b, the barrier after contact for thermal equilibrium. To achieve thermal 

equilibrium in this junction, electrons fl ow from the metal into the lower energy 

states in the semiconductor, which makes the surface of the semiconductor more 

n type. The excess electron charge in the n-type semiconductor exists essentially as a 

surface charge density. If a positive voltage is applied to the metal, there is no barrier 

to electrons fl owing from the semiconductor into the metal. If a positive voltage is 

applied to the semiconductor, the effective barrier height for electrons fl owing from 

the metal into the semiconductor will be approximately �Bn � �n, which is fairly 

small for a moderately to heavily doped semiconductor. For this bias condition, elec-

trons can easily fl ow from the metal into the semiconductor.

 Figure 9.12a shows the energy-band diagram when a positive voltage is applied 

to the metal with respect to the semiconductor. Electrons can easily fl ow “downhill” 

(a)

Ec
EF
EFi

Ev

EF

e�m e�
e�s

(b)

Ec

EF
EFi

Ev

EF

e�ne�Bn

Figure 9.11 | Ideal energy-band diagram (a) before contact and (b) after contact for a metal-n-type semiconductor 

junction for �m 
 �s.
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(a)

EF Ev

Ec

(b)

EF

Ev

Ec

Figure 9.12 | Ideal energy-band diagram of a metal-n-type semiconductor ohmic 

contact (a) with a positive voltage applied to the metal and (b) with a positive voltage 

applied to the semiconductor.
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EFi
EF
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e�m

e�

e�s

(b)

EF
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EFi
EF
Ev

e�p

e�Bp

Figure 9.13 | Ideal energy-band diagram (a) before contact and (b) after contact 

for a metal–p-type semiconductor junction for �m 
 �s.

from the semiconductor into the metal. Figure 9.12b shows the case when a positive 

voltage is applied to the semiconductor with respect to the metal. Electrons can eas-

ily fl ow over the barrier from the metal into the semiconductor. This junction, then, 

is an ohmic contact.

 Figure 9.13 shows an ideal nonrectifying contact between a metal and a p-type 

semiconductor. Figure 9.13a shows the energy levels before contact for the case 

when �m > �s. When contact is made, electrons from the semiconductor fl ow into 

the metal to achieve thermal equilibrium, leaving behind more empty states, or holes. 

The excess concentration of holes at the surface makes the surface of the semicon-

ductor more p type. Electrons from the metal can readily move into the empty states 

in the semiconductor. This charge movement corresponds to holes fl owing from the 

semiconductor into the metal. We can also visualize holes in the metal fl owing into 

the semiconductor. This junction is also an ohmic contact.

 The ideal energy bands shown in Figures 9.11 and 9.13 do not take into ac-

count the effect of surface states. If we assume that acceptor surface states exist in 
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the upper half of the semiconductor bandgap, then, since all the acceptor states are 

below EF for the case shown in Figure 9.11b, these surface states will be negatively 

charged and will alter the energy-band diagram. Similarly, if we assume that donor 

surface states exist in the lower half of the bandgap, then all of the donor states will 

be positively charged for the case shown in Figure 9.13b; the positively charged 

surface states will also alter this energy-band diagram. Therefore, if �m < �s for the 

metal-n-type semiconductor contact, and if �m > �s for the metal–p-type semicon-

ductor contact, we may not necessarily form a good ohmic contact.

9.2.2  Tunneling Barrier

The space charge width in a rectifying metal–semiconductor contact is inversely pro-

portional to the square root of the semiconductor doping. The width of the depletion 

region decreases as the doping concentration in the semiconductor increases; thus, as 

the doping concentration increases, the probability of tunneling through the barrier 

increases. Figure 9.14 shows a junction in which the metal is in contact with a heavily 

doped n-type epitaxial layer.

e�

e�

e�Bn

EF EF

Ev

Ec

Figure 9.14 | Energy-band diagram of 

a heavily doped n-semiconductor-to-

metal junction.

   EXAMPLE 9.7Objective: Calculate the space charge width for a Schottky barrier on a heavily doped 

semiconductor.

 Consider silicon at T � 300 K doped at Nd � 7 � 1018 cm�3. Assume a Shottky barrier 

with �Bn � 0.67 V. For this case, we can assume that Vbi � �B0. Neglect the barrier lowering 

 effect.

■ Solution
From Equation (9.7), we have for zero applied bias

xn �   �   2�sVbi  _ 
eNd 

   �  1�2

  �   �   2(11.7)(8.85 � 10�14)(0.67)
   _____  

(1.6 � 10�19)(7 � 1018)
   �  1�2

 

or

 xn � 1. 1 � 10�6 cm � 110 Å
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352 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

 The tunneling current has the form

 Jt � exp  �   �e�Bn 
 __ 

Eoo 
   �  (9.29)

where

 Eoo �   e� _ 
2
    �

____

   
Nd  _ 

�s
 m n  * 

     (9.30)

The tunneling current increases exponentially with doping concentration.

9.2.3  Specifi c Contact Resistance

A fi gure of merit of ohmic contacts is the specifi c contact resistance, Rc. This param-

eter is defi ned as the reciprocal of the derivative of current density with respect to 

voltage evaluated at zero bias. We may write

 Rc �       �   J _ 
V

   �  �1

    V�0
    �-cm2 (9.31)

We want Rc to be as small as possible for an ohmic contact.

 For a rectifying contact with a low to moderate semiconductor doping concen-

tration, the current–voltage relation is given by Equation (9.23) as

 Jn � A*T 2 exp  �   �e�Bn 
 __ 

kT
   �   � exp  �   eV _ 

kT
   �  � 1 � 

The thermionic emission current is dominant in this junction. The specifi c contact 

 resistance for this case is then

 Rc �   
 �   kT _ e   �  exp  �   �e�Bn 

 __ 
kT

   �  
  ____ 

A*T 2
   (9.32)

The specifi c contact resistance decreases rapidly as the barrier height decreases.

 For a metal–semiconductor junction with a high impurity doping concentration, 

the tunneling process will dominate. From Equations (9.29) and (9.30), the specifi c 

contact resistance is found to be

 Rc � exp  �   �2 �
____

 �s  m n  *    
 __ 

�
   �   

�Bn  _ 
 �

___
 Nd   
   �  (9.33)

■ Comment
In a heavily doped semiconductor, the depletion width is on the order of angstroms, so that 

tunneling is now a distinct possibility. For these types of barrier widths, tunneling may be-

come the dominant current mechanism.

■ EXERCISE PROBLEM
Ex 9.7  Calculate the space charge width of a rectifying metal–GaAs–semiconductor 

junction. Assume the n-type doping concentration is Nd � 7 � 1018 cm�3 and the 

built-in potential barrier is Vbi � 0.80 V. 

(Ans. xn � 128.7 Å)
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which shows that the specifi c contact resistance is a very strong function of semi-

conductor doping.

 Figure 9.15 shows a plot of the theoretical values of Rc as a function of semicon-

ductor doping. For doping concentrations greater than approximately 1019 cm�3, the 

tunneling process dominates and Rc shows the exponential dependence on Nd. For 

lower doping concentrations, the Rc values are dependent on the  barrier heights and 

become almost independent of the doping. Also shown in the fi gure are experimental 

data for platinum silicide–silicon and aluminum–silicon junctions.

 Equation (9.33) is the specifi c contact resistance of the tunneling junction, 

which corresponds to the metal–n� contact shown in Figure 9.14. However, the n�n 

junction also has a specifi c contact resistance, since there is a barrier associated with 

this junction. For a fairly low doped n region, this contact resistance may actually 

dominate the total resistance of the junction.

 The theory of forming ohmic contacts is straightforward. To form a good ohmic 

contact, we need to create a low barrier and use a highly doped semiconductor at the 

surface. However, the actual technology of fabricating good, reliable ohmic con-

tacts is not as easy in practice as in theory. It is also more diffi cult to fabricate good 

ohmic contacts on wide-bandgap materials. In general, low barriers are not possible 

on these materials, so a heavily doped semiconductor at the surface must be used to 

form a tunneling contact. The formation of a tunneling junction requires diffusion, 

ion implantation, or perhaps epitaxial growth. The surface doping concentration in 

R
c 

(�
-c

m
2
)

ND (cm�3)

107 1020
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�
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�
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  1   

ND���
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Figure 9.15 | Theoretical and experimental 

specifi c contact resistance as a function 

of doping. 
(From Sze and Ng [15].)
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the semiconductor may be limited to the impurity solubility, which is approximately 

5 � 1019 cm�3 for n-type GaAs. Nonuniformities in the surface doping concentration 

may also prevent the theoretical limit of the specifi c contact resistance from being 

reached. In practice, a good deal of empirical processing is usually required before a 

good ohmic contact is obtained.

9.3 | HETEROJUNCTIONS
In the discussion of pn junctions in the previous chapters, we assumed that the semi-

conductor material is homogeneous throughout the structure. This type of junction is 

called a homojunction. When two different semiconductor materials are used to form 

a junction, the junction is called a semiconductor heterojunction.
 As with many topics in this text, our goal is to provide the basic concepts 

concerning the heterojunction. The complete analysis of heterojunction structures 

 involves quantum mechanics and detailed calculations that are beyond the scope of 

this text. The discussion of heterojunctions will, then, be limited to the introduction 

of some basic concepts.

9.3.1  Heterojunction Materials

Since the two materials used to form a heterojunction will have different energy 

bandgaps, the energy band will have a discontinuity at the junction interface. We 

may have an abrupt junction in which the semiconductor changes abruptly from a 

narrow-bandgap material to a wide-bandgap material. On the other hand, if we have 

a GaAs–AlxGa1�xAs system, for example, the value of x may continuously vary over 

a distance of several nanometers to form a graded heterojunction. Changing the value 

of x in the AlxGa1�xAs system allows us to engineer, or design, the bandgap energy.

 In order to have a useful heterojunction, the lattice constants of the two mate rials 

must be well matched. The lattice match is important because any lattice mismatch 

can introduce dislocations resulting in interface states. For example, germanium and 

gallium arsenide have lattice constants matched to within approximately 0.13 percent. 

Germanium–gallium arsenide heterojunctions have been studied quite extensively. 

More recently, gallium arsenide–aluminum gallium arsenide (GaAs–AlGaAs) junc-

tions have been investigated quite thoroughly, since the lattice constants of GaAs and 

the AlGaAs system vary by no more than 0.14 percent.

9.3.2  Energy-Band Diagrams

In the formation of a heterojunction with a narrow-bandgap material and a wide-

bandgap material, the alignment of the bandgap energies is important in determin-

ing the characteristics of the junction. Figure 9.16 shows three possible situations. 

In Figure 9.16a, we see the case when the forbidden bandgap of the wide-gap 

material  completely overlaps the bandgap of the narrow-gap material. This case, 

called straddling, applies to most heterojunctions. We consider only this case 

here. The other possibilities are called staggered and broken gap and are shown in 

Figure 9.16b,c.
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 There are four basic types of heterojunction. Those in which the dopant type 

changes at the junction are called anisotype. We can form nP or Np junctions, where 

the capital letter indicates the larger-bandgap material. Heterojunctions with the 

same dopant type on either side of the junction are called isotype. We can form nN 

and pP isotype heterojunctions.

 Figure 9.17 shows the energy-band diagrams of isolated n-type and P-type 

 materials, with the vacuum level used as a reference. The electron affi nity of the 

wide-bandgap material is less than that of the narrow-bandgap material. The differ-

ence between the two conduction band energies is denoted by �Ec , and the difference 

between the two valence band energies is denoted by �Ev . From Figure 9.17, we can 

see that

 �Ec � e(�n � �P) (9.34a)

and

 �Ec � �Ev � EgP � Egn � �Eg (9.34b)

In the ideal abrupt heterojunction using nondegenerately doped semiconductors, the 

vacuum level is parallel to both conduction bands and valence bands. If the vac-

uum level is continuous, then the same �Ec and �Ev discontinuities will exist at the 

Ec1

Ev1

Ec2

Ev2

(a)

Ec1

Ev1

Ec2

Ev2

(b)

Ec1

Ev1 Ec2

Ev2

(c)

Figure 9.16 | Relation between narrow-bandgap and wide-bandgap energies: (a) straddling, (b) staggered, and 

(c) broken gap.
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Figure 9.17 | Energy-band diagrams of a narrow-bandgap 

and a wide-bandgap material before contact.
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356 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

heterojunction interface. This ideal situation is known as the electron affi nity rule. 
There is still some uncertainty about the applicability of this rule, but it provides a 

good starting point for the discussion of heterojunctions.

 Figure 9.18 shows a general ideal nP heterojunction in thermal equilibrium. In 

order for the Fermi levels in the two materials to become aligned, electrons from 

the narrow-gap n region and holes from the wide-gap P region must fl ow across the 

junction. As in the case of a homojunction, this fl ow of charge creates a space charge 

 region in the vicinity of the metallurgical junction. The space charge width into the 

n-type region is denoted by xn and the space charge width into the P-type region is de-

noted by xP. The discontinuities in the conduction and valence bands and the change 

in the vacuum level are shown in the fi gure.

9.3.3  Two-Dimensional Electron Gas

Before we consider the electrostatics of the heterojunction, we will discuss a unique 

characteristic of an isotype junction. Figure 9.19 shows the energy-band diagram 

of an nN GaAs–AlGaAs heterojunction in thermal equilibrium. The AlGaAs can 

be moderately to heavily doped n type, while the GaAs can be more lightly doped 

or even intrinsic. As mentioned previously, to achieve thermal equilibrium, elec-

trons from the wide-bandgap AlGaAs fl ow into the GaAs, forming an accumulation 

layer of electrons in the potential well adjacent to the interface. One basic quantum-

mechanical result that we have found previously is that the energy of an electron 

contained in a potential well is quantized. The phrase two-dimensional electron gas 

eVbi
eVbin

eVbin

eVbiP

eVbiP

EFn

Ecn

Evn

Egn

EgP

EcP

EFP

EvP

�Ev

�Ec

xn xP

x � xPx � 0x � �xn

Figure 9.18 | Ideal energy-band diagram of an nP 

heterojunction in thermal equilibrium.
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refers to the condition in which the electrons have quantized energy levels in one 

spatial direction (perpendicular to the interface), but are free to move in the other 

two spatial directions.

 The potential function near the interface can be approximated by a triangular 

potential well. Figure 9.20a shows the conduction band edges near the abrupt junc-

tion interface and Figure 9.20b shows the approximation of the triangular potential 

well. We can write

 V(x) � eEz    z � 0 (9.35a)

 V(z) � 	 z 
 0 (9.35b)

Schrodinger’s wave equation can be solved using this potential function. The quan-

tized energy levels are shown in Figure 9.20b. Higher energy levels are usually not 

considered.

Ecn EcN

EFN

EvN

EFn

�Ec

�Ev

Egn

EgN

eVbin

eVbiN

Evn

Figure 9.19 | Ideal energy-band diagram of an nN 

heterojunction in thermal equilibrium.
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Figure 9.20 | (a) Conduction-band edge at N-AlGaAs, n-GaAs heterojunction; (b) triangular well 

approximation with discrete electron energies.
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358 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

 The qualitative distribution of electrons in the potential well is shown in 

 Fig ure 9.21. A current parallel to the interface will be a function of this electron 

concentration and of the electron mobility. Since the GaAs can be lightly doped or 

intrinsic, the two-dimensional electron gas is in a region of low impurity doping so 

that impurity scattering effects are minimized. The electron mobility will be much 

larger than if the electrons were in the same region as the ionized donors.

 The movement of the electrons parallel to the interface will still be infl uenced by 

the coulomb attraction of the ionized impurities in the AlGaAs. The effect of these 

forces can be further reduced by using a graded AlGaAs–GaAs heterojunction. The 

graded layer is AlxGa1�xAs in which the mole fraction x varies with distance. In this 

case, an intrinsic layer of graded AlGaAs can be sandwiched between the N-type 

 AlGaAs and the intrinsic GaAs. Figure 9.22 shows the conduction-band edges across 

a graded AlGaAs–GaAs heterojunction in thermal equilibrium. The electrons in the 

potential well are further separated from the ionized impurities so that the electron 

mobility is increased above that in an abrupt heterojunction.

*9.3.4  Equilibrium Electrostatics

We now consider the electrostatics of the nP heterojunction that is shown in Fig-

ure 9.18. As in the case of the homojunction, potential differences exist across the 

space charge regions in both the n region and the P region. These potential differences 

correspond to the built-in potential barriers on either side of the junction. The built-in 

potential barrier for this ideal case is defi ned as shown in Figure 9.18 to be the potential 

difference across the vacuum level. The built-in potential barrier is the sum of the po-

tential differences across each of the space charge regions. The heterojunction built-in 

potential barrier, however, is not equal to the difference between the conduction bands 

across the junction or the difference between the valence bands across the junction, as 

we defi ned for the homojunction.

 Ideally, the total built-in potential barrier Vbi can be found as the difference be-

tween the work functions, or

 Vbi � �sP � �sn (9.36)

n(z)

z

Figure 9.21 | Electron density in 

triangular potential well.

Ec1 EF

Ec2

AlGaAs GaAs

UndopedDoped

Figure 9.22 | Conduction-band edge at 

a graded heterojunction.
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Equation (9.36), from Figure 9.17, can be written as

 eVbi � [e�P � EgP � (EFP � EvP)] � [e�n � Egn � (EFn � Evn)] (9.37a)

or

 eVbi � e(�P � �n) � (EgP � Egn) � (EFn � Evn) � (EFP � EvP) (9.37b)

which can be expressed as

 eVbi � ��Ec � �Eg � kT ln  �   Nvn  _ pno 
   �  � kT ln  �   NvP 

 _ ppo 
   �  (9.38)

Finally, we can write Equation (9.38) as

 eVbi � �Ev � kT ln  �   ppo 
 _ pno 
   �   

Nvn  _ 
NvP 

   �  (9.39)

where ppo and pno are the hole concentrations in the P and n materials, respectively, 

and Nvn and NvP are the effective density of states functions in the n and P mate rials, 

respectively. We can also obtain an expression for the built-in potential barrier in 

terms of the conduction band shift as

 eVbi � ��Ec � kT ln  �   nno  _ npo 
   �   

NcP 
 _ 

Ncn 
   �  (9.40)

   EXAMPLE 9.8Objective: Determine �Ec , �Ev , and Vbi for an n–Ge to P–GaAs heterojunction using the 

electron affi nity rule.

 Consider n-type Ge doped with Nd � 1016 cm�3 and P-type GaAs doped with 

Na� 1016 cm�3. Let T � 300 K so that ni � 2.4 � 1013 cm�3 for Ge.

■ Solution
From Equation (9.34a), we have

 �Ec � e(�n � �P) � e(4.13 � 4.07) � 0.06 eV

and from Equation (9.34b), we have

 �Ev � �Eg � �Ec � (1.43 � 0.67) � 0.06 � 0.70 eV

To determine Vbi using Equation (9.39), we need to determine pno in Ge, or

 pno �   
 n i  

2  
 _ 

Nd 
   �   

(2.4 � 1013)2 
 ___ 

1016 
   � 5.76 � 1010 cm�3

Then

 eVbi � 0.70 � (0.0259) ln  �   (1016)(6 � 1018)
  ____  

(5.76 � 1010)(7 � 1018)
   � 

or, fi nally,

 Vbi � 1.0 V

■ Comment
There is a nonsymmetry in the �Ec and �Ev values that will tend to make the potential  barriers 

seen by electrons and holes different. This nonsymmetry does not occur in  homojunctions.

nea29583_ch09_331-370.indd   359nea29583_ch09_331-370.indd   359 12/11/10   12:39 PM12/11/10   12:39 PM
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■ EXERCISE PROBLEM
Ex 9.8   Repeat Example 9.8 for an n-Ge-to-P-GaAs heterojunction. The Ge is doped with 

Nd � 1015 cm�3 donors and the GaAs doped with Na � 1015 cm�3 acceptors. Let 

T � 300 K. 

(Ans. Vbi � 0.889 V)

 We can determine the electric fi eld and potential in the junction from Poisson’s 

equation in exactly the same way as we do for the homojunction. For homogeneous 

doping on each side of the junction, we have in the n region

 En �   
eNdn  _ �n 

   (xn � x)   (�xn � x 
 0) (9.41a)

and in the P region

 EP �   
eNaP 

 _ �P    (xP � x)   (0 
 x � xP) (9.41b)

where �n and �P are the permittivities of the n and P materials, respectively. We may 

note that En � 0 at x � �xn and EP � 0 at x � xP. The electric fl ux density D is con-

tinuous across the junction, so

 �n En(x � 0) � �P EP(x � 0) (9.42a)

which gives

 Ndn xn � NaPxP (9.42b)

Equation (9.42b) simply states that the net negative charge in the P region is equal 

to the net positive charge in the n region—the same condition we had in a pn homo-

junction. We are neglecting any interface states that may exist at the heterojunction.

 The electric potential can be found by integrating the electric fi eld through the 

space charge region so that the potential difference across each region can be deter-

mined. We fi nd that

 Vbin �   
eNdn  x n  

2  
 __ 

2�n 
   (9.43a)

and

 VbiP �   
eNaP  x P  2

   
 __ 

2�P 
   (9.43b)

Equation (9.42b) can be rewritten as

   
xn  _ xP    �   

NaP 
 _ 

Ndn 
   (9.44)

The ratio of the built-in potential barriers can then be determined as

   
Vbin  _ 
VbiP 

   �   
�P 

 _ �n 
   �   

Ndn  _ 
NaP 

   �   
 x n  

2  
 _ 

 x P  2
   
   �   

�PNaP 
 _ 

�n Ndn 
   (9.45)

Assuming that �n and �P are of the same order of magnitude, the larger potential dif-

ference is across the lower-doped region.
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 The total built-in potential barrier is

 Vbi � Vbin � VbiP �   
eNdn

 x n  
2  
 __ 

2�n 
   �   

eNaP
 x P  2

   
 __ 

2�P 
   (9.46)

If we solve for xP, for example, from Equation (9.42b) and substitute into Equa-

tion (9.46), we can solve for xn as

 xn �   �   2�n �P NaP Vbi   ____  
eNdn(�nNdn � �P NaP)

   �  1�2

  (9.47a)

We can also fi nd

 xP �   �   2�n �P NdnVbi   ____  
eNaP (�n Ndn � �P NaP)

   �  1�2

  (9.47b)

The total depletion width is found to be

 W � xn � xP �   �   2�n �P (Ndn � NaP)2 Vbi 
  ____  

eNdnNaP(�nNdn � �P NaP)
   �  1�2

  (9.48)

If a reverse-biased voltage is applied across the heterojunction, the same equations 

apply if Vbi is replaced by Vbi � VR . Similarly, if a forward bias is applied, the same 

equations also apply if Vbi is replaced by Vbi � Va. As explained earlier, VR is the magni-

tude of the reverse-biased voltage and Va is the magnitude of the forward-bias voltage.

 As in the case of a homojunction, a change in depletion width with a change in 

junction voltage yields a junction capacitance. We can fi nd for the nP junction

  C j  �  �   �   eNdnNaP�n�P 
  _____   

2(�nNdn � �PNaP)(Vbi � VR)
   �  1�2

    (F/cm2) (9.49)

A plot of (1� C j  � )2 versus VR again yields a straight line. The extrapolation of this plot 

of (1� C j  � )2 � 0 is used to fi nd the built-in potential barrier, Vbi. 
 Figure 9.18 shows the ideal energy-band diagram for the nP abrupt heterojunc-

tion. The experimentally determined values of �Ec and �Ev may differ from the 

ideal values determined using the electron affi nity rule. One possible explanation 

for this difference is that most heterojunctions have interface states. If we assume 

that the electrostatic potential is continuous through the junction, then the electric 

fl ux density will be discontinuous at the heterojunction due to the surface charge 

trapped in the interface states. The interface states will then change the energy-band 

diagram of the semiconductor heterojunction just as they changed the energy-band 

diagram of the metal–semiconductor junction. Another possible explanation for the 

deviation from the ideal is that as the two materials are brought together to form 

the heterojunction, the electron orbitals of each material begin to interact with each 

other, resulting in a transition region of a few angstroms at the interface. The energy 

bandgap is then continuous through this transition region and not a characteristic of 

either material. However, we still have the relation

 �Ec � �Ev � �Eg (9.50)

for the straddling type of heterojunction, although the �Ec and �Ev values may differ 

from those determined from the electron affi nity rule.
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362 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

 We may consider the general characteristics of the energy-band diagrams of the 

other types of heterojunction. Figure 9.23 shows the energy-band diagram of an Np 

heterojunction. The same �Ec and �Ev discontinuities exist, although the general shape 

of the conduction band, for example, is different in the nP and the Np junctions. This 

difference in energy bands will infl uence the I–V characteristics of the two junctions.

 The other two types of heterojunctions are the nN and the pP isotype junctions. 

The energy-band diagram of the nN junction is shown in Figure 9.19. To achieve ther-

mal equilibrium, electrons from the wide-bandgap material will fl ow into the narrow-

bandgap material. A positive space charge region exists in the wide-bandgap material 

and an accumulation layer of electrons now exists at the interface in the narrow-bandgap 

material. Since there are a large number of allowed energy states in the conduction 

band, we expect the space charge width xn and the built-in potential barrier Vbin to be 

small in the narrow-gap material. The energy-band diagram of the pP heterojunction 

in thermal equilibrium is shown in Figure 9.24. To achieve thermal equilibrium, holes 

from the wide-bandgap material will fl ow into the narrow-bandgap material, creating 

an accumulation layer of holes in the narrow-bandgap material at the interface. These 

types of isotype heterojunctions are obviously not possible in a homojunction.

Ecp

EcN

EFN

EvN

EFp

�Ec

�Ev

Egp

EgN

Evp

Figure 9.23 | Ideal energy-band diagram of an 

Np heterojunction in thermal equilibrium.

Ecp

EcP

EFP
EvP

EFp

�Ec

�Ev

Egp

EgP

Evp

Figure 9.24 | Ideal energy-band diagram of a 

pP heterojunction in thermal equilibrium.
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*9.3.5  Current–Voltage Characteristics

The ideal current–voltage characteristics of a pn homojunction have been developed 

in Chapter 8. Since the energy-band diagram of a heterojunction is more complicated 

than that of a homojunction, we would expect the I–V characteristics of the two junc-

tions to differ.

 One immediate difference between a homojunction and a heterojunction is in 

the barrier heights seen by the electrons and holes. Since the built-in potential barrier 

for electrons and holes in a homojunction is the same, the relative magnitude of the 

electron and hole currents is determined by the relative doping levels. In a heterojunc-

tion, the barrier heights seen by electrons and holes are not the same. The  energy-band 

diagrams in Figures 9.18 and 9.23 demonstrate that the barrier heights for electrons 

and holes in a heterojunction can be signifi cantly different. The barrier height for elec-

trons in Figure 9.18 is larger than that for holes, so we would expect the current due to 

electrons to be insignifi cant compared to the hole current. If the barrier height for elec-

trons is 0.2 eV larger than that for holes, the electron current will be  approximately a 

factor of 104 smaller than the hole current, assuming all other  parameters are equal. 

The opposite situation exists for the band diagram shown in Figure 9.23.

 The conduction-band edge in Figure 9.23 and the valence-band edge in Fig-

ure 9.18 are somewhat similar to that of a rectifying metal–semiconductor contact. 

We derive the current–voltage characteristics of a heterojunction, in general, on 

the basis of thermionic emission of carriers over the barrier, as we do in the case 

of metal–semiconductor junction. We can then write 

 J � A* T 2 exp  �   �Ew 
 _ 

kT
   �  (9.51)

where Ew is an effective barrier height. The barrier height can be increased or reduced 

by an applied potential across the junction as in the case of a pn homojunction or a 

Schottky barrier junction. The heterojunction I–V characteristics, however, may need 

to be modifi ed to include diffusion effects and tunneling effects. Another complicat-

ing factor is that the effective mass of a carrier changes from one side of the junction 

to the other. Although the actual derivation of the I–V relationship of the hetero-

junction is complex, the general form of the I–V equation is still similar to that of a 

Schottky barrier diode and is generally dominated by one type of carrier.

9.4 | SUMMARY
■ A metal on a lightly doped semiconductor can produce a rectifying contact that is known 

as a Schottky barrier diode. The ideal barrier height between the metal and semiconductor 

is the difference between the metal work function and the semiconductor electron affi nity.

■ When a positive voltage is applied to an n-type semiconductor with respect to the metal 

(reverse bias), the barrier between the semiconductor and metal increases so that there is 

essentially no fl ow of charged carriers. When a positive voltage is applied to the metal 

with respect to an n-type semiconductor (forward bias), the barrier between the 

semi conductor and metal is lowered so that electrons can easily fl ow from the 

semi conductor into the metal by a process called thermionic emission.
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■ The ideal current–voltage relationship of the Schottky barrier diode is the same as that 

of the pn junction diode. However, since the current mechanism is different from that of 

the pn junction diode, the switching speed of the Schottky diode is faster. In addition, 

the reverse saturation current of the Schottky diode is larger than that of the pn junction 

diode, so a Schottky diode requires less forward bias voltage to achieve a given current 

compared to a pn junction diode.

■ Metal–semiconductor junctions can also form ohmic contacts, which are low-resistance 

junctions providing conduction in both directions with very little voltage drop across 

the junction.

■ Semiconductor heterojunctions are formed between two semiconductor materials with 

different bandgap energies. One useful property of a heterojunction is the creation of a 

potential well at the interface. Electrons are confi ned to the potential well in the direc-

tion perpendicular to the interface, but are free to move in the other two directions.

GLOSSARY OF IMPORTANT TERMS
anisotype junction  A heterojunction in which the type of dopant changes at the metallurgi-

cal junction.

electron affi nity rule  The rule stating that, in an ideal heterojunction, the discontinuity at the 

conduction band is the difference between the electron affi nities in the two semiconductors.

heterojunction  The junction formed by the contact between two different semiconductor 

materials.

image force–induced lowering  The lowering of the peak potential barrier at the metal–

semiconductor junction due to an electric fi eld.

isotype junction  A heterojunction in which the type of dopant is the same on both sides of 

the junction.

ohmic contact  A low-resistance metal–semiconductor contact providing conduction in both 

directions between the metal and semiconductor.

Richardson constant  The parameter A* in the current–voltage relation of a Schottky diode.

Schottky barrier height  The potential barrier �Bn from the metal to semiconductor in a 

metal–semiconductor junction.

Schottky effect  Another term for image force–induced lowering.

specifi c contact resistance  The inverse of the slope of the J versus V curve of a metal–

semiconductor contact evaluated at V � 0.

thermionic emission  The process by which charge fl ows over a potential barrier as a result 

of carriers with suffi cient thermal energy.

tunneling barrier  A thin potential barrier in which the current is dominated by the tunneling 

of carriers through the barrier.

two-dimensional electron gas (2-DEG)  The accumulation layer of electrons contained in 

a potential well at a heterojunction interface. The electrons are free to move in the “other” 

two spatial directions.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Sketch the energy-band diagram of zero-biased, reverse-biased, and forward-biased 

Schottky barrier diodes.

■ Describe the charge fl ow in a forward-biased Schottky barrier diode.
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■ Explain the Schottky barrier lowering and its effect on the reverse saturation current in 

a Schottky barrier diode.

■ Explain the effect of interface states on the characteristics of a Schottky barrier diode.

■ Describe one effect of a larger reverse saturation current in a Schottky barrier diode 

compared to that of a pn junction diode.

■ Describe what is meant by an ohmic contact.

■ Draw the energy-band diagram of an nN heterojunction.

■ Explain what is meant by a two-dimensional electron gas.

REVIEW QUESTIONS
1. What is the ideal Schottky barrier height? Indicate the Schottky barrier height on an 

 energy-band diagram.

2. Using an energy-band diagram, indicate the effect of the Schottky barrier lowering.

3. What is the mechanism of charge fl ow in a forward-biased Schottky barrier diode?

4. Compare the forward-biased current–voltage characteristic of a Schottky barrier diode 

to that of pn junction diode.

5. Explain the difference in switching characteristics between a Schottky diode and a pn 

junction diode. Discuss charge storage effects.

6. Sketch the ideal energy-band diagram of a metal–semiconductor junction in which 

�m 
 �s. Explain why this is an ohmic contact.

7. Sketch the energy-band diagram of a tunneling junction. Why is this an ohmic contact?

8. What is a heterojunction?

9. What is a 2-D electron gas?

PROBLEMS
(In the following problems, assume A* � 120 A/K2-cm2 for silicon and A* � 1.12 A/K2-cm2 

for gallium arsenide Schottky diodes unless otherwise stated.)

Section 9. 1  The Schottky Barrier Diode

9.1 Consider a contact between Al and n Si doped at Nd � 1016 cm�3. T � 300 K. 

(a) Draw the energy-band diagrams of the two materials before the junction is formed. 

(b) Draw the ideal energy band at zero bias after the junction is formed. (c) Calculate 

�B0, xd, and Emax for part (b). (d) Repeat parts (b) and (c) using the data in Figure 9.5.

9.2 (a) A Schottky barrier diode formed on n-type silicon has a doping concentration 

of Nd � 5 � 1015 cm�3 and a barrier height of �B0 � 0.65 V. Determine the built-

in potential barrier Vbi. (b) If the doping concentration changes to Nd � 1016 cm�3, 

determine the values of �B0 and Vbi. Do these values increase, decrease, or remain the 

same? (c) Repeat part (b) if the doping concentration is Nd � 1015 cm�3.

9.3 Gold is deposited on n-type silicon forming an ideal rectifying junction. The doping 

concentration is Nd � 1016 cm�3. Assume T � 300 K. Determine the theoretical values 

of (a) �B0, (b) Vbi, and (c) xn and �Emax� at (i) VR � 1 V and (ii) VR � 5 V.

9.4 A Schottky diode is formed by depositing gold on n-type GaAs that is doped at a con-

centration of Nd � 5 � 1015 cm�3. For T � 300 K, determine the theoretical values of 

(a) �B0, (b) �n, (c) Vbi, and (d) xn and �Emax� at (i) VR � 1 V and (ii) VR � 5 V.

nea29583_ch09_331-370.indd   365nea29583_ch09_331-370.indd   365 12/11/10   12:39 PM12/11/10   12:39 PM



366 CHAPTER 9   Metal–Semiconductor and Semiconductor Heterojunctions

9.5 Repeat Problem 9.4, parts (b) through (d), if the experimentally determined barrier 

height is found to be �Bn � 0.88 V.

9.6 (a) A Pt–n-type silicon junction with Nd � 1015 cm�3 has a cross-sectional area of 

A � 10�4 cm2. Let T � 300 K. Using the data shown in Figure 9.5, determine the 

junction capacitance at (i) VR � 1 V and (ii) VR � 5 V. (b) Repeat part (a) for a doping 

concentration of Nd � 1016 cm�3.

9.7 A Schottky diode with n-type GaAs at T � 300 K yields the 1�C�2 versus VR plot 

shown in Figure P9.7, where C� is the capacitance per cm2. Determine (a) Vbi, (b) Nd, 

(c) �n, and (d) �B0.

9.8 Consider a W–n-type silicon Schottky barrier at T � 300 K with Nd � 5 � 1015 cm�3. 

Use the data in Figure 9.5 to determine the barrier height. (a) Determine Vbi, xn, and 

�Emax� for (i) VR � 1 V and (ii) VR � 5 V. (b) Using the values of �Emax� from part (a), 

determine the Schottky barrier lowering parameters �� and xm.

9.9 Starting with Equation (9.12), derive Equations (9.14) and (9.15).

9.10 A Au-n-GaAs Schottky diode at T � 300 K is doped at a concentration of 
Nd � 1016 cm�3. Use the data in Figure 9.5 to determine the barrier height. Then 

determine (a) Vbi, xn, and �Emax� for zero bias. (b) Determine the reverse-biased voltage 

at which the Schottky barrier lowering, ��, will be 5 percent of the barrier height.

9.11 Consider n-type silicon doped at Nd � 1016 cm�3 with a gold contact to form 

a Schottky diode. Investigate the effect of Schottky barrier lowering. (a) Plot 

the Schottky barrier lowering �� versus reverse-biased voltage over the range 

0 � VR � 50 V. (b) Plot the ratio JsT(VR)�JsT(VR � 0) over the same range of reverse-

biased voltage.

*9.12 The energy-band diagram of a Schottky diode is shown in Figure 9.6. Assume the fol-

lowing parameters:

  �m � 5.2 V �n � 0.10 V  �0 � 0.60 V

    Eg � 1.43 eV  � � 25 Å  �i � �0

     �s � (13.1)�0    � � 4.07 V  Nd � 1016 cm�3

    Dit � 1013 eV�1 cm�2

 (a) Determine the theoretical barrier height �B0 without interface states. (b) Determine 

the barrier height with interface states. (c) Repeat parts (a) and (b) if �m � 4.5 V.
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Figure P9.7 | Figure for 

Problem 9.7.

*Asterisks next to problems indicate problems that are more diffi cult.
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*9.13 A Schottky barrier diode contains interface states and an interfacial layer. Assume the 

following parameters:

  �m � 4.75 V �n � 0.164 V  �0 � 0.230 V

    Eg � 1. 12 eV  � � 20 Å  �i � �0

     �s � (11.7)�0    � � 4.01 V  Nd � 5 � 1016 cm�3

    �B0 � 0.60 V

 Determine the interface state density, Dit, in units of eV�1 cm�2.

9.14 A Schottky diode at T � 300 K is formed with Pt on n-type silicon with a doping con-

centration of Nd � 5 � 1015 cm�3. The barrier height is found to be �Bn � 0.89 V. De-

termine (a) �n, (b) Vbi, (c) JsT, and (d) Va such that Jn � 5 A/cm2. (Neglect the barrier 

lowering effect.)

9.15 (a) Consider a Schottky diode at T � 300 K that is formed with tungsten on n-type 

silicon. Use Figure 9.5 to determine the barrier height. Assume a doping concentra-

tion of Nd � 1016 cm�3 and assume a cross-sectional area A � 10�4 cm2. Determine 

the forward-bias voltage required to induce a current of (i) 10 
A, (ii) 100 
A, and 

(iii) 1 mA. (b) Repeat part (a) for a temperature of T � 350 K. (Neglect the barrier 

lowering effect.)

9.16 An Au-n-GaAs Schottky diode at T � 300 K has a doping concentration of 
Nd � 1016 cm�3. (a) Using Figure 9.5, determine the barrier height. (b) Calculate the 

reverse-biased saturation current JsT. (c) Determine the forward-bias voltage required 

to induce a current density of Jn � 10 A/cm2. (d) What is the change in forward-

bias voltage necessary to double the current density? (Neglect the Schottky barrier 

lowering.)

9.17 (a) Consider an Au–n-type GaAs Schottky diode with a cross-sectional area of 

10�4 cm2. Plot the forward-bias current–voltage characteristics over a voltage range of 

0 � VD � 0.5 V. Plot the current on a log scale. (b) Repeat part (a) for an Au–n-type 

silicon Schottky diode. (c) What conclusions can be drawn from these results?

9.18 A Schottky diode at T � 300 K is formed between tungsten and n-type silicon 

doped at Nd � 1016 cm�3. The cross-sectional area is A � 10�4 cm2. Determine the 

 reverse-biased saturation current at (a) VR � 2 V and (b) VR � 4 V. (Take into account 

the Schottky barrier lowering.)

*9.19 Starting with the basic current equation given by Equation (9.18), derive the relation 

given by Equation (9.23).

9.20 The reverse-saturation current densities in a pn junction diode and a Schottky diode 

are 10�11 A/cm2 and 6 � 10�8 A/cm2, respectively, at T � 300 K. The cross-sectional 

area of the Schottky diode is A � 10�4 cm2. The current in each diode is 0.80 mA. 

The difference in forward-bias voltages between the two diodes is 0.285 V. Determine 

(a) the voltage applied to each diode and (b) the cross-sectional area of the pn junc-

tion diode.

9.21 A pn junction diode and a Schottky diode each have cross-sectional areas of 

A � 8 � 10�4 cm2. The reverse saturation current densities at T � 300 K for the pn 

junction diode and Schottky diode are 8 � 10�13 A/cm2 and 6 � 10�9 A/cm2, respec-

tively. Determine the required forward-bias voltage in each diode to yields currents of 

(a)150 
A, (b) 700 
A, and (c) 1.2 mA.

9.22 (a) The two diodes described in Problem 9.21 are connected in series and are driven 

by a constant current source of 0.80 mA. Determine (i) the current in each diode and 
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(ii) the voltage across each diode. (b) Repeat part (a) for the case when the diodes are 

connected in parallel.

9.23 A Schottky diode and a pn junction diode have cross-sectional areas of 

A � 7 � 10�4 cm2. The reverse-saturation current densities at T � 300 K of the 

Schottky diode and pn junction are 4 � 10�8 A/cm2 and 3 � 10�12 A/cm2, respec-

tively. A forward-bias current of 0.8 mA is required in each diode. (a) Determine the 

forward-bias  voltage required across each diode. (b) If the voltage from part (a) is 

maintained across each diode, determine the current in each diode if the temperature 

is increased to 400 K. (Take into account the temperature dependence of the reverse- 

saturation  currents. Assume Eg � 1.12 eV for the pn junction diode and �B0 � 0.82 V 

for the Schottky diode.)

9.24 Compare the current–voltage characteristics of a Schottky barrier diode and a pn junc-

tion diode. Use the results of Example 9.5 and assume diode areas of 5 � 10�4 cm2. 
Plot the current–voltage characteristics on a linear scale over a current range of 

0 � ID � 10 mA.

Section 9.2  Metal–Semiconductor Ohmic Contacts

9.25 The contact resistance of an ohmic contact is Rc � 10�4 �-cm2. Determine the junction 

resistance if the cross-sectional area is (a) 10�3 cm2, (b) 10�4 cm2, and (c) 10�5 cm2.

9.26 (a) The contact resistance of an ohmic contact is Rc � 5 � 10�5 �-cm2. The cross-

sectional area of the junction is 10�5 cm2. Determine the voltage across the junction 

if the current is (i) I � 1 mA and (ii) I � 100 
A. (b) Repeat part (a) if the cross-

sectional area is 10�6 cm2.

9.27 An ohmic contact between a metal and silicon may be formed that has a very low 

barrier height. (a) Determine the value of �Bn that will produce a contact resistance 

of Rc � 5 � 10�5 �-cm2 at T � 300 K. (b) Repeat part (a) for a contact resistance of 

Rc � 5 � 10�6 �-cm2.

9.28 A metal, with a work function �m � 4.2 V, is deposited on an n-type silicon semicon-

ductor with �s � 4.0 V and Eg � 1.12 eV. Assume no interface states exist at the junc-

tion. Let T � 300 K. (a) Sketch the energy-band diagram for zero bias for the case 

when no space charge region exists at the junction. (b) Determine Nd so that the con-

dition in part (a) is satisfi ed. (c) What is the potential barrier height seen by electrons 

in the metal moving into the semiconductor?

9.29 Consider the energy-band diagram of a silicon Schottky junction under zero bias 

shown in Figure P9.29. Let �B0 � 0.7 V and T � 300 K. Determine the doping 

 required so that xd � 50 Å at the point where the potential is �B0�2 below the peak 

value. (Neglect the barrier lowering effect.)

9.30 A metal–semiconductor junction is formed between a metal with a work function of 

4.3 eV and p-type silicon with an electron affi nity of 4.0 eV. The acceptor doping 

 concentration in the silicon is Na � 5 � 1016 cm�3. Assume T � 300 K. (a) Sketch the 

thermal equilibrium energy-band diagram. (b) Determine the height of the  Schottky 

barrier. (c) Sketch the energy-band diagram with an applied reverse-biased voltage of 

VR � 3 V. (d) Sketch the energy-band diagram with an applied forward-bias voltage of 

Va � 0.25 V.

9.31 (a) Consider a metal–semiconductor junction formed between a metal with a 

work function of 4.65 eV and Ge with an electron affi nity of 4.13 eV. The doping 
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concentration in the Ge material is Nd � 6 � 1013 cm�3 and Na � 3 � 1013 cm�3. 

Assume T � 300 K. Sketch the zero bias energy-band diagram and determine the 

Schottky barrier height. (b) Repeat part (a) if the metal work function is 4.35 eV.

Figure P9.29 | Figure for 

Problem 9.29.
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Section 9.3  Heterojunctions

9.32 Sketch the energy-band diagrams of an abrupt Al0.3Ga0.7As–GaAs hetero junction for: 

(a) N�–AlGaAs, intrinsic GaAs, (b) N�–AlGaAs, p–GaAs, and (c) P�–AlGaAs, n�–
GaAs. Assume Eg � 1.85 eV for Al0.3Ga0.7As and assume �Ec �   2 _ 

3
  �Eg.

9.33 Repeat Problem 9.32 assuming the ideal electron affi nity rule. Determine �Ec and 

�Ev.

*9.34 Starting with Poisson’s equation, derive Equation (9.48) for an abrupt heterojunction.

Summary and Review

*9.35 (a) Derive an expression for dVa�dT as a function of current density in a Schottky 

diode. Assume the minority carrier current is negligible. (b) Compare dVa�dT for a 

GaAs Schottky diode to that for a Si Schottky diode. (c) Compare dVa�dT for a Si 

Schottky diode to that for a Si pn junction diode.

9.36 The (1�Cj)2 versus VR data are measured for two Schottky diodes with equal areas. 

One diode is fabricated with 1 �-cm silicon and the other diode with 5 �-cm silicon. 

The plots intersect the voltage axis as VR � �0.5 V for diode A and at VR � �1.0 V 

for diode B. The slope of the plot for diode A is 1.5 � 1018 (F2-V)�1 and that for diode 

B is 1.5 � 1017 (F2-V)�1. Determine which diode has the higher metal work function 

and which diode has the lower resistivity silicon.

*9.37 Both Schottky barrier diodes and ohmic contacts are to be fabricated by depositing 

a particular metal on a silicon integrated circuit. The work function of the metal is 

4.5 V. Considering the ideal metal–semiconductor contact, determine the allowable 

range of doping concentrations for each type of contact. Consider both p- and n-type 

silicon  regions.

9.38 Consider an n-GaAs–p-AlGaAs heterojunction in which the bandgap offsets are 

�Ec � 0.3 eV and �Ev � 0. 15 eV. Discuss the difference in the expected electron and 

hole currents when the junction is forward biased.
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10
Fundamentals of the 

Metal–Oxide–Semiconductor 
Field-Effect Transistor

T
he single-junction semiconductor devices that we have considered, including 

the pn homojunction diode, can be used to produce rectifying current– voltage 

characteristics and to form electronic switching circuits. The transistor is a 

multijunction semiconductor device that, in conjunction with other circuit elements, 

is capable of current gain, voltage gain, and signal power gain. The basic transistor 

action is the control of current at one terminal by the voltage applied across the other 

two terminals of the device.

 The Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET) is one of 

two major types of transistors. The fundamental physics of the MOSFET is devel-

oped in this chapter. The MOSFET is used extensively in digital circuit applications 

where, because of its small size, millions of devices can be fabricated in a single 

integrated circuit.

 Two complementary confi gurations of MOS transistors, the n-channel MOSFET 

and the p-channel MOSFET, can be fabricated. Electronic circuit design becomes 

very versatile when the two types of devices are used in the same circuit. These cir-

cuits are referred to as complementary MOS (CMOS) circuits. ■

10.0 | PREVIEW
In this chapter, we will:

■ Study the characteristics of energy bands as a function of applied voltage in the 

metal–oxide–semiconductor structure known as the MOS capacitor. The MOS 

capacitor is the heart of the MOSFET.

■ Discuss the concept of surface inversion in the semiconductor of the MOS 

capacitor.

C H A P T E R
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372 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

■ Defi ne and derive the expression for the threshold voltage, which is a basic pa-

rameter of the MOSFET.

■ Discuss various physical structures of MOSFETs, including enhancement and 

depletion mode devices.

■ Derive the ideal current–voltage relationship of the MOSFET.

■ Develop the small-signal equivalent circuit of the MOSFET. This circuit is 

used to relate small-signal currents and voltages in analog circuits.

■ Derive the frequency limiting factors of the MOSFET.

10.1 | THE TWO-TERMINAL MOS STRUCTURE
The heart of the MOSFET is the MOS capacitor shown in Figure 10.1. The metal 

may be aluminum or some other type of metal, although in many cases, it is actu-

ally a high-conductivity polycrystalline silicon that has been deposited on the oxide; 

however, the term metal is usually still used. The parameter tox in the fi gure is the 

thickness of the oxide and �ox is the permittivity of the oxide.

10.1.1 Energy-Band Diagrams

The physics of the MOS structure can be more easily explained with the aid of the 

simple parallel-plate capacitor. Figure 10.2a shows a parallel-plate capacitor with the 

top plate at a negative voltage with respect to the bottom plate. An insulator material 

separates the two plates. With this bias, a negative charge exists on the top plate, a 

positive charge exists on the bottom plate, and an electric fi eld is induced between 

the two plates as shown. The capacitance per unit area for this geometry is

 C� �   � _ 
d
   (10.1)

where � is the permittivity of the insulator and d is the distance between the two 

plates. The magnitude of the charge per unit area on either plate is

 Q� � C�V (10.2)

Figure 10.1 | The basic MOS capacitor 

structure.

tox

Metal
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(oxide)

Semiconductor

substrate
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where the prime indicates charge or capacitance per unit area. The magnitude of the 

electric fi eld is

 E �   V _ 
d
   (10.3)

 Figure 10.2b shows a MOS capacitor with a p-type semiconductor substrate. The 

top metal gate is at a negative voltage with respect to the semiconductor substrate. 

From the example of the parallel-plate capacitor, we can see that a negative charge 

will exist on the top metal plate and an electric fi eld will be induced with the direc-

tion shown in the fi gure. If the electric fi eld were to penetrate into the  semiconductor, 

the majority carrier holes would experience a force toward the oxide– semiconductor 

interface. Figure 10.2c shows the equilibrium distribution of charge in the MOS 

capacitor with this particular applied voltage. An accumulation layer of holes at 

the oxide–semiconductor junction corresponds to the positive charge on the bottom 

“plate” of the MOS capacitor.

 Figure 10.3a shows the same MOS capacitor in which the polarity of the ap-

plied voltage is reversed. A positive charge now exists on the top metal plate and the 

induced electric fi eld is in the opposite direction as shown. If the electric fi eld pen-

etrates the semiconductor in this case, majority carrier holes will experience a force 

away from the oxide–semiconductor interface. As the holes are pushed away from 

(a)

V

�

�
E-fieldd �

� � � � � �

� � � � � �

(b)

V

�

�

� � � � � �

E-field

h�p type

(c)

V

�

� � � � � �

� � � � � �

�
E-field

p type

Accumulation

layer of holes

Figure 10.2 | (a) A parallel-plate capacitor showing the electric fi eld and conductor charges. (b) A corresponding 

MOS capacitor with a negative gate bias showing the electric fi eld and charge fl ow. (c) The MOS capacitor with an 

accumulation layer of holes.
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the interface, a negative space charge region is created because of the fi xed ionized 

acceptor atoms. The negative charge in the induced depletion region corresponds to 

the negative charge on the bottom “plate” of the MOS capacitor. Figure 10.3b shows 

the equilibrium distribution of charge in the MOS capacitor with this applied voltage.

 The energy-band diagrams of the MOS capacitor with a p-type substrate for 

various gate biases are shown in Figure 10.4. Figure 10.4a shows the ideal case when 

zero bias is applied across the MOS device. The energy bands in the semiconductor 

are fl at indicating no net charge exists in the semiconductor. This condition is known 

as fl at band and is discussed in more detail later in the chapter.

Figure 10.3 | The MOS capacitor with a moderate positive gate bias, showing (a) the electric fi eld and charge fl ow and 

(b) the induced space charge region.
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Figure 10.4 | The energy-band diagram of a MOS capacitor with a p-type substrate for (a) a zero applied gate bias 

showing the ideal case, (b) a negative gate bias, and (c) a moderate positive gate bias.

nea29583_ch10_371-442.indd   374nea29583_ch10_371-442.indd   374 12/11/10   12:40 PM12/11/10   12:40 PM



 10.1   The Two-Terminal MOS Structure 375

 Figure 10.4b shows the energy-band diagram for the case when a negative bias 

is applied to the gate. (Remember that positive electron energy is plotted “upward” 

and positive voltage is plotted “downward.”) The valence-band edge is closer to the 

Fermi level at the oxide–semiconductor interface than in the bulk material, which 

implies that there is an accumulation of holes. The semiconductor surface appears 

to be more p-type than the bulk material. The Fermi level is a constant in the semi-

conductor since the MOS system is in thermal equilibrium and there is no current 

through the oxide.

 Figure 10.4c shows the energy-band diagram of the MOS system when a posi-

tive voltage is applied to the gate. The conduction- and valence-band edges bend as 

shown in the fi gure, indicating a space charge region similar to that in a pn junction. 

The conduction band and intrinsic Fermi levels move closer to the Fermi level. The 

induced space charge width is xd.

 Now consider the case when a still larger positive voltage is applied to the top 

metal gate of the MOS capacitor. We expect the induced electric fi eld to increase in 

magnitude and the corresponding positive and negative charges on the MOS  capacitor 

to increase. A larger negative charge in the MOS capacitor implies a larger induced 

space charge region and more band bending. Figure 10.5 shows such a condition. The 

intrinsic Fermi level at the surface is now below the Fermi level. The conduction band 

at the surface is now close to the Fermi level, whereas the valence band is close to 

the Fermi level in the bulk semiconductor. This result  implies that the surface in the 

semiconductor adjacent to the oxide–semiconductor interface is n type. By applying a 

suffi ciently large positive gate voltage, we have inverted the surface of the semicon-

ductor from a p-type to an n-type semiconductor. We have created an  inversion layer 

of electrons at the oxide–semiconductor interface.

 In the MOS capacitor structure that we have just considered, we assumed a 

p-type semiconductor substrate. The same type of energy-band diagrams can be con-

structed for a MOS capacitor with an n-type semiconductor substrate. Figure 10.6a 

shows the MOS capacitor structure with a positive voltage applied to the top gate 

terminal. A positive charge exists on the top gate and an electric fi eld is induced with 

the direction shown in the fi gure. An accumulation layer of electrons will be induced 

in the n-type substrate. The case when a negative voltage is applied to the top gate 

Figure 10.5 | The energy-band diagram of the MOS capacitor 

with a p-type substrate for a “large” positive gate bias.
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is shown in Figure 10.6b. A positive space charge region is induced in the n-type 

semiconductor in this situation.

 The energy-band diagrams for this MOS capacitor with the n-type substrate are 

shown in Figure 10.7. Figure 10.7a shows the case when a positive voltage is ap-

plied to the gate and an accumulation layer of electrons is formed. Figure 10.7b 

shows the energy bands when a negative voltage is applied to the gate. The conduc-

tion and  valence bands now bend upward indicating that a space charge region has 

been induced in the n-type substrate. Figure 10.7c shows the energy bands when a 

larger negative voltage is applied to the gate. The conduction and valence bands are 

bent even more and the intrinsic Fermi level has moved above the Fermi level. The 

valence band at the surface is now close to the Fermi level, whereas the conduction 

band is close to the Fermi level in the bulk semiconductor. This result implies that the 

semiconductor surface adjacent to the oxide–semiconductor interface is p type. By 

applying a suffi ciently large negative voltage to the gate of the MOS capacitor, the 

semiconductor surface has been  inverted from n type to p type. An inversion layer of 

holes has been induced at the oxide–semiconductor interface.

10.1.2 Depletion Layer Thickness

We may calculate the width of the induced space charge region adjacent to the 

oxide– semiconductor interface. Figure 10.8 shows the space charge region in a p-

type semi conductor substrate. The potential �fp is the difference (in V) between EFi 

and EF and is given by

 �fp � Vt ln  �   Na  _ ni  
   �  (10.4)

where Na is the acceptor doping concentration and ni is the intrinsic carrier 

 concentration.

 The potential �s is called the surface potential; it is the difference (in V) between 

EFi measured in the bulk semiconductor and EFi measured at the surface. The surface 

Figure 10.6 | The MOS capacitor with an n-type substrate for (a) a positive gate bias and (b) a moderate negative 

gate bias.
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Figure 10.7 | The energy-band diagram of the MOS 

capacitor with an n-type substrate for (a) a positive gate 

bias, (b) a moderate negative bias, and (c) a “large” 

negative gate bias.

potential is the potential difference across the space charge layer. The space charge 

width can now be written in a form similar to that of a one-sided pn junction. We can 

write that

 xd �   �   2�s�s  _ 
eNa 

   �  1�2

  (10.5)

where �s is the permittivity of the semiconductor. Equation (10.5) assumes that the 

abrupt depletion approximation is valid.
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 Figure 10.9 shows the energy bands for the case in which �s � 2�fp. The Fermi 

level at the surface is as far above the intrinsic level as the Fermi level is below the 

intrinsic level in the bulk semiconductor. The electron concentration at the surface 

is the same as the hole concentration in the bulk material. This condition is known 

as the threshold inversion point. The applied gate voltage creating this condition 

is known as the threshold voltage. If the gate voltage increases above this thresh-

old value, the conduction band will bend slightly closer to the Fermi level, but the 

change in the conduction band at the surface is now only a slight function of gate 

voltage. The electron concentration at the surface, however, is an exponential func-

tion of the surface potential. The surface potential may increase by a few (kT�e) 

volts, which will change the electron concentration by orders of magnitude, but the 

space charge width changes only slightly. In this case, then, the space charge region 

has essentially reached a maximum width.

Figure 10.8 | The energy-band diagram in the p-type 

semiconductor, indicating surface potential.
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Figure 10.9 | The energy-band diagram in the p-type 

semiconductor at the threshold inversion point.
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 The maximum space charge width, xdT, at this inversion transition point can be 

calculated from Equation (10.5) by setting �s � 2�fp. Then

 xdT �   �   4�s�fp 
 _ 

eNa 
   �  1�2

  (10.6)

   EXAMPLE 10.1Objective: Calculate the maximum space charge width for a given semiconductor doping 

concentration.

 Consider silicon at T � 300 K doped to Na � 1016 cm�3. The intrinsic carrier concentra-

tion is ni � 1.5 � 1010 cm�3.

■ Solution
From Equation (10.4), we have

 �fp � Vt ln  �   Na   _ ni    �  � (0.0259) ln  �   1016   __ 
1.5 � 1010 

   �  � 0.3473 V

Then the maximum space charge width is

 xdT �   �   4�s �fp  
 __ 

eNa 
   �  1�2

  �   �   4(11.7)(8.85 � 10�14)(0.3473) 
   _____  

(1.6 � 10�19)(1016)
   �  1�2

 

or

 xdT � 0.30 � 10�4 cm � 0.30 �m 

■ Comment
The maximum induced space charge width is on the same order of magnitude as pn junction 

space charge widths.

■ EXERCISE PROBLEM
Ex 10.1  Consider an oxide-to-p-type silicon junction at T � 300 K. The impurity doping 

concentration in the silicon is Na � 2 � 1015 cm�3. Calculate the maximum space 

charge width. Does the space charge width increase or decrease as the p-type dop-

ing concentration decreases? 

(Ans. xdT � 0.629
 
�m, increase)

 We have been considering a p-type semiconductor substrate. The same maximum 

induced space charge region width occurs in an n-type substrate. Figure 10.10 is the 

energy-band diagram at the threshold voltage with an n-type substrate. We can write

 
�fn � Vt ln  �   Nd  _ ni 

   �  (10.7)

and

 xdT �   �   4�s �fn 
 __ 

eNd 
   �  1�2

  (10.8)

Note that we are always assuming the parameters �fp and �fn to be positive quantities.

 Figure 10.11 is a plot of xdT at T � 300 K as a function of doping concentration 

in silicon. The semiconductor doping can be either n type or p type.
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Figure 10.10 | The energy-band diagram in the n-type 

semiconductor at the threshold inversion point.

Figure 10.11 | Maximum induced space charge region width 

versus semiconductor doping.
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10.1.3 Surface Charge Density

From the results of Chapter 4, the electron concentration in the conduction band can 

be written in the form

 n � ni exp  �   EF � EFi  __ 
kT 

   �  (10.9)

For a p-type semiconductor substrate, the electron inversion charge density can then 

be written as (see Figure 10.9)

 ns � ni exp  �   e(�fp � ��s)
 ___ 

kT
   �  � ni exp  �   �fp � ��s 

 __ 
Vt 

   �  (10.10a)
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or

 ns � ni exp  �   �fp 
 _ 

Vt 
   �  · exp  �   ��s 

 _ 
Vt 

   �  (10.10b)

where ��s, is the surface potential greater than 2�fp.

 We may note that

 nst � ni exp  �   �fp 
 _ 

Vt 
   �   (10.11)

where nst is the surface charge density at the threshold inversion point. The electron 

inversion charge density can then be written as

 ns � nst exp  �   ��s 
 _ 

Vt 
   �   (10.12)

Figure 10.12 shows the electron inversion charge density as a function of surface 

potential for the case when the threshold inversion charge density is nst � 1016 cm�3. 

We may note that the inversion charge density increases by a factor of 10 with a 

60-mV increase in surface potential. As discussed previously, the electron inver-

sion charge density increases rapidly with small increases in surface potential, which 

means that the space charge width essentially reaches a maximum value.

Figure 10.12 | Electron inversion charge 

density as a function of surface potential.
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10.1.4  Work Function Differences

We have been concerned, so far, with the energy-band diagrams of the semiconduc-

tor material. Figure 10.13a shows the energy levels in the metal, silicon dioxide 

(SiO2), and silicon relative to the vacuum level. The metal work function is �m and 

the electron affi nity is �. The parameter �i is the oxide electron affi nity and, for SiO2, 

�i � 0.9 V.

 Figure 10.13b shows the energy-band diagram of the entire MOS structure with 

zero gate voltage applied. The Fermi level is a constant through the entire system 

at thermal equilibrium. We may defi ne  � m  �   as a modifi ed metal work function—the 

potential required to inject an electron from the metal into the conduction band of 

the oxide. Similarly, �� is defi ned as a modifi ed electron affi nity. The voltage Vox0 is 

the potential drop across the oxide for zero  applied gate voltage and is not necessar-

ily zero because of the difference between �m and �. The potential �s0 is the surface 

potential for this case.

 If we sum the energies from the Fermi level on the metal side to the Fermi level 

on the semiconductor side, we have

 e � m  �   � eVox0 � e�� �   
Eg 

 _ 
2
   � e�s0 � e�Jfp (10.13)

Equation (10.13) can be rewritten as

 Vox0 � �s0 � � �  � m  �   �  � �� �   
Eg 

 _ 
2e 

   � �fp  �  �  (10.14)

Figure 10.13 | (a) Energy levels in a MOS system prior to contact and (b) energy-band diagram through the 

MOS structure in thermal equilibrium after contact.
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We can defi ne a potential �ms as

 �ms 	  �  � m  �   �  � �� �   
Eg 

 _ 
2e

   � �fp  �  �  (10.15)

which is known as the metal–semiconductor work function difference.

   EXAMPLE 10.2Objective: Determine the metal–semiconductor work function difference, �ms, for a given 

MOS system and semiconductor doping.

 For an aluminum–silicon dioxide junction,  � m  �   � 3.20 V and, for a silicon–silicon dioxide 

junction, �� � 3.25 V. We may assume that Eg � 1.12 V. Let the p-type doping be Na � 1015 cm�3.

■ Solution
For silicon at T � 300 K, we may calculate �fp as

 �fp � Vt ln  �   Na  _ nj 
   �  � (0.0259)ln  �   1015

 __ 
1.5 � 1010 

   �  � 0.288 V

Then the metal–semiconductor work function difference is

 �ms �  � m  �   �  � �� �   
Eg 

 _ 
2e

   � �fp  �  � 3.20 � (3.25 � 0.560 � 0.288)

or

 �ms � �0.898 V

■ Comment
The value of �ms will become more negative as the doping of the p-type substrate increases.

■ EXERCISE PROBLEM
Ex 10.2  Repeat Example 10.2 for a semiconductor doping of Na � 1016 cm�3. 

(Ans. �ms � �0.957 V)

 Degenerately doped polysilicon deposited on the oxide is also often used as the 

metal gate. Figure 10.14a shows the energy-band diagram of a MOS capacitor with 

an n� polysilicon gate and a p-type substrate. Figure 10.14b shows the energy-band 

Figure 10.14 | Energy-band diagram through the MOS structure with a p-type substrate at zero gate bias for (a) an n� 

polysilicon gate and (b) a p� polysilicon gate.
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384 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

diagram for the case of a p� polysilicon gate and the p-type silicon substrate. In the 

degenerately doped polysilicon, we will initially assume that EF � Ec for the n� case 

and EF � Ev for the p� case.

 For the n� polysilicon gate, the metal–semiconductor work function difference 

can be written as

 �ms �  � �� �  � �� �   
Eg 

 _ 
2e

   � �fp  �  �  � �  �   Eg 
 _ 

2e 
   � �fp  �  (10.16)

and for the p� polysilicon gate, we have

 �ms �  �  � �� �   
Eg 

 _ e   �  �  � �� �   
Eg 

 _ 
2e

   � �fp  �  �  �  �   Eg 
 _ 

2e
   � �fp  �  (10.17)

However, for degenerately doped n� polysilicon and p� polysilicon, the Fermi level 

can be above Ec and below Ev, respectively, by 0.1 to 0.2 V. The experimental �ms 

values will then be slightly different from the values calculated by using Equa-

tions (10.16) and (10.17).

 We have been considering a p-type semiconductor substrate. We may also have 

an n-type semiconductor substrate in a MOS capacitor. Figure 10.15 shows the 

 energy-band diagram of the MOS capacitor with a metal gate and the n-type semi-

conductor substrate, for the case when a negative voltage is applied to the gate. The 

metal–semiconductor work function difference for this case is defi ned as

 �ms �  � m  �   �  � �� �   
Eg 

 _ 
2e

   � �fn  �  (10.18)

Figure 10.15 | Energy-band diagram through the MOS struc-

ture with an n-type substrate for a negative applied gate bias.
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 10.1   The Two-Terminal MOS Structure 385

where �fn is assumed to be a positive value. We will have similar expressions for n� 

and p� polysilicon gates.

 Figure 10.16 shows the work function differences as a function of semiconduc-

tor doping for the various types of gates. We may note that the magnitudes of �ms for 

the polysilicon gates are somewhat larger than Equations (10.16) and (10.17) predict. 

This difference again is because the Fermi level is not equal to the conduction-band 

energy for the n� gate and is not equal to the valence-band energy for the p� gate. 

The metal–semiconductor work function difference becomes important in the fl at-

band and threshold voltage parameters discussed next.

10.1.5  Flat-Band Voltage

The fl at-band voltage is defi ned as the applied gate voltage such that there is no band 

bending in the semiconductor and, as a result, zero net space charge in this region. 

Figure 10.17 shows this fl at-band condition. Because of the work function difference 

and possible trapped charge in the oxide, the voltage across the oxide for this case is 

not necessarily zero.

 We have implicitly been assuming that there is zero net charge density in the 

oxide material. This assumption may not be valid—a net fi xed charge density, 

Figure 10.16 | Metal–semiconductor 

work function difference versus doping for 

aluminum, gold, and n� and p� polysilicon 

gates.

(From Sze [17] and Werner [20].)
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386 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

usually positive, may exist in the insulator. The positive charge has been identi-

fi ed with broken or dangling covalent bonds near the oxide–semiconductor interface. 

During the thermal formation of SiO2, oxygen diffuses through the oxide and reacts 

near the Si–SiO2  interface to form the SiO2. Silicon atoms may also break away from 

the  silicon material just prior to reacting to form SiO2. When the oxidation process is 

 terminated,  excess silicon may exist in the oxide near the interface, resulting in the 

 dangling bonds. The magnitude of this oxide charge seems, in general, to be a strong 

function of the oxidizing conditions such as oxidizing ambient and temperature. The 

charge density can be altered to some degree by annealing the oxide in an argon or 

nitrogen atmosphere. However, the charge is rarely zero.

 The net fi xed charge in the oxide appears to be located fairly close to the oxide– 

semiconductor interface. We will assume in the analysis of the MOS structure that an 

equivalent trapped charge per unit area,  Q  ss  �  , is located in the oxide directly adjacent 

to the oxide–semiconductor interface. For the moment, we will ignore any other 

oxide-type charges that may exist in the device. The parameter  Q  ss  �   is usually given 

in terms of number of electronic charges per unit area.

 Equation (10.14), for zero applied gate voltage, can be written as

 Vox0 � �s0 � ��ms (10.19)

If a gate voltage is applied, the potential drop across the oxide and the surface poten-

tial will change. We can then write

 VG � �Vox � ��s � (Vox � Vox0) � (�s � �s0) (10.20)

Using Equation (10.19), we have

 VG � Vox � �s � �ms (10.21)

 Figure 10.18 shows the charge distribution in the MOS structure for the fl at-

band condition. There is zero net charge in the semiconductor, and we can assume 

that an equivalent fi xed surface charge density exists in the oxide. The charge density 

on the metal is  Q m  �  , and from charge neutrality we have

  Q m  �   �  Q ss  �   � 0 (10.22)

 We can relate  Q m  �   to the voltage across the oxide by

 Vox �   
 Q m  �   

 _ 
Cox 

   (10.23)

Figure 10.17 | Energy-band diagram of a 

MOS capacitor at fl at band.

Ec

EFi
EF
Ev

EF

VFB

M O S

nea29583_ch10_371-442.indd   386nea29583_ch10_371-442.indd   386 12/11/10   12:40 PM12/11/10   12:40 PM



 10.1   The Two-Terminal MOS Structure 387

where Cox is the oxide capacitance per unit area.1 Substituting Equation (10.22) into 

Equation (10.23), we have

 Vox �   
� Q ss  �   

 _ 
Cox 

   (10.24)

In the fl at-band condition, the surface potential is zero, or �s � 0. Then from Equa-

tion (10.21), we have

 VG � VFB � �ms �   
 Q ss  �   

 _ 
Cox 

    (10.25)

Equation (10.25) is the fl at-band voltage for this MOS device.

Q�m

Metal Oxide

p-type

semiconductor

Q�ss

Figure 10.18 | Charge distribution in 

a MOS capacitor at fl at band.

   EXAMPLE 10.3Objective: Calculate the fl at-band voltage for a MOS capacitor with a p-type semiconductor 

substrate.

 Consider a MOS capacitor with a p-type silicon substrate doped to Na � 1016 cm�3, a 

silicon dioxide insulator with a thickness of tox � 20 nm � 200 Å, and an n� polysilicon gate. 

Assume that  Q  ss  �   � 5 � 1010 electronic charges per cm2.

■ Solution
The work function difference, from Figure 10.16, is �ms 
 �1.1V. The oxide capacitance is 

found to be

 Cox �   
�ox  _ tox 

   �   
(3.9)(8.85 � 10�14)

  ____  
200 � 10�8 

   � 1.726 � 10�7 F/cm2 

The equivalent oxide charge density is

  Q  ss  �   � (5 � 1010)(1.6 � 10�19) � 8 � 10�9 C/cm2 

The fl at-band voltage is then determined to be

 VFB � �ms �   
 Q  ss  �  

 _ 
Cox 

   � �1.1   �8 � 10�9

 ___  
1.726 � 10�7

   � �1.15 V

1Although we will, in general, use the primed notation for capacitance per unit area or charge per unit 

area, we will omit, for convenience, the prime on the oxide capacitance per unit area parameter.
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388 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

10.1.6  Threshold Voltage

The threshold voltage is defi ned as the applied gate voltage required to achieve the 

threshold inversion point. The threshold inversion point, in turn, is defi ned as the 

con dition when the surface potential is �s � 2�fp for the p-type semiconductor and 

�s � 2�fn for the n-type semiconductor. These conditions are shown in Figures 10.9 

and 10.10. The threshold voltage will be derived in terms of the electrical and geo-

metrical properties of the MOS capacitor.

 Figure 10.19 shows the charge distribution through the MOS device at the 

threshold inversion point for a p-type semiconductor substrate. The space charge 

width has reached its maximum value. We will assume that there is an equiva lent 

oxide charge  Q ss  �   and the positive charge on the metal gate at threshold is  Q  mT  �  . The 

prime on the charge terms indicates charge per unit area. Even though we are assum-

ing that the  surface has been inverted, we will neglect the inversion layer charge at 

this threshold inversion point. From conservation of charge, we can write

  Q  mT  �   �  Q ss  �   �  �  Q  SD  �  (max) �   (10.26)

where

  �  Q  SD  �  (max) �  � eNa xdT   (10.27)

Figure 10.19 | Charge distribution in a 

MOS capacitor with a p-type substrate at 

the threshold inversion point.

Q�mT
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Q�ss

xdT

	Q�SD(max)	 � eNaxdT

■ Comment
The applied gate voltage required to achieve the fl at-band condition for this p-type substrate 

is negative. If the amount of fi xed oxide charge increases, the fl at-band voltage becomes even 

more negative.

■ EXERCISE PROBLEM
Ex 10.3  Repeat Example 10.3 for a doping concentration of Na � 2 � 1015 cm�3, an oxide 

thickness of tox � 4 nm � 40 Å, and  Q  ss  �   � 2 � 1010 electronic charges per cm2. 

What is the value of the metal–semiconductor work function difference? 

(Ans. �ms 
 �1.03 V, VFB � �1.034 V)
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 10.1   The Two-Terminal MOS Structure 389

and is the magnitude of the maximum space charge density per unit area of the deple-

tion region.

 The energy-band diagram of the MOS system with an applied positive gate volt-

age is shown in Figure 10.20. As we mentioned, an applied gate voltage will change 

the voltage across the oxide and will change the surface potential. We had from 

 Equ ation (10.20) that

 VG � �Vox � ��s � Vox � �s � �ms

 At threshold, we can defi ne VG � VTN, where VTN is the threshold voltage that 

creates the electron inversion layer charge. The surface potential is �s � 2�fp at 

threshold, so Equation (10.20) can be written as

 VTN � VoxT � 2�fp � �ms (10.28)

where VoxT is the voltage across the oxide at this threshold inversion point.

 The voltage VoxT can be related to the charge on the metal and to the oxide 

 capa citance by

 VoxT �   
 Q  mT  �   

 _ 
Cox 

   (10.29)

where again Cox is the oxide capacitance per unit area. Using Equation (10.26), we 

can write

 VoxT �   
 Q  mT  �   

 _ 
Cox 

   �   1  _ 
Cox 

    �  �  Q  SD  �   (max) �  � Q ss  �   �   (10.30)

Finally, the threshold voltage can be written as

 VTN �   
 �  Q  SD  �   (max) �  

 __ 
Cox 

   �   
 Q ss  �   

 _ 
Cox 

   � �ms � 2�fp   (10.31a)

or

 VTN �  �  �  Q  SD  �  (max) �  �  Q ss  �   �   �   tox  _ �ox 
   �  � �ms � 2�fp (10.31b)

Figure 10.20 | Energy-band diagram through the MOS 

structure with a positive applied gate bias.
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390 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Using the defi nition of fl at-band voltage from Equation (10.25), we can also express 

the threshold voltage as

 VTN �   
� Q  SD  �  ( max)� 

 __ 
Cox

   � VFB � 2�fp (10.31c)

For a given semiconductor material, oxide material, and gate metal, the threshold 

volt age is a function of semiconductor doping, oxide charge  Q ss  �  , and oxide thickness.

EXAMPLE 10.4 Objective: Calculate the threshold voltage of a MOS system using an aluminum gate.

 Consider a p-type silicon substrate at T � 300 K doped to Na � 1015 cm�3. Let  Q  ss  �   � 

1010 cm�2, tox � 12 nm � 120 Å, and assume the oxide is silicon dioxide. 

■ Solution
From Figure 10.16, we fi nd �ms 
 �0.88 V. The other parameters are

 �fp � Vt ln  �   Na  _ ni 
   �  � (0.0259) ln  �   1015

 __ 
1.5 � 1010

   �  � 0.2877 V

and

 xdT �      4�s �fp  
 __ 

eNa 
   �  1�2

  �      4(11.7)(8.85 � 10�14)(0.2877)
   _____  

(1.6 � 10�19)(1015)
   �  1�2

  � 8.63 � 10�5 cm

Then

  �  Q  SD  �   (max) �  � eNa xdT  � (1.6 � 10�19)(1015)(8.63 � 10�5) � 1.381 � 10�8 C/cm2 

The threshold voltage is now found to be

 VTN �  �  �  Q  SD  �   (max) �  �  Q  ss  �   �   �   tox  _ �ox 
   �  � �ms � 2�fp 

  �  � (1.381 � 10�8) � (1010)(1.6 � 10�19) �  �  �   120 � 10�8   ____  
(3.9)(8.85 � 10�14)

   � 
 �  � �0.88 �  � 2 � 0.2877 � 

or

 VTN � �0.262 V

■ Comment
In this example, the semiconductor is fairly lightly doped, which, in conjunction with the posi-

tive charge in the oxide and the work function difference, is suffi cient to induce an electron 

inversion layer charge even with zero applied gate voltage. This condition makes the threshold 

voltage negative.

■ EXERCISE PROBLEM
Ex 10.4  Determine the metal–semiconductor work function difference and the threshold 

v oltage for a silicon MOS device at T � 300 K for the following parameters: 

p� polysilicon gate, Na � 2 � 1016 cm�3, tox � 8 nm � 80 Å, and  Q  ss  �   � 2 � 1010 cm�2. 

(Ans. �ms 
 �0.28 V, VTN � �1.16 V)

 A negative threshold voltage for a p-type substrate implies a depletion mode 

device. A negative voltage must be applied to the gate in order to make the inversion 
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layer charge equal to zero, whereas a positive gate voltage will induce a larger inver-

sion layer charge.

 Figure 10.21 is a plot of the threshold voltage VTN as a function of the acceptor 

doping concentration for various positive oxide charge values. We may note that the 

p-type semiconductor must be somewhat heavily doped in order to obtain an en-

hancement mode device.

 The previous derivation of the threshold voltage assumed a p-type semiconduc-

tor substrate. The same type of derivation can be done with an n-type semiconductor 

substrate, where a negative gate voltage can induce an inversion layer of holes at the 

oxide–semiconductor interface.

 Figure 10.15 shows the energy-band diagram of the MOS structure with an n-

type substrate and with an applied negative gate voltage. The threshold voltage for 

this case can be derived and is given by

 VTP �  � � �  Q  SD  �   (max) �  �  Q  ss  �   �   �   tox  _ �ox 
   �  � �ms � 2�fn  (10.32)

where

 �ms �  � m  �   �  � �� �   
Eg 

 _ 
2e

   � �fn  �  (10.33a)

  �  Q  SD  �   (max) �  � eNd xdT (10.33b)

 xdT �      4�s�fn 
 _ 

eNd 
   �  1�2

  (10.33c)

Figure 10.21 | Threshold voltage of an n-channel MOSFET 

versus the p-type substrate doping concentration for various 

values of oxide trapped charge (tox � 500 Å, aluminum gate).
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392 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

and

 �fn � Vt ln  �   Nd  _ ni 
   �  (10.33d)

We may note that xdT and �fn are defi ned as positive quantities. We may also note 

that the notation of VTP is the threshold voltage that will induce an inversion layer of 

holes. We will later drop the N and P subscript notation on the threshold voltage, but, 

for the moment, the notation may be useful for clarity.

 Figure 10.22 is a plot of VTP versus doping concentration for several values of  

Q ss  �  . We may note that, for all values of positive oxide charge, this MOS capacitor is 

always an enhancement mode device. As the  Q ss  �   charge increases, the threshold volt-

age becomes more negative, which means that it takes a larger applied gate voltage 

to create the inversion layer of holes at the oxide–semiconductor interface.

DESIGN
EXAMPLE 10.5 

Objective: Determine the gate material and design the semiconductor doping concentration 

to yield a specifi ed threshold voltage.

 Consider a MOS device with silicon dioxide and an n-type silicon substrate. The oxide 

thickness is tox � 12 nm � 120 Å and the oxide charge is  Q  ss  �   � 2 � 1010 cm�2 . The threshold 

voltage is to be approximately VTP � �0.3 V.

■ Solution
The solution to this design problem is not straight forward, since the doping concentration 

parameter appears in the terms �fn, xdT,  Q  sD  �   (max), and �ms. The threshold voltage, then, is a 

nonlinear function of Nd. We resort to trial and error to obtain a solution.

 Figure 10.22 shows the threshold voltage for an aluminum gate system. Since the re-

quired threshold voltage in this problem is less negative than the values shown in Figure 10.22, 

0
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P
 (

V
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Q�ss � 0

Q�ss � 1011 cm�2

10141013 1016

Nd (cm�3)

1015 10181017
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�4
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Figure 10.22 | Threshold voltage of a p-channel MOSFET 

versus the n-type substrate doping concentration for 

various values of oxide trapped charge (tox � 500 Å, 

aluminum gate).
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 10.1   The Two-Terminal MOS Structure 393

we require a metal–semiconductor work function difference value that is more positive than 

for the aluminum gate. We therefore choose a p� polysilicon gate.

 Consider a doping concentration of Nd � 1017 cm�3. From Figure 10.16, the metal–

semiconductor work function difference is �ms 
 �1.1 V. The remaining parameters are 

found to be

�fn � Vt ln  �   Nd  _ ni 
   �  � (0.0259) ln  �   1017  __ 

1.5 � 1010 
   �  � 0.407 V

xdT �   �   4�s �fn 
 __ 

eNd 
   �  1�2

  �      4(11.7)(8.85 � 10�14)(0.407)
   _____  

(1.6 � 10�19)(1017)
   �  1�2

 

 � 1.026 � 10�5 cm

� Q SD  �   (max)� � eNd xdT � (1.6 � 10�19)(1017)(1.026 � 10�5)

� 1.642 � 10�7 C/cm2

The threshold voltage is determined to be

 VTP � [�� Q SD  �   (max)� �  Q ss  �   ] �  �   tox  _ �ox 
   �  � �ms � 2�fn

or

 VTP �   
[�(1.642 � 10�7) � (2 � 1010)(1.6 � 10�19)] � (120 � 10�8)

     __________    
(3.9)(8.85 � 10�14)

  

 �1.1 � 2(0.407)

which yields

 VTP � �0.296 V 
 �0.3 V

■ Comment
The negative threshold voltage, with the n-type substrate, implies that this MOS capacitor is 

an enhancement mode device. The inversion layer charge is zero with zero applied gate volt-

age, and a negative gate voltage must be applied to induce the hole inversion charge.

■ EXERCISE PROBLEM
Ex 10.5   Consider a MOS capacitor with silicon dioxide and an n-type silicon substrate 

at T � 300 K with the following parameters: p� polysilicon gate, Nd � 2 � 

1016 cm�3, tox � 20 nm � 200 Å, and  Q ss  �   � 5 � 1010 cm�2. Determine the thresh-

old voltage. Is the capacitor an enhancement mode or depletion mode device?

(Ans. VTP � �0.12 V, enhancement mode)

TYU 10.1 (a) Consider an oxide-to-n-type silicon junction at T � 300 K. The impurity 

doping concentration in the silicon is Nd � 8 � 1015 cm�3. Calculate the maxi-

mum space charge width in the silicon. (b) Repeat part (a) for a doping concen-

tration of Nd � 4 � 1016 cm�3.

[Ans. (a) 0.332 �m; (b) 0.158 �m]

TEST YOUR UNDERSTANDING
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394 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

10.2 |  CAPACITANCE–VOLTAGE 
CHARACTERISTICS

As mentioned previously, the MOS capacitor structure is the heart of the MOSFET. 

A great deal of information about the MOS device and the oxide–semiconductor 

interface can be obtained from the capacitance versus voltage or C–V characteristics 

of the device. The capacitance of a device is defi ned as

 C �   
dQ 

 _ 
dV

   (10.34)

where dQ is the magnitude of the differential change in charge on one plate as a func-

tion of the differential change in voltage dV across the capacitor. The capacitance is 

a small-signal or ac parameter and is measured by superimposing a small ac voltage 

on an applied dc gate voltage. The capacitance, then, is measured as a function of the 

applied dc gate voltage.

10.2.1  Ideal C–V Characteristics

First we will consider the ideal C–V characteristics of the MOS capacitor and then 

discuss some of the deviations that occur from these idealized results. We will ini-

tially assume that there is zero charge trapped in the oxide and also that there is no 

charge trapped at the oxide–semiconductor interface.

 There are three operating conditions of interest in the MOS capacitor: accu-

mulation, depletion, and inversion. Figure 10.23a shows the energy-band diagram 

of a MOS capacitor with a p-type substrate for the case when a negative voltage is 

applied to the gate, inducing an accumulation layer of holes in the semiconductor at 

the oxide–semiconductor interface. A small differential change in voltage across the 

MOS structure will cause a differential change in charge on the metal gate and also 

in the hole accumulation charge, as shown in Figure 10.23b. The differential changes 

in charge density occur at the edges of the oxide, as in a parallel-plate capacitor. The 

TYU 10.2 Consider an n� polysilicon gate in a MOS structure with a p-type silicon sub-

strate. The doping concentration of the silicon is Na � 3 � 1016 cm�3. Using 

Equation (10.16), fi nd the value of �ms.

(Ans. �ms � �0.936 V)

TYU 10.3 Repeat TYU 10.2 for a p� polysilicon gate using Equation (10.17).

(Ans. �ms � �0.184 V)

TYU 10.4 Consider the MOS capacitor described in Exercise TYU 10.3. The oxide thick-

ness is tox � 16 nm � 160 Å and the oxide charge density is  Q ss  �   � 8 � 1010 cm�2. 

Determine the fl at-band voltage. 

(Ans. �0.125 V)

TYU 10.5 Consider an n� polysilicon gate on silicon dioxide with a p-type silicon sub-

strate doped to Na � 3 � 1016 cm�3. Assume  Q ss  �   � 5 � 1010 cm�2. Determine 

the required oxide thickness such that the threshold voltage is VTN � �0.65 V.

(Ans. tox � 45.2 nm � 452 Å)

nea29583_ch10_371-442.indd   394nea29583_ch10_371-442.indd   394 12/11/10   12:40 PM12/11/10   12:40 PM



 10.2   Capacitance–Voltage Characteristics 395

 capacitance C� per unit area of the MOS capacitor for this accumulation mode is just 

the oxide capacitance, or

 C�(acc) � Cox �   
�ox  _ tox

   (10.35)

 Figure 10.24a shows the energy-band diagram of the MOS device when a small 

positive voltage is applied to the gate, inducing a space charge region in the semi-

conductor; Figure 10.24b shows the charge distribution through the device for this 

condition. The oxide capacitance and the capacitance of the depletion region are in 

series. A small differential change in voltage across the capacitor will cause a dif-

ferential change in the space charge width. The corresponding differential changes 

Figure 10.24 | (a) Energy-band diagram through a MOS capacitor for the depletion mode. (b) Differential 

charge distribution at depletion for a differential change in gate voltage.

Figure 10.23 | (a) Energy-band diagram through a MOS capacitor for the accumulation mode. (b) Differential 

charge distribution at accumulation for a differential change in gate voltage.
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396 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

in charge densities are shown in the fi gure. The total capacitance of the series com-

bination is

   1  __ 
C�(depl)

   �   1  _ 
Cox 

   �   1  _ 
 C SD  �  

   (10.36a)

or

 C�(depl) �   
Cox

 C SD  �   
 __ 

Cox �  C SD  �  
   (10.36b)

Since Cox � �ox�tox and  C SD  �   � �s�xd, Equation (10.36b) can be written as

 C�(depl) �   
Cox  __ 

1 �   
Cox  _ 
 C SD  �   

  
   �   

�ox  ___  
tox �  �   �ox  _ �s 

   �  xd 
   (10.37)

As the space charge width increases, the total capacitance C�(depl) decreases.

 We had defi ned the threshold inversion point to be the condition when the maxi-

mum depletion width is reached, but there is essentially zero inversion charge den-

sity. This condition will yield a minimum capacitance  C  min  �  , which is given by

  C  min  �   �   
�ox  ___  

tox �  �   �ox  _ �s 
   �  xdT 

   (10.38)

 Figure 10.25a shows the energy-band diagram of this MOS device for the inver-

sion condition. In the ideal case, a small incremental change in the voltage across the 

MOS capacitor will cause a differential change in the inversion layer charge density. 

The space charge width does not change. If the inversion charge can respond to the 

change in capacitor voltage as indicated in Figure 10.25b, then the capacitance is 

again just the oxide capacitance, or

 C�(inv) � Cox �   
�ox  _ tox

    (10.39)

Figure 10.25 | (a) Energy-band diagram through a MOS capacitor for the inversion mode. (b) Differential charge 

distribution at inversion for a low-frequency differential change in gate voltage.
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 10.2   Capacitance–Voltage Characteristics 397

 Figure 10.26 shows the ideal capacitance versus gate voltage, or C–V, character-

istics of the MOS capacitor with a p-type substrate. The three dashed segments cor-

respond to the three components Cox,  C SD  �  , and  C  min  �  . The solid curve is the ideal net 

capacitance of the MOS capacitor. Moderate inversion, which is indicated in the fi gure, 

is the transition region between the point when only the space charge density changes 

with gate voltage and when only the inversion charge density changes with gate voltage.

 The point on the curve that corresponds to the fl at-band condition is of interest. 

The fl at-band condition occurs between the accumulation and depletion conditions. 

The capacitance at fl at band is given by

  C FB  �   �   
�ox   _____  

tox �  �   �ox  _ �s 
   �   �

__________

  �   kT  _ e    �   �   �s  _ 
eNa 

   �   
   (10.40)

We may note that the fl at-band capacitance is a function of oxide thickness as well as 

semiconductor doping. The general location of this point on the C–V plot is shown 

in Figure 10.26.

Figure 10.26 | Ideal low-frequency capacitance versus 

gate voltage of a MOS capacitor with a p-type substrate. 

Individual capacitance components are also shown.
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   EXAMPLE 10.6Objective: Calculate Cox,  C  min  �  , and  C  FB  �   for a MOS capacitor.

 Consider a p-type silicon substrate at T � 300 K doped to Na � 1016 cm�3. 

 The oxide is silicon dioxide with a thickness of tox � 18 nm � 180 Å, and the gate is 

aluminum.

■ Solution
The oxide capacitance is

 Cox �   
�ox   _ tox 

   �   (3.9)(8.85 � 10�14)  ____  
180 � 10�8

   � 1.9175 � 10�7 F/cm2 

To fi nd the minimum capacitance, we need to calculate

 �fp � Vt ln  �   Na  _ ni 
   �  � (0.0259) ln  �   1016

 __ 
1.5 � 1010 

   �  � 0.3473 V
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398 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

 If we assume the oxide capacitance per unit area is Cox � 1.9175 � 10�7 F/cm2 

and the channel length and width are L � 2 �m and W � 20 �m, respectively, then 

the total gate oxide capacitance is

 CoxT � Cox LW � (1.9175 � 10�7)(2 � 10�4)(20 � 10�4)

 � 7.67 � 10�14 F � 0.0767 pF � 76.7 fF

The total oxide capacitance in a typical MOS device is quite small.

and

 xdT �      4�s �fp 
 __ 

eNa 
   �  1�2

  �      4(11.7)(8.85 � 10�14)(0.3473)
   _____  

(1.6 � 10�19)(1016)
   �   1�2

  

 
 0.30 � 10�4 cm

Then

  C  min  �   �   
�ox  ___  

tox  �  �   �ox  _ �s 
   �  xdT 

   �   
(3.9)(8.85 � 10�14)

   ______   

180 � 10�8 �  �   3.9 _ 
11.7

   � (0.30 � 10�4)
  

 � 2.925 � 10�8 F /cm2 

We may note that

   
 C  min  �   

 _ 
Cox 

   �   2.925 � 10�8

  ___  
1.9175 � 10�7

   � 0.1525

The fl at-band capacitance is

  C  FB  �   �   
�ox  ___  

tox �  �   �ox  _ �s 
   �   �

____

   
Vt �s  _ 
eNa

    
  

 �   
(3.9)(8.85 � 10�14)

   _________     

180 � 10�8 �  �   3.9 _ 
11.7 

   �  �
________________________

     
(0.0259)(11.7)(8.85 � 10�14)

   _____  
(1.6 � 10�19)(1016)

    

  

 � 1.091 � 10�7 F /cm2 

We also note that

   
 C  FB  �   

 _ 
Cox 

   �   1.091 � 10�7   ___  
1.9175 � 10�7

   � 0.569

■ Comment
The ratios of  C  min  �  �Cox and  C  FB  �  �Cox are typical values obtained in C–V plots.

■ EXERCISE PROBLEM
Ex 10.6  Consider a MOS capacitor with the following parameters: n� polysilicon gate, 

Na � 3 � 1016 cm�3, tox � 8 nm � 80 Å, and  Q  ss  �   � 2 � 1010 cm�2. Determine the 

ratios  C  min  �  �Cox and  C  FB  �  �Cox. 

(Ans.  C  min  �  �Cox � 0.118,  C  FB  �  �Cox � 0.504)
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 10.2   Capacitance–Voltage Characteristics 399

 The same type of ideal C–V characteristics is obtained for a MOS capacitor with 

an n-type substrate by changing the sign of the voltage axis. The accumulation condi-

tion is obtained for a positive gate bias and the inversion condition is obtained for a 

negative gate bias. This ideal curve is shown in Figure 10.27. 

10.2.2  Frequency Effects

Figure 10.25a shows the MOS capacitor with a p-type substrate and biased in the in-

version condition. We have argued that a differential change in the capacitor voltage 

in the ideal case causes a differential change in the inversion layer charge density. 

However, we must consider the source of electrons that produces a change in the 

inversion charge density.

 There are two sources of electrons that can change the charge density of the 

 inversion layer. The fi rst source is by diffusion of minority carrier electrons from the 

p-type substrate across the space charge region. This diffusion process is the same as 

that in a  reverse-biased pn junction that generates the ideal reverse saturation  current. 

The second source of electrons is by thermal generation of electron–hole pairs within the 

space charge region. This process is again the same as that in a  reverse- biased pn junction 

generating the reverse-biased generation current. Both of these processes generate elec-

trons at a particular rate. The electron concentration in the inversion layer, then, cannot 

change instantaneously. If the ac voltage across the MOS capacitor changes rapidly, the 

change in the inversion layer charge will not be able to respond. The C–V characteristics 

will then be a function of the frequency of the ac  signal used to measure the capacitance.

 In the limit of a very high frequency, the inversion layer charge will not respond to 

a differential change in capacitor voltage. Figure 10.28 shows the charge distribution in 

the MOS capacitor with a p-type substrate. At a high-signal frequency, the differential 

change in charge occurs at the metal and in the space charge width in the semiconduc-

tor. The capacitance of the MOS capacitor is then  C  min  �  , which we discussed earlier.

 The high-frequency and low-frequency limits of the C–V characteristics are 

shown in Figure 10.29. In general, high frequency corresponds to a value on the 

order of 1 MHz and low frequency corresponds to values in the range of 5 to 100 Hz. 

Typically, the high-frequency characteristics of the MOS capacitor are measured.

Figure 10.27 | Ideal low-frequency capacitance versus gate 

voltage of a MOS capacitor with an n-type substrate.
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400 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Figure 10.28 | Differential charge distribution at inversion 

for a high-frequency differential change in gate voltage.
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10.2.3  Fixed Oxide and Interface Charge Effects

In all of the discussion concerning C–V characteristics so far, we have assumed 

an ideal oxide in which there are no fi xed oxide or oxide–semiconductor interface 

charges. These two types of charges will change the C–V characteristics.

 We previously discussed how the fi xed oxide charge affects the threshold volt-

age. This charge will also affect the fl at-band voltage. The fl at-band voltage from 

Equation (10.25) is given by

 VFB � �ms �   
 Q  ss  �   

 _ 
Cox 

  

where  Q  ss  �   is the equivalent fi xed oxide charge and �ms is the metal–semiconductor work 

function difference. The fl at-band voltage shifts to more negative voltages for a positive 

fi xed oxide charge. Since the oxide charge is not a function of gate voltage, the curves 

Figure 10.29 | Low-frequency and high-frequency capacitance 

versus gate voltage of a MOS capacitor with a p-type substrate.
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 10.2   Capacitance–Voltage Characteristics 401

show a parallel shift with oxide charge, and the shape of the C–V curves  remains the same 

as the ideal characteristics. Figure 10.30 shows the high-frequency characteristics of a 

MOS capacitor with a p-type substrate for several values of fi xed positive oxide charge.

 The C–V characteristics can be used to determine the equivalent fi xed oxide 

charge. For a given MOS structure, �ms and Cox are known, so the ideal fl at-band volt-

age and fl at-band capacitance can be calculated. The experimental value of fl at-band 

voltage can be measured from the C–V curve, and the value of fi xed oxide charge can 

then be determined. The C–V measurements are a valuable diagnostic tool to charac-

terize a MOS device. This characterization is especially useful in the study of radiation 

effects on MOS devices, for example.

 We fi rst encountered oxide–semiconductor interface states in Chapter 9 in the 

discussion of Schottky barrier diodes. Figure 10.31 shows the energy-band diagram 

of a semiconductor at the oxide–semiconductor interface. The periodic nature of 

the semiconductor is abruptly terminated at the interface so that allowed electronic 

 energy levels will exist within the forbidden bandgap. These allowed energy states 

are referred to as interface states. Charge can fl ow between the semiconductor and 

 interface states, in contrast to the fi xed oxide charge. The net charge in these inter-

face states is a function of the position of the Fermi level in the bandgap.

 In general, acceptor states exist in the upper half of the bandgap and donor states 

exist in the lower half of the bandgap. An acceptor state is neutral if the Fermi level is 

below the state and becomes negatively charged if the Fermi level is above the state. 

A donor state is neutral if the Fermi level is above the state and becomes positively 

charged if the Fermi level is below the state. The charge of the interface states is then 

a function of the gate voltage applied across the MOS capacitor.

 Figure 10.32a shows the energy-band diagram in a p-type semiconductor of a 

MOS capacitor biased in the accumulation condition. In this case, there is a net posi-

tive charge trapped in the donor states. Now let the gate voltage change to  produce 

the energy-band diagram shown in Figure 10.32b. The Fermi level corresponds to 

Figure 10.30 | High-frequency capacitance versus gate 

voltage of a MOS capacitor with a p-type substrate 

for several values of effective trapped oxide charge.
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Figure 10.31 | Schematic diagram 

showing interface states at the oxide– 
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402 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

the intrinsic Fermi level at the surface; thus, all interface states are  neutral. This 

 particular bias condition is known as midgap. Figure 10.32c shows the condition at 

inversion in which there is now a net negative charge in the acceptor states.

 The net charge in the interface states changes from positive to negative as the 

gate voltage sweeps from the accumulation, depletion, to the inversion condition. 

We noted that the C–V curves shifted in the negative gate voltage direction due to 

positive fi xed oxide charge. When interface states are present, the amount and direc-

tion of the shift change as we sweep through the gate voltage, since the amount and 

sign of the  interface trapped charge change. The C–V curves now become “smeared 

out” as shown in Figure 10.33.

 Again, the C–V measurements can be used as a diagnostic tool in semiconductor 

device process control. For a given MOS device, the ideal C–V curve can be determined. 

Figure 10.32 | Energy-band diagram in a p-type semi-

conductor showing the charge trapped in the interface states 

when the MOS capacitor is biased (a) in accumulation, (b) at 

midgap, and (c) at inversion.
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 10.3   The Basic MOSFET Operation 403

Any “smearing out” in the experimental curve indicates the presence of interface states 

and any parallel shift indicates the presence of fi xed oxide charge. The amount of 

smearing out can be used to determine the density of interface states. These types of 

measurement are extremely useful in the study of radiation effects on MOS devices.

10.3 | THE BASIC MOSFET OPERATION
The current in a MOSFET is due to the fl ow of charge in the inversion layer or channel 

region adjacent to the oxide–semiconductor interface. We have discussed the creation 

of the inversion layer charge in enhancement-type MOS capacitors. We may also have 

depletion-type devices in which a channel already exists at zero gate voltage.

10.3.1  MOSFET Structures

There are four basic MOSFET device types. Figure 10.34 shows an n-channel 

 enhancement mode MOSFET. Implicit in the enhancement mode notation is the idea 

that the semiconductor substrate is not inverted directly under the oxide with zero 

gate voltage. A positive gate voltage induces the electron inversion layer, which then 

“connects” the n-type source and the n-type drain regions. The source terminal is 

the source of carriers that fl ow through the channel to the drain terminal. For this 

 n-channel device, electrons fl ow from the source to the drain so the conventional 

current will enter the drain and leave the source. The conventional circuit symbol for 

this n-channel  enhancement mode device is also shown in the fi gure.

 Figure 10.35 shows an n-channel depletion mode MOSFET. An n-channel region 

exists under the oxide with 0 V applied to the gate. However, we have shown that the 

threshold voltage of a MOS device with a p-type substrate may be negative; this means 

that an electron inversion layer already exists with zero gate voltage applied. Such a de-

vice is also considered to be a depletion mode device. The n-channel shown in the fi gure 

can be an electron inversion layer or an intentionally doped n region. The conventional 

circuit symbol for the n-channel depletion mode MOSFET is also shown in the fi gure.

 Figures 10.36a, b show a p-channel enhancement mode MOSFET and a  p-channel 

depletion mode MOSFET. In the p-channel enhancement mode device, a negative 

Figure 10.33 | High-frequency C–V characteristics of a 

MOS capacitor showing effects of interface states.
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404 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

gate voltage must be applied to create an inversion layer of holes that will “connect” 

the p-type source and drain regions. Holes fl ow from the source to the drain, so the 

conventional current will enter the source and leave the drain. A  p-channel  region 

exists in the depletion mode device even with zero gate voltage. The conventional 

circuit symbols are shown in the fi gure.

10.3.2  Current–Voltage Relationship—Concepts

Figure 10.37a shows an n-channel enhancement mode MOSFET with a gate-to-

source voltage that is less than the threshold voltage and with only a very small 

drain-to-source voltage. The source and substrate, or body, terminals are held at 

ground potential. With this bias confi guration, there is no electron inversion layer, 

the drain-to-substrate  pn   junction is reverse biased, and the drain current is zero 

 (disregarding pn junction leakage currents).

Figure 10.34 | Cross section and circuit symbol for an 

n-channel enhancement mode MOSFET.
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 10.3   The Basic MOSFET Operation 405

 Figure 10.37b shows the same MOSFET with an applied gate voltage such that 

VGS 
 VT. An electron inversion layer has been created so that when a small drain voltage 

is applied, the electrons in the inversion layer will fl ow from the source to the positive 

drain terminal. The conventional current enters the drain terminal and leaves the source 

 terminal. In this ideal case, there is no current through the oxide to the gate terminal.

 For small VDS values, the channel region has the characteristics of a resistor, so 

we can write

 ID � gd VDS (10.41)

where gd is defi ned as the channel conductance in the limit as VDS → 0. The channel 

conductance is given by

 gd �   W  _ 
L

   � �n  �  Q n  �    �  (10.42)
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Figure 10.36 | Cross section and circuit symbol for (a) a p-channel en-

hance ment mode MOSFET and (b) a p-channel depletion mode MOSFET.
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where �n is the mobility of the electrons in the inversion layer and  �  Q n  �   �  is the mag-

nitude of the inversion layer charge per unit area. The inversion layer charge is a 

function of the gate voltage; thus, the basic MOS transistor action is the modulation 

of the channel conductance by the gate voltage. The channel conductance, in turn, 

determines the drain current. We will initially assume that the mobility is a constant; 

we will discuss mobility effects and variations in the next chapter.

 The ID versus VDS characteristics, for small values of VDS, are shown in Fig-

ure 10.38. When VGS � VT, the drain current is zero. As VGS becomes larger than 

VT, channel inversion charge density increases, which increases the channel conduc-

tance. A larger value of gd produces a larger initial slope of the ID versus VDS charac-

teristic as shown in the fi gure.

 Figure 10.39a shows the basic MOS structure for the case when VGS 
 VT and 

the applied VDS voltage is small. The thickness of the inversion channel layer in the 

Figure 10.37 | The n-channel enhancement mode MOSFET (a) with an applied gate voltage VGS � VT and (b) with an 

applied gate voltage VGS 
 VT.
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Figure 10.39 | Cross section and ID versus VDS curve when VGS � VT for (a) a small VDS 

value, (b) a larger VDS value, (c) a value of VDS � VDS(sat), and (d) a value of VDS 
 VDS(sat).
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fi gure qualitatively indicates the relative charge density, which is essentially constant 

along the entire channel length for this case. The corresponding ID versus VDS curve 

is shown in the fi gure.

 Figure 10.39b shows the situation when the VDS value increases. As the drain 

voltage increases, the voltage drop across the oxide near the drain terminal de-

creases, which means that the induced inversion charge density near the drain also 

decreases. The incremental conductance of the channel at the drain decreases, which 

then means that the slope of the ID versus VDS curve will decrease. This effect is 

shown in the ID versus VDS curve in the fi gure.

 When VDS increases to the point where the potential drop across the oxide at 

the drain terminal is equal to VT, the induced inversion charge density is zero at the 

drain terminal. This effect is schematically shown in Figure 10.39c. At this point, the 

incremental conductance at the drain is zero, which means that the slope of the ID 

versus VDS curve is zero. We can write 

 VGS � VDS (sat) � VT (10.43a)

or

 VDS (sat) � VGS � VT  (10.43b)

where VDS (sat) is the drain-to-source voltage producing zero inversion charge den-

sity at the drain terminal.

 When VDS becomes larger than the VDS (sat) value, the point in the channel at 

which the inversion charge is just zero moves toward the source terminal. In this 

case, electrons enter the channel at the source, travel through the channel toward the 

drain, and then, at the point where the charge goes to zero, the electrons are injected 

into the space charge region where they are swept by the E-fi eld to the drain contact. 

If we assume that the change in channel length �L is small compared to the original 

length L, then the drain current will be a constant for VDS 
 VDS (sat). The region of 

the ID versus VDS characteristic is referred to as the saturation region. Figure 10.39d 

shows this region of operation.

 When VGS changes, the ID versus VDS curve will change. We saw that, if VGS increases, 

the initial slope of ID versus VDS increases. We can also note from Equation (10.43b) that 

the value of VDS (sat) is a function of VGS. We can generate the family of curves for this 

n-channel enhancement mode MOSFET as shown in Figure 10.40. 

 Figure 10.41 shows an n-channel depletion mode MOSFET. If the n-channel re-

gion is actually an induced electron inversion layer created by the metal–  semiconductor 

work function difference and fi xed charge in the oxide, the  current–voltage charac-

teristics are exactly the same as we have discussed, except that VT is a negative quan-

tity. We may also consider the case when the n-channel region is actually an n-type 

semiconductor region. In this type of device, a negative gate voltage will induce a 

space charge region under the oxide, reducing the thickness of the n-channel region. 

The reduced thickness decreases the channel conductance, which reduces the drain 

current. A positive gate voltage will create an electron accumulation layer, which 

increases the drain current. One basic requirement for this device is that the channel 
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 10.3   The Basic MOSFET Operation 409

thickness tc must be less than the maximum induced space charge width in order to be 

able to turn the device off. The general ID versus VDS family of curves for an n-channel 

depletion mode MOSFET is shown in Figure 10.42.

 In the next section, we derive the ideal current–voltage relation for the n-channel 

MOSFET. In the nonsaturation region, we obtain

 ID �   
W�n Cox 

 __ 
2L

    � 2(VGS � VT)VDS �  V  DS  
2
   �  (10.44a)

which can be written as

 ID �   
 k n  �   _ 
2
   �   W _ L   �  � 2(VGS � VT)VDS �  V  DS  

2
   �  (10.44b)

or

 ID � Kn  � 2(VGS � VT)VDS �  V  DS  
2
   �  (10.44c)

Figure 10.40 | Family of ID versus VDS 

curves for an n-channel enhancement 

mode MOSFET.

VDS
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VDS(sat) � VGS � VT

VGS1 
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Figure 10.41 | Cross section of an 

n-channel depletion mode MOSFET.

S G

n channel

B

tc

D

n�n�

p type

Figure 10.42 | Family of ID versus VDS 

curves for an n-channel depletion mode 

MOSFET.
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410 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

The parameter  k n  �  � �nCox is called the process conduction parameter for the 

 n-channel MOSFET and has units of A /V 2. The parameter Kn � (W�n Cox)�2L � 

( k n  � �2) � (W�L) is called the conduction parameter for the n-channel MOSFET and 

also has units of A /V2.

 When the transistor is biased in the saturation region, the ideal currernt–voltage 

relation is given by

 ID �   
W�n Cox 

 __ 
2L

   (VGS � VT)
2

 (10.45a)

which can be written as

 ID �   
 k n  �   _ 
2
   �   W  _ 

L
   � (VGS � VT)

2 (10.45b)

or

 ID � Kn (VGS � VT)
2 (10.45c)

 In general, for a given technology, the process conduction parameter,  k n  � , is a con-

stant. From Equations (10.44b) and (10.45b), then, we see that the design of a MOSFET, 

in terms of current capability, is determined by the width-to-length parameter.

 The operation of a p-channel device is the same as that of the n-channel device, 

except the charge carrier is the hole and the conventional current direction and volt-

age polarities are reversed.

*10.3.3  Current–Voltage Relationship—Mathematical Derivation

In the previous section, we qualitatively discussed the current–voltage characteris-

tics. In this section, we derive the mathematical relation between the drain current, 

the gate-to-source voltage, and the drain-to-source voltage. Figure 10.43 shows the 

geometry of the device that we use in this derivation.

 In this analysis, we make the following assumptions:

1. The current in the channel is due to drift rather than diffusion.

2. There is no current through the gate oxide.

3.  A gradual channel approximation is used in which �Ey��y � �Ex��x. This 

approximation means that Ex is essentially a constant.

4.  Any fi xed oxide charge is an equivalent charge density at the oxide–

semiconductor interface.

5. The carrier mobility in the channel is constant.

We start the analysis with Ohm’s law, which can be written as

 Jx � �Ex (10.46)

where � is the channel conductivity and Ex is the electric fi eld along the channel  created 

by the drain-to-source voltage. The channel conductivity is given by � � e�n n(y), where 

�n is the electron mobility and n(y) is the electron concentration in the inversion layer.
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 10.3   The Basic MOSFET Operation 411

 The total channel current is found by integrating Jx over the cross-sectional area 

in the y and z directions. Then

 Ix � 
∫

y

 
 
  

    
∫

z

 
 
  

  Jx dy dz (10.47)

We may write that

  Q n  �  � � 
∫

 

 
 
  

  en(y) dy (10.48)

where  Q n  �  is the inversion layer charge per unit area and is a negative quantity for 

this case.

 Equation (10.47) then becomes

 Ix � �W� n  Q n  �  Ex (10.49)

where W is the channel width, the result of integrating over z.

 Two concepts we use in the currernt–voltage derivation are charge neutral-

ity and Gauss’s law. Figure 10.44 shows the charge densities through the device 

for VGS 
 VT. The charges are all given in terms of charge per unit area. Using the 

 concept of charge neutrality, we can write

  Q m  �   �  Q ss  �   �  Q n  �  �  Q  SD  �  (max) � 0 (10.50)

The inversion layer charge and induced space charge are negative for this n- channel 

device.

 Gauss’s law can be written as

  
∮

s

 
 
  

  �En dS � QT (10.51)

Figure 10.43 | Geometry of a MOSFET for ID versus VDS 

derivation.
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412 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

where the integral is over a closed surface. QT is the total charge enclosed by the 

surface, and En is the outward directed normal component of the electric fi eld cross-

ing the surface S. Gauss’s law is applied to the surface defi ned in Figure 10.45. Since 

the surface must be enclosed, we must take into account the two end surfaces in the 

x-y plane. However, there is no z-component of the electric fi eld so these two end 

surfaces do not contribute to the integral of Equation (10.51).

 Now consider the surfaces labeled 1 and 2 in Figure 10.45. From the gradual 

channel approximation, we assume that Ex is essentially a constant along the channel 

length. This assumption means that Ex into surface 2 is the same as Ex out of surface 

1. Since the integral in Equation (10.51) involves the outward component of the 

E-fi eld, the contributions of surfaces 1 and 2 cancel each other. Surface 3 is in the 

neutral p region, so the electric fi eld is zero at this surface.

 Surface 4 is the only surface that contributes to Equation (10.51). Taking into 

account the direction of the electric fi eld in the oxide, Equation (10.51) becomes

  
∮

s

 
 
  

  �En dS � ��oxEoxW dx � QT (10.52)

where �ox is the permittivity of the oxide. The total charge enclosed is

 QT � [ Q  ss  �   �  Q  n  �  �  Q  SD  �  (max)]W dx (10.53)

Combining Equations (10.52) and (10.53), we have

 ��oxEox �  Q  ss  �   �  Q  n  �  �  Q  SD  �  (max) (10.54)

 We now need an expression for Eox. Figure 10.46a shows the oxide and channel. 

We assume that the source is at ground potential. The voltage Vx is the potential in the 

channel at a point x along the channel length. The potential difference across the oxide 

at x is a function of VGS, Vx, and the metal–semiconductor work function difference.

Q�m

Metal Oxide p-type semiconductor

Q�ss

Q�n

Q�SD(max) � �eNaxdT

xdT

Figure 10.44 | Charge distribution in the 

n-channel enhancement mode MOSFET 

for VGS 
 VT.

Figure 10.45 | Geometry for applying 

Gauss’s law.
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 10.3   The Basic MOSFET Operation 413

 The energy-band diagram through the MOS structure at point x is shown in Fig-

ure 10.46b. The Fermi level in the p-type semiconductor is EFp and the Fermi level in 

the metal is EFm. We have

 EFp � EFm � e(VGS � Vx) (10.55)

Considering the potential barriers, we can write

 VGS � Vx � ( � m  �   � Vox) �  � �� �   
Eg 

 _ 
2e

   � �s � �fp  �  (10.56)

which can also be written as

 VGS � Vx � Vox � 2�fp � �ms (10.57)

where �ms is the metal–semiconductor work function difference, and �s � 2�fp for 

the inversion condition.

 The electric fi eld in the oxide is

 Eox �   
Vox  _ tox

   (10.58)

Combining Equations (10.54), (10.57), and (10.58), we fi nd that

 ��ox Eox �   
��ox  _ tox 

  [(VGS � Vx) � (�ms � 2�fp)]

  �  Q  ss  �   �  Q  n  �  �  Q  SD  �  (max) (10.59)

The inversion charge density,  Q  n  � , from Equation (10.59) can be substituted into 

Equation (10.49) and we obtain

 Ix � �W�n Cox   
dVx  _ 
dx

   [(VGS � Vx) � VT] (10.60)

where Ex � �dVx�dx and VT is the threshold voltage defi ned by Equation (10.31b).

 We can now integrate Equation (10.60 ) over the length of the channel. We have

  
∫

0

 
 
L 

:  Ix dx � �W�n Cox  
∫

Vx(0)

 
 

Vx(L) 
:  [(VGS � VT) � Vx] dVx (10.61)

Figure 10.46 | (a) Potentials at a point x along the channel. (b) Energy-band diagram through the MOS 

structure at the point x.

(a)

VGS

Vox

Vx

�

�

�

�

�

�

S

x

(b)

EFp

EFm

Ec

EFi

Ev

OM S

e��m

e��

e�s
e�fp

eVox

e (VGS � Vx)

Eg

2

�

nea29583_ch10_371-442.indd   413nea29583_ch10_371-442.indd   413 12/11/10   12:40 PM12/11/10   12:40 PM



414 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

We are assuming a constant mobility �n. For the n-channel device, the drain current 

enters the drain terminal and is a constant along the entire channel length. Letting 

ID � �Ix, Equation (10.61) becomes

 ID �   
W�n Cox 

 __ 
2L

   [2(VGS � VT)VDS �  V DS  
 2
  ] (10.62)

Equation (10.62) is valid for VGS  VT and for 0 � VDS � VDS (sat).

 Equation (10.62) can also be written as

 ID �   
 k n  �    _ 
2
   �   W  _ 

L
   �  � 2(VGS � VT)VDS �  V DS  

2
   �  � Kn � 2(VGS � VT) VDS �  V DS  

2
   �  (10.63)

where  k n  �   is the process conduction parameter and Kn is the conduction parameter. 

These parameters are described and defi ned in Equations (10.44b) and (10.44c).

 Figure 10.47 shows plots of Equation (10.62) as a function of VDS for sev-

eral  values of VGS. We can fi nd the value of VDS at the peak current value from 

�ID��VDS � 0. Then, using Equation (10.62), the peak current occurs when

 VDS � VGS � VT (10.64)

This value of VDS is just VDS (sat), the point at which saturation occurs. For 

VDS 
 VDS (sat), the ideal drain current is a constant and is equal to

 ID (sat) �   
W�n Cox 

 __ 
2L

   [2(VGS � VT)VDS (sat) �  V DS  
 2
  (sat)] (10.65)

Using Equation (10.64) for VDS (sat), Equation (10.65) becomes

 ID (sat) �   
W�n Cox 

 __ 
2L

   (VGS � VT)
2 (10.66)

Equation (10.66) can also be written as

 ID �   
 k n  �   _ 
2
   �   W  _ 

L
   � (VGS � VT)

2 � Kn (VGS � VT)
2 (10.67)

VDS

VGS1

ID

VGS2

VGS3

Figure 10.47 | Plots of ID versus VDS 

from Equation (10.62).

nea29583_ch10_371-442.indd   414nea29583_ch10_371-442.indd   414 12/11/10   12:40 PM12/11/10   12:40 PM
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 Equation (10.62) is the ideal current–voltage relationship of the n-channel 

 MOSFET in the nonsaturation region for 0 � VDS  � VDS (sat), and Equation (10.66) 

is the ideal current–voltage relationship of the n-channel MOSFET in the satura-

tion region for VDS  VDS (sat). These I–V expressions were explicitly derived for an 

n-channel enhancement mode device. However, these same equations apply to an 

n-channel depletion mode MOSFET in which the threshold voltage VT is a negative 

quantity.

   EXAMPLE 10.7Objective: Design the width of a MOSFET such that a specifi ed current is induced for a 

given applied bias.

 Consider an ideal n-channel MOSFET with parameters L � 1.25 �m, �n � 650 cm2 /V-s, 

Cox � 6.9 � 10�8 F /cm2, and VT � 0.65 V. Design the channel width W such that ID (sat) � 

4 mA for VGS � 5 V.

■ Solution
For the transition biased in the saturation region, we have, from Equation (10.66),

 ID (sat) �   
W�n Cox 

 __ 
2L

   (VGS � VT)2

or

 4 � 10�3 �   
W(650)(6.9 � 10�8) 

  ____  
2(1.25 � 10�4)

   � (5 � 0.65)2 � 3.39 W

Then

 W � 11.8 �m

■ Comment
The current capability of a MOSFET is directly proportional to the channel width W. The cur-

rent handling capability can be increased by increasing W.

■ EXERCISE PROBLEM
Ex 10.7  The parameters of an n-channel silicon MOSFET are �n � 650 cm2 /V-s, tox � 8 

nm � 80 Å, W�L � 12, and VT � 0.40 V. If the transistor is biased in the satura-

tion region, fi nd the drain current for (a) VGS � 0.8 V, (b) VGS � 1.2 V, and (c) VGS 

� 1.6 V.

 [Ans. (a) 0.269 mA; (b) 1.077 mA; (c) 2.423 mA]

 We can use the I–V relations to experimentally determine the mobility and 

threshold voltage parameters. From Equation (10.62), we can write, for very small 

values of VDS,

 ID �   
W�n Cox 

 __ 
L

   (VGS � VT)VDS (10.68)

Figure 10.48a shows a plot of Equation (10.68) as a function of VGS for constant VDS. 

A straight line is fi tted through the points. The deviation from the straight line at low 

values of VGS is due to subthreshold conduction and the deviation at higher values of VGS 
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416 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

is due to mobility being a function of gate voltage. Both of these effects will be consid-

ered in the next chapter. The extrapolation of the straight line to zero current gives the 

threshold voltage, and the slope is proportional to the inversion  carrier mobility.

 Now consider the case when the transistor is biased in the saturation region. If 

we take the square root of Equation (10.66), we obtain

  �
______

 ID(sat)   �  �
_______

   
W�n Cox 

 __ 
2L

    (VGS � VT) (10.69)

Figure 10.48b is a plot of Equation (10.69). In the ideal case, we can obtain the same 

information from both curves. However, as we will see in the next chapter, the thresh-

old voltage may be a function of VDS in short-channel devices. Since Equation (10.69) 

applies to devices biased in the saturation region, the VT parameter in this equation 

may differ from the extrapolated value determined in Figure 10.48a. In general, the 

nonsaturation current–voltage characteristics will produce the more  reliable data.

VGSVT

ID

Very small VDS

Slope �
�CoxWVDS

L

(a) (b)

VGSVTAVTB

Slope �
�CoxW

2L

A
B

�����

��ID

Figure 10.48 | (a) ID versus VGS (for small VDS) for enhancement mode MOSFET. 

(b) Ideal  �
__

 ID
   versus VGS in saturation region for enhancement mode (curve A) and 

depletion mode (curve B) n-channel MOSFETs.

EXAMPLE 10.8 Objective: Determine the inversion carrier mobility from experimental results.

 Consider an n-channel MOSFET with W � 15 �m, L � 2 �m, and Cox � 6.9 � 10�8 F /cm2. 

Assume that the drain current in the nonsaturation region for VDS � 0.10 V is ID � 35 �A at 

VGS � 1.5 V and ID � 75 �A at VGS � 2.5 V.

■ Solution
From Equation (10.68), we can write

 ID2 � ID1 �   
W�n Cox 

 __ 
L

   (VGS2 � VGS1)VDS

so that

 75 � 10�6 � 35 � 10�6 �  �   15  _ 
2
   �  �n(6.9 � 10�8)(2.5 � 1.5)(0.10)
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 10.3   The Basic MOSFET Operation 417

 The current–voltage relationship of a p-channel device can be obtained by 

the same type of analysis. Figure 10.49 shows a p-channel enhancement mode 

MOSFET. The voltage polarities and current direction are the reverse of those in the 

n-channel device. We may note the change in the subscript notation for this device. 

For the current direction shown in the fi gure, the I–V relation for the p-channel 

MOSFET biased in the nonsaturation region is

 ID �   
W�p Cox 

 __ 
2L

    � 2(VSG � VT)VSD �  V SD  2
   �  (10.70)

Equation (10.70) is valid for 0 � VSD � VSD(sat).

which yields

 �n � 773 cm2 /V-s

We can then determine

 VT � 0.625 V

■ Comment
The mobility of carriers in the inversion layer is less than that in the bulk semiconductor due 

to the surface scattering effect. We will discuss this effect in the next chapter.

■ EXERCISE PROBLEM
Ex 10.8  An n-channel silicon MOSFET has the following parameters: W � 6 �m, L � 

1.5 �m, and tox � 8 nm � 80 Å. When the transistor is biased in the saturation re-

gion, the drain current is ID(sat) � 0.132 mA at VGS � 1.0 V and ID(sat) � 0.295 mA 

at VGS � 1.25 V. Determine the electron mobility and the threshold voltage.

(Ans. �n 
 600 cm
2
 /V-s, VT � 0.495 V)

n substrate

S

G
D

B

ID

VSG� �

VSD� �

p� p�

Figure 10.49 | Cross section and 

bias confi guration for a p-channel 

enhancement mode MOSFET.
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Equation (10.70) can also be written as

 ID �   
 k p  �  

 _ 
2
   �   W  _ 

L
   �  � 2(VSG � VT)VSD �  V SD  2

   �  � Kp  � 2(VSG � VT)VSD �  V SD  2
   �  (10.71)

where  k p  �   � �pCox is the process conduction parameter for the p-channel MOSFET 

and Kp � (W�p Cox)�(2L) � ( k p  �  �2) � (W�L) is the conduction parameter.
 When the transistor is biased in the saturation region, the I–V relation is given 

by

 ID(sat) �   
W�p Cox 

 __ 
2L

   (VSG � VT)
2  (10.72)

Equation (10.72) is valid for VSD  VSD (sat).
 Equation (10.72) can also be written as

 ID �   
 k p  �  

 _ 
2
   �   W  _ 

L
   � (VSG � VT)

2 � Kp(VSG � VT)
2 (10.73)

The source-to-drain saturation voltage is given by

 VSD(sat) � VSG � VT (10.74)

Note the change in the sign in front of VT and note that the mobility is now the mo-

bility of the holes in the hole inversion layer charge. Keep in mind that VT is nega-

tive for a p-channel enhancement mode MOSFET and positive for a depletion mode 

p-channel device.

 One assumption we made in the derivation of the currernt–voltage relationship 

was that the charge neutrality condition given by Equation (10.50) was valid over 

the entire length of the channel. We implicitly assumed that  Q  SD  �  (max) was constant 

along the length of the channel. The space charge width, however, varies between 

source and drain due to the drain-to-source voltage; it is widest at the drain when 

VDS 
 0. A change in the space charge density along the channel length must be bal-

anced by a corresponding change in the inversion layer charge. An increase in the 

space charge width means that the inversion layer charge is reduced, implying that 

the drain current and drain-to-source saturation voltage are less than the ideal values. 

The actual saturation drain current may be as much as 20 percent less than the pre-

dicted value due to this bulk charge effect.

10.3.4  Transconductance

The MOSFET transconductance is defi ned as the change in drain current with re-

spect to the corresponding change in gate voltage, or

 gm �   
�ID 

 _ 
�VGS

   (10.75)

The transconductance is sometimes referred to as the transistor gain.
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 10.3   The Basic MOSFET Operation 419

 If we consider an n-channel MOSFET operating in the nonsaturation region, 

then using Equation (10.62), we have

 gmL �   
�ID 

 _ 
�VGS 

   �   
W�n Cox 

 __ 
L

   � VDS (10.76)

The transconductance increases linearly with VDS but is independent of VGS in the 

nonsaturation region.

 The I–V characteristics of an n-channel MOSFET in the saturation region are 

given by Equation (10.66). The transconductance in this region of operation is given 

by

 gms �   
�ID(sat) 

 __ 
�VGS 

   �   
W�n Cox 

 __ 
L

   (VGS � VT) (10.77)

In the saturation region, the transconductance is a linear function of VGS and is inde-

pendent of VDS.

 The transconductance is a function of the geometry of the device as well as of 

carrier mobility and threshold voltage. The transconductance increases as the width 

of the device increases, and it also increases as the channel length and oxide thick-

ness decrease. In the design of MOSFET circuits, the size of the transistor, in particu-

lar the channel width W, is an important engineering design parameter.

10.3.5  Substrate Bias Effects

In all of our analyses so far, the substrate, or body, has been connected to the source 

and held at ground potential. In MOSFET circuits, the source and body may not 

be at the same potential. Figure 10.50a shows an n-channel MOSFET and the as-

sociated double-subscripted voltage variables. The source-to-substrate pn junction 

must always be zero or reverse biased, so VSB must always be greater than or equal 

to zero.

(a)

p substrate

S

G

Body (B)

D

VGS

VSB

VDS

n� n�

(b)

EF

Ec

Ev

EFi

e�s = 2e�fp

(c)

EF

EFn

Ec

Ev

EFi

e�s = e(2�fp � VSB)

Figure 10.50 | (a) Applied voltages on an n-channel MOSFET. (b) Energy-band diagram at inversion 

point when VSB � 0. (c) Energy-band diagram at inversion point when VSB 
 0 is applied.

nea29583_ch10_371-442.indd   419nea29583_ch10_371-442.indd   419 12/11/10   12:40 PM12/11/10   12:40 PM



420 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

 If VSB � 0, threshold is defi ned as the condition when �s � 2�fp as we  discussed 

previously and as shown in Figure 10.50b. When VSB 
 0 the surface will still try 

to invert when �s � 2�fp. However, these electrons are at a higher potential energy 

than are the electrons in the source. The newly created electrons will move  laterally 

and fl ow out of the source terminal. When �s � 2�fp � VSB, the surface reaches 

an equilibrium inversion condition. The energy-band diagram for this condition 

is shown in Figure 10.50c. The curve represented as EFn is the Fermi level from 

the p substrate through the reverse-biased source–substrate junction to the source 

contact.

 The space charge region width under the oxide increases from the original xdT 

value when a reverse-biased source–substrate junction voltage is applied. With an 

applied VSB 
 0, there is more charge associated with this region. Considering the 

charge neutrality condition through the MOS structure, the positive charge on the top 

metal gate must increase to compensate for the increased negative space charge in 

order to reach the threshold inversion point. So when VSB 
 0, the threshold voltage 

of the n-channel MOSFET increases.

 When VSB � 0, we had

  Q  SD  �   (max) � �eNaxdT � � �
___________

 2e�s Na(2�fp)   (10.78)

When VSB 
 0, the space charge width increases and we now have

  Q  SD  �   � �eNaxd � � �
________________

  2e�s Na(2�fp � VSB)   (10.79)

The change in the space charge density is then

 � Q  SD  �   � � �
______

 2e�s Na
    �  �

_________
 2�fp � VSB
   �  �

____
 2�fp
   �  (10.80)

To reach the threshold condition, the applied gate voltage must be increased. The 

change in threshold voltage can be written as

 �VT � �   
� Q  SD  �   

 _ 
Cox 

   �   
 �

______
 2e�s Na
   
 __ 

Cox 
    �  �

_________
 2�fp � VSB
   �  �

____
 2�fp
   �  (10.81)

where �VT � VT (VSB 
 0) � VT (VSB � 0). We may note that VSB must always be 

positive so that, for the n-channel device, �VT is always positive. The threshold volt-

age of the n-channel MOSFET will increase as a function of the source–substrate 

junction voltage.

 From Equation (10.81), we may defi ne

 � �   
 �

______

 2e�s Na
   
 __ 

Cox 
   (10.82)

where � is defi ned as the body-effect coeffi cient. Equation (10.81) may then be 

written as

 �VT � �  �  �
_________

 2�fp � VSB    �  �
____

 2�fp
    �  (10.83)
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 10.3   The Basic MOSFET Operation 421

   EXAMPLE 10.9Objective: Calculate the body-effect coeffi cient and the change in the threshold voltage due 

to an applied source-to-body voltage.

 Consider an n-channel silicon MOSFET at T � 300 K. Assume the substrate is 

doped to Na � 3 � 1016 cm�3 and assume the oxide is silicon dioxide with a thickness of 

tox � 20 nm � 200 Å. Let VSB � 1 V.

■ Solution
We can calculate that

 �fp � Vt ln  �   Na  _ ni 
   �  � (0.0259) ln  �   3 � 1016  __ 

1.5 � 1010 
   �  � 0.3758 V

and

 Cox �   
�ox  _ tox 

   �   
(3.9)(8.85 � 10�14)

  ____  
200 � 10�8 

   � 1.726 � 10�7 F /cm2

From Equation (10.82), we fi nd the body-effect coeffi cient to be

 � �   
 �

______

 2e�s Na
   
 __ 

Cox 
   �   

[2(1.6 � 10�19)(11.7)(8.85 � 10�14)(3 � 1016)]1�2 
    ________   

1.726 � 10�7 
  

or

 � � 0.5776 V1�2

The change in threshold voltage for VSB � 1 V is found to be

 �VT � �  �  �
_________

 2�fp � VSB
   �  �

____

 2�fp
   � 

 � (0.5776) �  �
____________

  2(0.3758) � 1   �  �
_________

 2(0.3758)   � 
 � (0.5776)[1.3235 � 0.8669] � 0.264 V

■ Comment
Figure 10.51 shows plots of  �

______

 ID(sat)   versus VGS for various applied values of VSB. The original 

threshold voltage is assumed to be VTO � 0.64 V.

VGS (V)

VSB � 0 1 V 2 V 4 V

0
0.64 0.904 1.10 1.40

2.0

��ID

Figure 10.51 | Plots of  �
__

 ID
   versus 

VGS at several values of VSB for an 

n-channel MOSFET.
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422 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

■ EXERCISE PROBLEM
Ex 10.9  A silicon MOSFET has the following parameters: Na � 1016 cm�3 and 

tox � 12 nm � 120 Å. Calculate (a) the body-effect coeffi cient and (b) the change 

in threshold voltage for (i) VSB � 1 and (ii) VSB � 2 V.

[Ans. (a) � � 0.200 V
1�2

; (b) (i) �VT � 0.0937 V, (ii) �VT � 0.162 V]

  TEST YOUR UNDERSTANDING

TYU 10.6 The silicon n-channel MOSFET described in Exercise Problem Ex 10.7 is to be 

redesigned by changing the W�L ratio such that ID � 100 �A when the transis-

tor is biased in the saturation regin with VGS � 1.0 V. 

(Ans. W�L � 1.98)

TYU 10.7 The parameters of a p-channel MOSFET are �p � 310 cm2 /V-s, tox � 220 Å, 
W�L � 60, and VT � �0.40 V. If the transistor is biased in the saturation 

region, fi nd the drain current for VSG � 1, 1.5, and 2 V.
(Ans. ID � 0.526, 1.77 and 3.74 mA)

TYU 10.8 The p-channel MOSFET in TYU 10.7 is to be redesigned by changing the 

(W�L) ratio such that ID � 200 �A when the transistor is biased in the saturation 

region with VSG � 1.25 V.

(Ans. W�L � 11.4)

TYU 10.9 Repeat Exercise Problem Ex 10.9 for a substrate impurity doping concentration 

of Na � 1015 cm�3.

[Ans. (a) � � 0.0633 V
1�2

; (b) (i) �VT � 0.0314 V, (ii) �VT � 0.0536 V]

 If a body or substrate bias is applied to a p-channel device, the threshold volt-

age is shifted to more negative values. Because the threshold voltage of a p-channel 

enhancement mode MOSFET is negative, a body voltage will increase the applied 

negative gate voltage required to create inversion. The same general observation was 

made for the n-channel MOSFET.

10.4 |  FREQUENCY LIMITATIONS
In many applications, the MOSFET is used in a linear amplifi er circuit. A small-signal 

equivalent circuit for the MOSFET is needed in order to mathematically analyze the 

electronic circuit. The equivalent circuit contains capacitances and resistances that 

 introduce frequency effects. We initially develop a small-signal equivalent circuit and 

then discuss the physical factors that limit the frequency response of the  MOSFET. A 

transistor cutoff frequency, which is a fi gure of merit, is then defi ned and an  expression 

derived for this factor.

10.4.1  Small-Signal Equivalent Circuit

The small-signal equivalent circuit of the MOSFET is constructed from the basic 

MOSFET geometry. A model based on the inherent capacitances and resistances 
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 10.4   Frequency Limitations 423

within the transistor structure, along with elements that represent the basic device 

equations, is shown in Figure 10.52. One simplifying assumption we will make in 

the equivalent circuit is that the source and substrate are both tied to ground  potential.

 Two of the capacitances connected to the gate are inherent in the device. These 

capacitances are Cgs and Cgd, which represent the interaction between the gate and 

the channel charge near the source and drain terminals, respectively. The  remaining 

two gate capacitances, Cgsp and Cgdp, are parasitic or overlap capacitances. In real 

devices, the gate oxide will overlap the source and drain contacts  because of toler-

ance or fabrication factors. As we will see, the drain overlap capacitance—Cgdp, in 

particular—will lower the frequency response of the device. The  parameter Cds is 

the drain-to-substrate pn junction capacitance, and rs and rd are the series resistances 

associated with the source and drain terminals. The small-signal channel current is 

controlled by the internal gate-to-source voltage through the transconductance.

 The small-signal equivalent circuit for the n-channel common-source MOSFET 

is shown in Figure 10.53. The voltage  V  gs  �   is the internal gate-to-source voltage that 

gmV�gsrs rd

Cgsp Cgs

Cds

D

G

p

S

CgdpCgd

n� n�

Figure 10.52 | Inherent resistances and capacitances in the 

n-channel MOSFET structure.

CgdT

CgsT

gmV�gs

V�gs

Vgs

Cdsrds

rs

rd

G

S

D
�

�

�

�

Figure 10.53 | Small-signal equivalent circuit of a common-

source n-channel MOSFET.
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424 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

controls the channel current. The parameters CgsT and CgdT are the total gate-to-source 

and total gate-to-drain capacitances. One parameter, rds, shown in Figure 10.53, is 

not shown in Figure 10.52. This resistance is associated with the slope ID versus VDS. 

In the ideal MOSFET biased in the saturation region, ID is independent of VDS so 

that rds would be infi nite. In short-channel-length devices, in particular, rds is fi nite 

because of channel length modulation, which we will consider in the next chapter.

 A simplifi ed small-signal equivalent circuit valid at low frequency is shown in 

Figure 10.54. The series resistances, rs and rd, have been neglected, so the drain cur-

rent is essentially only a function of the gate-to-source voltage through the transcon-

ductance. The input gate impedance is infi nite in this simplifi ed model.

 The source resistance rs can have a signifi cant effect on the transistor character-

istics. Figure 10.55 shows a simplifi ed, low-frequency equivalent circuit including rs 

but neglecting rds. The drain current is given by

 Id � gm
 V  gs  �   (10.84)

and the relation between Vgs and  V  gs  �   can be found from

 Vgs �  V gs  �   � (gm
 V  gs  �  )rs � (1 � gmrs) V  gs  �   (10.85)

gmVgsVgs rds

G D

S

�

�

Figure 10.54 | Simplifi ed, low-frequency 

small-signal equivalent circuit of a 

common-source n-channel MOSFET.

gmV�gsV�gs

Id

Vgs

rs

G D

S

� �

�

�

Figure 10.55 | Simplifi ed, low-

frequency small-signal equivalent circuit 

of common-source n-channel MOSFET 

including source resistance rs.
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The drain current from Equation (10.84) can now be written as

 Id �  �   gm 
 __ 

1 � gmrs 
   � Vgs �  g m  �   Vgs (10.86)

The source resistance reduces the effective transconductance or transistor gain.

 The equivalent circuit of the p-channel MOSFET is exactly the same as that of 

the n-channel except that all voltage polarities and current directions are reversed. 

The same capacitances and resistances that are in the n-channel model apply to the 

p-channel model.

10.4.2  Frequency Limitation Factors and Cutoff Frequency

There are two basic frequency limitation factors in the MOSFET. The fi rst fac-

tor is the channel transit time. If we assume that carriers are traveling at their 

saturation drift velocity vsat, then the transit time is �t � L/vsat where L is the 

channel length. If vsat � 107 cm /s and L � 1 �m, then �t � 10 ps, which translates 

into a maximum frequency of 100 GHz. This frequency is much larger than the 

typical maximum frequency response of a MOSFET. The transit time of carriers 

through the channel is usually not the limiting factor in the frequency responses 

of MOSFETs.

 The second limiting factor is the gate or capacitance charging time. If we ne-

glect rs, rd, rds, and Cds, the resulting equivalent small-signal circuit is shown in 

Figure 10.56 where RL is a load resistance.

 The input gate impedance in this equivalent circuit is no longer infi nite. Sum-

ming currents at the input gate node, we have

 Ii � j	CgsTVgs � j	CgdT (Vgs � Vd) (10.87)

where Ii is the input current. Likewise, summing currents at the output drain node, 

we have

   
Vd  _ 
RL 

   � gmVgs � j	CgdT (Vd � Vgs) � 0 (10.88)

CgdT

CgsT
gmVgsVgs VdRL

G D

S

�

�

�

�

Id

Ii

Figure 10.56 | High-frequency small-

signal equivalent circuit of common-

source n-channel MOSFET.
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426 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Combining Equations (10.87) and (10.88) to eliminate the voltage variable Vd, we 

can determine the input current as

 Ii � j	 � CgsT � CgdT  �   1 � gmRL 
 ___  

1 � j	 RLCgdT 
   �  � Vgs (10.89)

Normally, 	RLCgdT is much less than unity; therefore, we may neglect the (j	RLCgdT) 

term in the denominator. Equation (10.89) then simplifi es to

 Ii � j	[CgsT � CgdT (1 � gmRL)]Vgs (10.90)

 Figure 10.57 shows the equivalent circuit with the equivalent input impedance de-

scribed by Equation (10.90). The parameter CM is the Miller capacitance and is given by

 CM � CgdT (1 � gm RL) (10.91)

The serious effect of the drain overlap capacitance now becomes apparent. When the 

transistor is operating in the saturation region, Cgd essentially becomes zero, but Cgdp 

is a constant. This parasitic capacitance is multiplied by the gain of the transistor and 

can become a signifi cant factor in the input impedance.

 The cutoff frequency fT is defi ned to be the frequency at which the magnitude of 

the current gain of the device is unity, or when the magnitude of the input current Ii 

is equal to the ideal load current Id. From Figure 10.57, we can see that

 Ii � j	(CgsT � CM)Vgs (10.92)

and the ideal load current is

 Id � gm Vgs (10.93)

The magnitude of the current gain is then

  �   Id  _ 
Ii 

   �  �   
gm 
 ___  

2
f (CgsT � CM)
   (10.94)

Setting the magnitude of the current gain equal to unity at the cutoff frequency, we 

fi nd

 fT �   
gm 
 ___  

2
 (CgsT � CM)
   �   

gm 
 __ 

2
 CG 
   (10.95)

where CG is the equivalent input gate capacitance.

CgsT CM

gmVgsVgs
RL

G D

S

�

�

Id

Ii

Figure 10.57 | Small-signal equivalent 

circuit including Miller capacitance.
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 In the ideal MOSFET, the overlap or parasitic capacitances, Cgsp and Cgdp, are 

zero. Also, when the transistor is biased in the saturation region, Cgd approaches 

zero and Cgs is approximately CoxWL. The transconductance of the ideal MOSFET 

biased in the  saturation region and assuming a constant mobility is given by Equa-

tion (10.77) as

 gms �   
W�nCox 

 __ 
L

   (VGS � VT)

Then, for this ideal case, the cutoff frequency is

 fT �   
gm 
 _ 

2
CG 
   �   

  
W�n Cox 

 __ 
L

   (VGS � VT) 
  ____  

2
(CoxWL)
   �   

�n(VGS � VT) 
  ___ 

2
L2 
   (10.96)

   EXAMPLE 10.10Objective: Calculate the cutoff frequency of an ideal MOSFET with a constant mobility.

 Assume that the electron mobility in an n-channel device is �n � 400 cm2 /V-s and that 

the channel length is L � 4 �m. Also assume that VT � 1 V and VGS � 3 V.

■ Solution
From Equation (10.96), the cutoff frequency is

 fT �   
�n(VGS � VT)

  ___ 
2
L2 

   �   
400(3�1) 

 ___  
2
 (4 � 10�4)2 

   � 796 MHz

■ Comment
In an actual MOSFET, the effect of the parasitic capacitance will substantially reduce the 

cutoff frequency from that calculated in this example.

■ EXERCISE PROBLEM
Ex 10.10  An n-channel silicon MOSFET has the following parameters: �n � 420 cm2 /V-s, 

tox � 18 nm � 180 Å, L � 1.2 �m, W � 24 �m, and VT � 0.4 V. The transistor 

is biased in the saturation region at VGS � 1.5 V. Determine the cutoff frequency.

 (Ans. fT � 5.11 GHz)

TYU 10.10 Consider the n-channel MOSFET described in Exercise Problem Ex 10.10. 

The transistor is connected to an effective load resistance of RL � 100 k�. 

Calculate the ratio of Miller capacitance CM to gate-to-drain capacitance CgdT.

(Ans. 178)

TEST YOUR UNDERSTANDING

*10.5 | THE CMOS TECHNOLOGY
The primary objective of this book is to present the basic physics of semiconductor 

mate rials and devices without considering in detail the various fabrication processes; 

this important subject is left to other books. However, there is one MOS technology 
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428 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

that is used extensively, for which the basic fabrication techniques must be considered 

in order to understand essential characteristics of these devices and circuits. The MOS 

technology we consider briefl y is the complementary MOS, or CMOS, process.

 We have considered the physics of both n-channel and p-channel enhance-

ment mode MOSFETs. Both devices are used in a CMOS inverter, which is the 

basis of CMOS digital logic circuits. The dc power dissipation in a digital cir-

cuit can be reduced to very low levels by using a complementary p-channel and 

n-channel pair.

 It is necessary to form electrically isolated p- and n-substrate regions in an inte-

grated circuit to accommodate the n- and p-channel transistors. The p-well process 

has been a commonly used technique for CMOS circuits. The process starts with a 

fairly low doped n-type silicon substrate in which the p-channel MOSFET will be 

fabricated. A diffused p region, called a p well, is formed in which the n-channel 

MOSFET will be fabricated. In most cases, the p-type substrate doping level must be 

larger than the n-type substrate doping level to obtain the desired threshold voltages. 

The larger p doping can easily compensate the initial n doping to form the p well. A 

simplifi ed cross section of the p-well CMOS structure is shown in Figure 10.58a. The 

notation FOX stands for fi eld oxide, which is a relatively thick oxide separating the 

devices. The FOX prevents either the n or p substrate from becoming inverted and 

helps maintain isolation between the two devices. In practice, additional processing 

steps must be included; for example,  providing connections so that the p well and 

n substrate can be electrically connected to the appropriate voltages. The n substrate 

(a)

FOX

Poly-Si gate

FOXFOX nn pp

n substrate

p well

(b)

p substrate

FOX

Poly-Si gate

FOXFOX nn pp

n well

(c)

p or n substrate

FOX

Poly-Si gate

FOXFOX nn pp

n wellp well

Figure 10.58 | CMOS structures: (a) p well, (b) n well, and (c) twin well. 
(From Yang [22].)

nea29583_ch10_371-442.indd   428nea29583_ch10_371-442.indd   428 12/11/10   12:40 PM12/11/10   12:40 PM



 10.5   The CMOS Technology 429

must always be at a higher potential than the p well; therefore, this pn junction will 

always be reverse biased.

 With ion implantation now being extensively used for threshold voltage control, 

both the n-well CMOS process and twin-well CMOS process can be used. The n-well 

CMOS process, shown in Figure 10.58b, starts with an optimized p-type substrate 

that is used to form the n-channel MOSFETs. (The n-channel MOSFETs, in general, 

have superior characteristics, so this starting point should yield excellent n-channel 

devices.) The n well is then added, in which the p-channel devices are fabricated. The 

n-well doping can be controlled by ion implantation.

 The twin-well CMOS process, shown in Figure 10.58c, allows both the p-well 

and n-well regions to be optimally doped to control the threshold voltage and trans-

conductance of each transistor. The twin-well process allows a higher packing density 

 because of self-aligned channel stops.

 One major problem in CMOS circuits has been latch-up. Latch-up refers to a 

high-current, low-voltage condition that may occur in a four-layer pnpn structure. 

Figure 10.59a shows the circuit of a CMOS inverter and Figure 10.59b shows a simpli-

fi ed integrated circuit layout of the inverter circuit. In the CMOS layout, p� source to n 

substrate to p well to n� source forms such a four-layer structure.

 The equivalent circuit of this four-layer structure is shown in Figure 10.60. The 

silicon-controlled rectifi er action involves the interaction of the parasitic pnp and npn 

bipolar transistors. Bipolar transistors are discussed in Chapter 12. The npn transis-

tor corresponds to the vertical n�-source to p-well to n-substrate structure and the 

pnp transistor corresponds to the lateral p-well to  n-substrate to p�-source structure. 

Under normal CMOS operation, both parasitic bipolar transistors are cut off. How-

ever, under certain conditions, avalanche breakdown may occur in the p-well to n-

substrate junction, driving both bipolar transistors into saturation. This high- current, 

low-voltage condition—latch-up—can sustain itself by positive feedback. The con-

dition can prevent the CMOS circuit from operating and can also cause permanent 

 damage and burnout of the circuit.

 Latch-up can be prevented if the product �n �p is less than unity at all times, 

where �n and �p are the common-emitter current gains of the npn and pnp parasitic 

n channel

p channel

OutputInput

D

D

S

S

VDD

(a) (b)

n substrate

n� n�
S D

Output

Input

D S

VDD

p� p�

p well

Figure 10.59 | (a) CMOS inverter circuit. (b) Simplifi ed integrated circuit cross section of CMOS inverter.
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430 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

bipolar transistors, respectively. One method of preventing latch-up is to “kill” the 

minority carrier lifetime. Minority carrier lifetime degradation can be accomplished 

by gold doping or neutron irradiation, either of which introduces deep traps within 

the semiconductor. The deep traps increase the excess minority carrier recombina-

tion rate and reduce current gain. A second method of preventing latch-up is by using 

proper circuit layout techniques. If the two bipolar transistors can be effectively 

 decoupled, then latch-up can be minimized or prevented. The two parasitic bipolar 

transistors can also be decoupled by using a different fabrication technology. The 

 silicon-on-insulator technology, for example, allows the n-channel and the p-channel 

MOSFETs to be isolated from each other by an insulator. This isolation decouples 

the parasitic bipolar transistors.

10.6 | SUMMARY
■ The fundamental physics and characteristics of the metal-oxide–semiconductor fi eld-

effect transistor (MOSFET) have been considered in this chapter.

■ The heart of the MOSFET is the MOS capacitor. The energy bands in the semiconduc-

tor adjacent to the oxide–semiconductor interface bend, depending upon the voltage 

applied to the gate.

■ An inversion layer of electrons can be created at the oxide–semiconductor surface in a 

p-type semiconductor by applying a suffi ciently positive gate voltage, and an inversion 

layer of holes can be created at the oxide–semiconductor surface in an n-type semicon-

ductor by applying a suffi ciently negative gate voltage.

■ The threshold voltage is the applied gate voltage required to reach the threshold inver-

sion point. The fl at-band voltage was defi ned and discussed.

p

n

p

n

IK

IA

VA

(a)

p

n

p

IA

IB1 � IC2

IC1 � IB2

VA

n

p

n

IK

(b)

Figure 10.60 | (a) The splitting of the basic pnpn structure. (b) The 

two-transistor equivalent circuit of the four-layered pnpn device.
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■ The n-channel MOSFET, both enhancement mode and depletion mode, and the 

p-channel MOSFET, both enhancement mode and depletion mode, were described.

■ The basic transistor action is the modulation of the current at the drain terminal by the 

gate-to-source voltage.

■ The ideal MOSFET current–voltage relations were derived.

■ The body-effect coeffi cient was defi ned and discussed. The expression for the shift in 

threshold voltage due to the body effect was derived.

■ A small-signal equivalent circuit of the MOSFET was developed.

■ Various physical factors in the MOSFET that affect the frequency limitations were dis-

cussed. An expression for the cutoff frequency was developed.

■ The CMOS technology was briefl y considered.

GLOSSARY OF IMPORTANT TERMS
accumulation layer charge  The induced charge directly under an oxide that is in excess of 

the thermal-equilibrium majority carrier concentration.

channel conductance  The ratio of drain current to drain-to-source voltage in the limit as 

VDS → 0.

channel conductance modulation  The process whereby the channel conductance varies 

with gate-to-source voltage.

CMOS  Complementary MOS; the technology that uses both p- and n-channel devices in an 

electronic circuit fabricated in a single semiconductor chip.

conduction parameter  The multiplying coeffi cient of the voltage terms to obtain the 

MOSFET drain current.

cutoff frequency  The signal frequency at which the input ac gate current is equal to the 

output ac drain current.

depletion mode MOSFET  The type of MOSFET in which a gate voltage must be applied 

to turn the device off.

enhancement mode MOSFET  The type of MOSFET in which a gate voltage must be ap-

plied to turn the device on.

equivalent fi xed oxide charge  The effective fi xed charge in the oxide,  Q  ss  
′  , directly adjacent 

to the oxide–semiconductor interface.

fi eld-effect  The phenomenon by which an electric fi eld perpendicular to the surface of a 

semiconductor can modulate the conductance.

fl at-band voltage  The gate voltage that must be applied to create the fl at-band condition in 

which there is no space charge region in the semiconductor under the oxide.

interface states  The allowed electronic energy states within the bandgap energy at the 

oxide–semiconductor interface.

inversion layer charge  The induced charge directly under the oxide, which is the opposite 

type compared with the semiconductor doping.

inversion layer mobility  The mobility of carriers in the inversion layer.

metal–semiconductor work function difference  The parameter �ms, a function of the dif-

ference between the metal work function and semiconductor electron affi nity.

oxide capacitance  The ratio of oxide permittivity to oxide thickness, which is the capaci-

tance per unit area, Cox. 
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432 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

process conduction parameter  The product of carrier mobility and oxide capacitance.

saturation  The condition in which the inversion charge density is zero at the drain and the 

drain current is no longer a function of the drain-to-source voltage.

strong inversion  The condition in which the inversion charge density is larger than the 

magnitude of the semiconductor doping concentration.

threshold inversion point  The condition in which the inversion charge density is equal in 

magnitude to the semiconductor doping concentration.

threshold voltage  The gate voltage that must be applied to achieve the threshold  inversion 

point.

transconductance  The ratio of an incremental change in drain current to the corresponding 

incremental change in gate voltage.

weak inversion  The condition in which the inversion charge density is less than the magni-

tude of the semiconductor doping concentration.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Sketch the energy-band diagrams in the semiconductor of the MOS capacitor under 

various bias conditions.

■ Describe the process by which an inversion layer of charge is created in a MOS capacitor.

■ Discuss the reason the space charge width reaches a maximum value once the inversion 

layer is formed.

■ Discuss what is meant by the metal–semiconductor work function difference and why 

this value is different between aluminum, n� polysilicon, and p� polysilicon gates.

■ Describe what is meant by fl at-band voltage.

■ Defi ne threshold voltage.

■ Sketch the C–V characteristics of a MOS capacitor with p-type and n-type semiconduc-

tor substrates under high-frequency and low-frequency conditions.

■ Discuss the effects of fi xed trapped oxide charge and interface states on the C–V 

characteristics.

■ Sketch the cross sections of n-channel and p-channel MOSFET structures.

■ Explain the basic operation of the MOSFET.

■ Discuss the I–V characteristics of the MOSFET when biased in the nonsaturation and 

saturation regions.

■ Describe the substrate bias effects on the threshold voltage.

■ Sketch the small-signal equivalent circuit, including capacitances, of the MOSFET, and 

explain the physical origin of each capacitance.

■ Discuss the condition that defi nes the cutoff frequency of a MOSFET.

■ Sketch the cross section of a CMOS structure.

■ Discuss what is meant by latch-up in a CMOS structure.

REVIEW QUESTIONS
 1. Sketch the energy-band diagrams in a MOS capacitor with an n-type substrate in 

 accumulation, depletion, and inversion modes.

 2. Describe what is meant by an inversion layer of charge. Describe how an inversion 

layer of charge can be formed in a MOS capacitor with a p-type substrate.
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 3. Why does the space charge region in the semiconductor of a MOS capacitor reach a 

maximum width once the inversion layer is formed?

 4. Defi ne surface potential. Does the surface potential change signifi cantly with gate volt-

age once threshold is reached?

 5. Sketch the energy-band diagram through a MOS structure with a p-type substrate and 

an n� polysilicon gate under zero bias.

 6. Defi ne the fl at-band voltage. Sketch the energy-band diagram in a MOS capacitor at fl at 

band.

 7. Defi ne the threshold voltage. What is the surface potential at the threshold voltage?

 8. Sketch the C–V characteristics of a MOS capacitor with an n-type substrate under the 

low-frequency condition. How do the characteristics change for the high-frequency 

condition?

 9. Indicate the approximate capacitance at fl at band on the C–V characteristic of a MOS 

capacitor with a p-type substrate under the high-frequency condition.

10. What is the effect on the C–V characteristics of a MOS capacitor with a p-type  substrate 

if the amount of positive trapped oxide charge increases?

11. Qualitatively sketch the inversion charge density in the channel region when the tran-

sistor is biased in the nonsaturation region. Repeat for the case when the transistor is 

biased in the saturation region.

12. Defi ne VDS(sat).

13. Defi ne enhancement mode and depletion mode for both n-channel and p-channel devices.

14. Sketch the charge distribution through a MOS capacitor with a p-type substrate when 

biased in the inversion mode. Write the charge neutrality equation.

15. Discuss why the threshold voltage changes when a reverse-biased source-to-substrate 

voltage is applied to a MOSFET.

PROBLEMS
(Note: In the following problems, assume the semiconductor and oxide in the MOS system 

are silicon and silicon dioxide, respectively, and assume the temperature is T � 300 K unless 

otherwise stated. Use Figure 10.16 to determine the metal–semiconductor work function 

difference.)

Section 10.1  The Two-Terminal MOS Structure

10.1 The dc charge distributions of four ideal MOS capacitors are shown in 

Figure P10.1. For each case: (a) Is the semiconductor n or p type? (b) Is the device 

biased in the  accumulation, depletion, or inversion mode? (c) Draw the energy-

band diagram in the semiconductor region.

10.2 (a) Calculate the maximum space charge width xdT and the maximum space charge 

density � Q  SD  �   (max)� in a MOS capacitor with a p-type silicon substrate at T � 300 K 

for doping concentrations of (i) Na � 7 � 1015 cm�3 and (ii) Na � 3 � 1016 cm�3. 

(b) Repeat part (a) for T � 350 K.

10.3 (a) Consider a MOS capacitor at T � 300 K with an n-type silicon substrate. Deter-

mine the silicon doping concentration such that � Q  SD  �   (max)� � 1.25 � 10�8 C/cm�2. 

(b) What is the surface potential that results in the maximum space charge width?
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434 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

10.4 Determine the metal–semiconductor work function difference �ms in a MOS 

 structure with p-type silicon for the case when the gate is (a) aluminum, 

(b) n� polysilicon, and (c) p� polysilicon. Let Na � 6 � 1015 cm�3.

10.5 The silicon impurity doping concentration in an aluminum–silicon dioxide-silicon 

MOS device is Na � 4 � 1016 cm�3. Using the parameters in Example 10.2, deter-

mine the metal–semiconductor work function difference �ms.

10.6 Consider a MOS capacitor with an n-type silicon substrate. A metal–semiconductor 

work function difference of �ms � �0.30 V is required. Determine the silicon dop-

ing concentration required to meet this specifi cation when the gate is (a) n� poly-

silicon, (b) p� polysilicon, and (c) aluminum. If a particular gate cannot meet this 

specifi cation, explain why.

10.7 (a) Consider the MOS capacitor described in Problem 10.5. For an oxide thickness 

of tox � 20 nm � 200 Å and an oxide charge of  Q  ss  �   � 5 � 1010 cm�2, calculate the 

fl at-band voltage. (b) Repeat part (a) for an oxide thickness of tox � 8 nm � 80 Å.

10.8 (a) Consider an n� polysilicon–silicon dioxide–n-type silicon MOS structure. Let 

Nd � 4 � 1015 cm�3. Calculate the ideal fl at-band voltage for tox � 20 nm � 200 Å. 

(b) Considering the results of part (a), determine the shift in fl at-band voltage for 

(i)  Q  ss  �   � 4 � 1010 cm�2 and (ii)  Q  ss  �   � 1011 cm�2. (c) Repeat parts (a) and (b) for an 

oxide thickness of tox � 12 nm � 120 Å.

M O S

(a)

M O S

(c)

M O S

(b)

M O S

(d)

Figure P10.1 | Figure for Problem 10.1.
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10.9 Consider an aluminum gate–silicon dioxide–p-type silicon MOS structure with 

tox � 450 Å. The silicon doping is Na � 2 � 1016 cm�3 and the fl at-band voltage is 

VFB � �1.0 V. Determine the fi xed oxide charge  Q  ss  �  .

10.10 Consider a MOS device with a p-type silicon substrate with Na � 2 � 1016 cm�3. 

The oxide thickness is tox � 15 nm � 150 Å and the equivalent oxide charge is 

 Q  ss  �   � 7 � 1010 cm�2. Calculate the threshold voltage for (a) an n� polysilicon gate, 

(b) a p� polysilicon gate, and (c) an aluminum gate.

10.11 Repeat Problem 10.10 for an n-type silicon substrate with a doping of 

Nd � 3 � 1015 cm�3.

10.12 A 400-Å oxide is grown on p-type silicon with Na � 5 � 1015 cm�3. The fl at-band 

voltage is �0.9 V. Calculate the surface potential at the threshold inversion point 

as well as the threshold voltage assuming negligible oxide charge. Also fi nd the 

 maximum space charge width for this device.

10.13 A MOS device with an aluminum gate is fabricated on a p-type silicon substrate. 

The oxide thickness is tox � 22 nm � 220 Å and the trapped oxide charge is 

 Q  ss  �   � 4 � 1010 cm�2. The measured threshold voltage is VT � �0.45 V. Determine 

the p-type doping concentration.

10.14 Consider a MOS device with the following parameters: p� polysilicon gate, n-type 

silicon substrate, tox � 18 nm � 180 Å, and  Q  ss  �   � 4 � 1010 cm�2. Determine the 

silicon doping concentration such that the threshold voltage is in the range 

�0.35 � VTP � �0.25 V.

10.15 Repeat Problem 10.13 for an n-type silicon substrate if the measured threshold 

voltage is VT � �0.975 V. Determine the n-type doping concentration.

10.16 An n� polysilicon gate–silicon dioxide–silicon MOS capacitor has an oxide thickness 

of tox � 18 nm � 180 Å and a doping of Na � 1015 cm�3. The oxide charge density is  

Q  ss  �   � 6 � 1010 cm�2. Calculate the (a) fl at-band voltage and (b) threshold voltage.

10.17 An n-channel depletion mode MOSFET with an n� polysilicon gate is shown in 

Figure 10.41. The n-channel doping is Nd � 1015 cm�3 and the oxide thickness is 

tox � 500 Å. The equivalent fi xed oxide charge is  Q  ss  �   � 1010 cm�2. The n-channel 

thickness tc is equal to the maximum induced space charge width. (Disregard the 

space charge region at the n-channel–p-substrate junction.) (a) Determine the chan-

nel thickness tc and (b) calculate the threshold voltage.

10.18 Consider a MOS capacitor with an n� polysilicon gate and n-type silicon substrate. 

Assume Na � 1016 cm�3 and let EF � Ec � 0.2 eV in the n� polysilicon. Assume the 

oxide has a thickness of tox � 300 Å. Also assume that �� (polysilicon) � �� (single-

crystal silicon). (a) Sketch the energy-band diagrams (i) for VG � 0 and (ii) at fl at band. 

(b) Calculate the metal–semiconductor work function difference. (c) Calculate the 

threshold voltage for the ideal case of zero fi xed oxide charge and zero interface states.

*10.19 The threshold voltage of an n-channel MOSFET is given by Equation (10.31a). 

Plot VT versus temperature over the range 200 � T � 450 K. Consider both an alu-

minum gate and an n� polysilicon gate. Assume the work functions are independent 

of temperature and use device parameters similar to those in Example 10.4.

*10.20 Plot the threshold voltage of an n-channel MOSFET versus p-type substrate doping 

concentration similar to Figure 10.21. Consider both n� and p� polysilicon gates. 

Use reasonable device parameters.

*Asterisks next to problems indicate problems that are more diffi cult.
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436 CHAPTER 10   Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

*10.21 Plot the threshold voltage of a p-channel MOSFET versus n-type substrate doping 

concentration similar to Figure 10.22. Consider both n� and p� polysilicon gates. 

Use reasonable device parameters.

10.22 Consider an NMOS device with the parameters given in Problem 10.12. Plot VT 

 versus tox over the range 20 � tox � 500 Å.

Section 10.2  Capacitance–Voltage Characteristics

10.23 An ideal MOS capacitor with an n� polysilicon gate has a silicon dioxide thickness 

of tox � 12 nm � 120 Å on a p-type silicon substrate doped at Na � 1016 cm�3. De-

termine the capacitance Cox,  C FB  �  ,  C min  �  , and C�(inv) at (a) f � 1 Hz and (b) f � 1 MHz. 

(c) Determine VFB and VT. (d) Sketch C��Cox versus VG for parts (a) and (b).

10.24 Repeat Problem 10.23 for an ideal MOS capacitor with a p� polysilicon gate and an 

n-type silicon substrate doped at Nd � 5 � 1014 cm�3.

*10.25 Using superposition, show that the shift in the fl at-band voltage due to a fi xed 

charge distribution �(x) in the oxide is given by

 �VFB � �   
1 
 _ 

Cox 
    
∫

0

 
 
tox
 
     
x�(x) 

 _ tox 
   dx

10.26 Using the results of Problem 10.25, calculate the shift in fl at-band voltage for 

tox � 20 nm � 200 Å for the following oxide charge distributions: 

(a)  Q  ss  �   � 8 � 1010 cm�2 is entirely located at the oxide–semiconductor interface, 

(b)  Q  ss  �   � 8 � 1010 cm�2 is uniformly distributed throughout the oxide, and 

(c)  Q  ss  �   � 8 � 1010 cm�2 forms a triangular distribution with the peak at the oxide–

semiconductor interface and is zero at the metal–oxide interface.

10.27 An ideal MOS capacitor is fabricated by using intrinsic silicon and an n� polysili-

con gate. (a) Sketch the energy-band diagram through the MOS structure under 

fl at-band conditions. (b) Sketch the low-frequency C–V characteristics from nega-

tive to  positive gate voltage.

10.28 Consider a MOS capacitor with a p-type substrate. Assume that donor-type 

 interface traps exist only at midgap (i.e., at EFi). Sketch the high-frequency C–V 

curve from  accumulation to inversion. Compare this sketch to the ideal C–V plot.

10.29 Consider an SOS capacitor as shown in Figure P10.29. Assume the SiO2 is ideal 

(no trapped charge) and has a thickness of tox � 500 Å. The doping concentra-

tions are Nd � 1016 cm�3 and Na � 1016 cm�3. (a) Sketch the energy-band dia-

gram through the device for (i) fl at band, (ii) VG � �3 V, and (iii) VG � �3 V. 

(b) Calculate the fl at-band voltage. (c) Estimate the voltage across the oxide for 

(i) VG � �3 V and (ii) VG � �3 V. (d) Sketch the high-frequency C–V character-

istic curve.

Figure P10.29 | Figure for Problem 10.29.

VG n type p type

tox

SiO2
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10.30 The high-frequency C–V characteristic curve of a MOS capacitor is shown in Fig-

ure P10.30. The area of the device is 2 � 10�3 cm2. The metal–semiconductor work 

function difference is �ms � �0.50 V, the oxide is SiO2, the semiconductor is sili-

con, and the semiconductor doping concentration is 2 � 1016 cm�3. (a) Is the semi-

conductor n or p type? (b) What is the oxide thickness? (c) What is the  equivalent 

trapped oxide charge density? (d) Determine the fl at-band capacitance.

10.31 Consider the high-frequency C–V plot shown in Figure P10.31. (a) Indicate which 

points correspond to fl at-band, inversion, accumulation, threshold, and depletion 

modes. (b) Sketch the energy-band diagram in the semiconductor for each condition.

Section 10.3  The Basic MOSFET Operation

10.32 An expression that includes the inversion charge density is given by 

Equation (10.59). Consider the defi nition of threshold voltage and show that the 

inversion charge density goes to zero at the drain terminal at saturation. (Hint: Let 

Vx � VDS � VDS(sat).)

Figure P10.30 | Figure for Problem 10.30.

VFB
� �0.8 V

VG
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CFB

200

20

0
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C�

1 2

3

4

5

0

Figure P10.31 | Figure for Problem 10.31.
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10.33 Consider an n-channel MOSFET with the following parameters:  k  n  �  � 0.18 mA/V2, 

W�L � 8, and VT � 0.4 V. Determine the drain current ID for (a) VGS � 0.8 V, 

VDS � 0.2 V; (b) VGS � 0.8 V, VDS � 1.2 V; (c) VGS � 0.8 V, VDS � 2.5 V; and 

(d) VGS � 1.2 V, VDS � 2.5 V.

10.34 A p-channel MOSFET has the following parameters:  k p  �  � 0.10 mA/V2, W�L � 15, and 

VT � �0.4 V. Calculate the drain current ID for (a) VSG � 0.8 V, VSD � 0.25 V; (b) VSG � 

0.8 V, VSD � 1.0 V; (c) VSG � 1.2 V, VSD � 1.0 V; and (d) VSG � 1.2 V, VSD � 2.0 V.

10.35 The parameters of an n-channel MOSFET are  k  n  �  � 0.6 mA/V2 and VT � 0.8 V. The 

drain current is 1 mA with applied voltages of VGS � 1.4 V, VSB � 0, and VDS � 4 V. 

(a) What is the W�L value? (b) What is the value of ID for VGS � 1.85 V, VSB � 0, and 

VDS � 6 V? (c) Determine the value of ID for VGS � 1.2 V, VSB � 0, and VDS � 0.15 V.

10.36 Consider a p-channel MOSFET with the following parameters:  k p  �  � 0.12 mA/V2 

and W�L � 20. The drain current is 100 �A with applied voltages of VSG � 0, 

VBS � 0, and VSD � 1.0 V. (a) Determine the VT value. (b) Determine the drain 

current ID for VSG � 0.4 V, VSB � 0, and VSD � 1.5 V. (c) What is the value of ID for 

VSG � 0.6 V, VSB � 0, and VSD � 0.15 V?

10.37 An ideal n-channel MOSFET has the following parameters: VT � 0.45 V, 

�n � 425 cm2/V-s, tox � 11 nm � 110 Å, W � 20 �m, and L � 1.2 �m. (a) Plot ID 

versus VDS for 0 � VDS � 3 V and for VGS � 0, 0.6, 1.2, 1.8, and 2.4 V. Indicate on 

each curve the VDS (sat) point. (b) Plot  �
______

 ID (sat)   versus VGS for 0 � VGS � 2.4 V. 

(c) Plot ID versus VGS for 0 � VGS � 2.4 V and for VDS � 0.1 V.

10.38 Consider an ideal p-channel MOSFET with the following parameters: VT � �0.35 V, 

�p � 210 cm2/V-s, tox � 11 nm � 110 Å, W � 35 �m, and L � 1.2 �m. (a) Plot ID 

versus VSD for 0 � VSD � 3 V and for VSG � 0, 0.6, 1.2, 1.8, and 2.4 V. Indicate on 

each curve the VSD (sat) point. (b) Plot  �
______

 ID (sat)   versus VSG for 0 � VSG � 2.4 V. 

(c) Plot ID versus VSG for 0 � VSG � 2.4 V and for VSD � 0.1 V.

10.39 Consider an n-channel MOSFET with the same parameters as described in Problem 10.37 

except that VT � �0.8 V. (a) Plot ID versus VDS for 0 � VDS � 3 V and for VGS � �0.8, 

0, �0.8, and �1.6 V. (b) Plot  �
______

 ID (sat)   versus VGS for �0.8 � VGS � 1.6 V.

10.40 Consider an n-channel enhancement mode MOSFET biased as shown in 

Figure P10.40. Sketch the current–voltage characteristics, ID versus VDS, for 

(a) VGD � 0, (b) VGD � VT�2, and (c) VGD � 2VT.

10.41 Figure P10.41 shows the cross section of an NMOS device that includes source 

and drain resistances. These resistances take into account the bulk n� semiconduc-

tor  resistance and the ohmic contact resistance. The current–voltage relations can 

be generated by replacing VGS by VG�IDRS and VDS by VD�ID(RS � RD) in the ideal 

equations. Assume transistor parameters of VT � 1 V and Kn � 1 mA/V2. (a) Plot 

the following curves on the same graph: ID versus VD for VG � 2 V and VG � 3 V 

over the range 0 � VD  � 5 V for (i ) RS � RD � 0 and (ii ) RS � RD � 1 k�. 

(b) Plot the following curves on the same graph:  �
__

 ID
   versus VG for VD � 0.1 V and 

VD � 5 V over the range 0 � ID � 1 mA for (i) RS � RD � 0 and (ii) RS � RD � 1 k�.

10.42 An n-channel MOSFET has the same parameters as given in Problem 10.37. The 

gate terminal is connected to the drain terminal. Plot ID versus VDS for 0 � VDS � 
5 V. Determine the range of VDS over which the transistor is biased in the nonsatura-

tion and saturation regions.

10.43 The channel conductance for a p-channel MOSFET is defi ned as

  gd �       �ID 
 _ 

�VSD

    �  VSD→0
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 Plot the channel conductance for the p-channel MOSFET described in 

Problem 10.38 for 0 � VSG � 2.4.

10.44 The transconductance of an n-channel MOSFET is found to be gm � �ID��VGS � 

1.25 mA/V when measured at VDS � 50 mV. The threshold voltage is VT � 0.3 V. 

(a) Determine the conductance parameter Kn. (b) What is the current at VGS � 0.8 V 

and VDS � 50 mV? (c) Determine the current at VGS � 0.8 V and VDS � 1.5 V.

10.45 The experimental characteristics of an ideal n-channel MOSFET biased in the   satu ration 

region are shown in Figure P10.45. If W�L � 10 and tox � 425 Å, determine VT and �n.

10.46 One curve of an n-channel MOSFET is characterized by the following parameters: 

ID (sat) � 2 � 10�4 A, VDS (sat) � 4 V, and VT � 0.8 V.

 (a)  What is the gate voltage?

 (b)  What is the value of the conduction parameter?

 (c)  If VG � 2 V and VDS � 2 V, determine ID.

 (d)  If VG � 3 V and VDS � 1 V, determine ID.

 (e)   For each of the conditions given in (c) and (d), sketch the inversion charge 

density and depletion region through the channel.

p type

S

G

D

VDS

n� n�

ID

VGD� �

Figure P10.40 | Figure for Problem 10.40.

RS RD

VG VD

D
G

p type

Channel

S

Figure P10.41 | Figure for Problem 10.41.

Figure P10.45 | Figure for Problem 10.45.
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10.47 (a) An ideal n-channel MOSFET has parameters tox � 18 nm � 180 Å, �n � 450 cm2/V-s, 

and VT � 0.4 V. The measured current in the saturation region is ID (sat) � 0.8 mA 

when biased at VGS � 2.0 V. Determine the (i) process conduction parameter and 

(ii) width-to-length ratio. (b) An ideal p-channel MOSFET has the same oxide 

thickness as given in part (a), a mobility of �p � 210 cm2/V-s, and a threshold 

voltage of VT � �0.4 V. The measured current in the saturation region is also 

ID (sat) � 0.8 mA when biased at VSG � 2.0 V. Determine the (i) process conduction 

parameter and (ii) width-to-length ratio.

10.48 Consider the n-channel MOSFET described in Problem 10.37. (a) Calculate gmL for 

VDS � 0.10 V. (b) Find gms for VGS � 1.5 V.

10.49 Consider the p-channel MOSFET described in Problem 10.38. (a) Calculate gmL for 

VSD � 0.10 V. (b) Find gms for VSG � 1.5 V.

10.50 An n-channel MOSFET has the following parameters: Na � 5 � 1016 cm�3, 

tox � 15 nm � 150 Å, �n � 450 cm2/V-s, VFB � �0.5 V, L � 1.2 �m, and W � 8 �m. 

(a) Determine the body-effect coeffi cient. (b) Plot  �
______

 ID (sat)   versus VGS over the 

range 0 � ID � 0.5 mA for source-to-body voltages of (i) VSB � 0, (ii) VSB � 1 V, 

(iii) VSB � 2 V, and (iv) VSB � 4 V. (c) What are the threshold voltages for the con-

ditions given in part (b)?

10.51 The substrate doping and body-effect coeffi cient of an n-channel MOSFET are 

Na � 1016 cm�3 and � � 0.12 V1�2, respectively. The threshold voltage is found 

to be VT � 0.5 V when biased at VSB � 2.5 V. What is the threshold voltage at 

VSB � 0?

10.52 A p-channel MOSFET has an oxide thickness of tox � 20 nm � 200 Å and a sub-

strate doping of Nd � 5 � 1015 cm�3. (a) Find the body-effect coeffi cient. (b) Deter-

mine the body-to-source voltage, VBS, such that the shift in threshold voltage, �VT, 

from the VBS � 0 curve is �VT � �0.22 V.

10.53 An NMOS device has the following parameters: n� poly gate, tox � 400 Å, Na � 

1015 cm�3, and  Q ss  �   � 5 � 1010 cm�2. (a) Determine VT. (b) Is it possible to apply a 

VSB voltage such that VT � 0? If so, what is the value of VSB?

10.54 Investigate the threshold voltage shift due to substrate bias. The threshold shift is 

given by Equation (10.81). Plot �VT versus VSB over the range 0 � VSB � 5 V for 

 several values of Na and tox. Determine the conditions for which �VT is limited to a 

maximum value of 0.7 V over the range of VSB.

Section 10.4  Frequency Limitations

10.55 Consider an ideal n-channel MOSFET with a width-to-length ratio of (W�L) � 10, 

an electron mobility of �n � 400 cm2 /V-s, an oxide thickness of tox � 475 Å, and 

a threshold voltage of VT � �0.65 V. (a) Determine the maximum value of source 

resistance so that the saturation transconductance gms is reduced by no more than 

20 percent from its ideal value when VGS � 5 V. (b) Using the value of rs calculated 

in part (a), how much is gms reduced from its ideal value when VGS � 3 V?

10.56 An n-channel MOSFET has the following parameters:

 �n � 400 cm2 /V-s     tox � 500 Å

 L � 2 �m      W � 20 �m

 VT � �0.75 V
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 Assume the transistor is biased in the saturation region at VGS � 4 V. (a) Calculate 

the ideal cutoff frequency. (b) Assume that the gate oxide overlaps both the source 

and drain contacts by 0.75 �m. If a load resistance of RL � 10 k� is connected to 

the output, calculate the cutoff frequency.

10.57 Repeat Problem 10.56 for the case when the electrons are traveling at a saturation 

velocity of vsat � 4 � 106 cm /s.

Summary and Review

*10.58 Design an ideal silicon n-channel MOSFET with a polysilicon gate to have a 

threshold voltage of VT � 0.65 V. Assume an oxide thickness of tox � 300 Å, a 

channel length of L � 1.25 �m, and a nominal value of  Q  ss  �   � 1.5 � 1011 cm�2. It 

is desired to have a drain current of ID � 50 �A at VGS � 2.5 V and VDS � 0.1 V. 

Determine the substrate doping concentration, channel width, and type of gate 

required.

*10.59 Design an ideal silicon n-channel depletion mode MOSFET with a polysilicon 

gate to have a threshold voltage of VT � �0.65 V. Assume an oxide thickness 

of tox � 300 Å, a channel length of L � 1.25 �m, and a nominal value of 

 Q  ss  �   � 1.5 � 1011 cm�2. It is desired to have a drain current of ID (sat) � 50 �A at 

VGS � 0. Determine the type of gate, substrate doping concentration, and channel 

width required.

*10.60 Consider the CMOS inverter circuit shown in Figure 10.59a. Ideal n- and p-channel 

devices are to be designed with channel lengths of L � 2.5 �m and oxide thick-

nesses of tox � 450 Å. Assume the inversion channel mobilities are one-half the 

bulk values. The threshold voltages of the n- and p-channel transistors are to be 

�0.5 V and �0.5 V, respectively. The drain current is to be ID � 0.256 mA when 

the input voltage to the inverter is 1.5 V and 3.5 V with VDD � 5 V. The gate mate-

rial is to be the same in each device. Determine the type of gate, substrate doping 

concentrations, and channel widths.

*10.61 A complementary pair of ideal n-channel and p-channel MOSFETs is to be de-

signed to produce the same I–V characteristics when they are equivalently biased. 

The devices are to have the same oxide thickness of 250 Å and the same channel 

length of L � 2 �m. Assume the SiO2 layer is ideal. The n-channel device is to 

have a channel width of W � 20 �m. Assume constant inversion layer mobilities 

of �n � 600 cm2 /V-s and �p � 220 cm2 /V-s. (a) Determine p-type and n-type sub-

strate doping concentrations. (b) What are the threshold voltages? (c) What is the 

width of the p-channel device?
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11
Metal–Oxide–Semiconductor 

Field-Effect Transistor: 
Additional Concepts

I
n this chapter we present additional concepts that are commonly encountered 

in metal–oxide–semiconductor fi eld-effect transistors (MOSFETs). These con-

cepts  include nonideal effects, small device geometry, breakdown, threshold 

voltage adjustment by ion implantation, and radiation effects. Although there are a 

multitude of  details that become important when fabricating MOSFETs in ICs, we 

are able to consider only a few here. Many additional details can be found in more 

advanced texts. ■

11.0 | PREVIEW
In this chapter, we will:

■ Describe and analyze subthreshold conduction, which is the phenomenon 

whereby current is induced in the channel before the defi ned threshold voltage 

is reached.

■ Analyze channel length modulation, which is a characteristic of short-channel 

lengths and leads to a fi nite output resistance.

■ Consider the effects of a decrease in carrier mobility due to increasing gate 

voltage.

■ Analyze the effects of carrier saturation velocity. Carriers can easily reach their 

saturation velocity in short-channel devices.

■ Discuss MOSFET scaling, which describes how various parameters must be 

changed as device size is decreased.

■ Consider the deviations in threshold voltage due to small geometry devices, 

including short channel length devices and small channel width devices.

C H A P T E R
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■ Describe and analyze various voltage breakdown mechanisms in MOSFETs.

■ Describe and analyze the technique of threshold voltage adjustment by ion 

implantation.

■ Consider the introduction of trapped oxide charges by ionizing radiation and 

hot electron effects.

11.1 | NONIDEAL EFFECTS
As with any semiconductor device, the experimental characteristics of MOSFETs 

deviate to some degree from the ideal relations that have been theoretically derived 

using the various assumptions and approximations. In this section, we consider fi ve 

effects that cause deviations from the assumptions used in the ideal derivations. 

These effects are subthreshold conduction, channel length modulation, mobility 

variations, velocity saturation, and ballistic transport.

11.1.1 Subthreshold Conduction

The ideal current–voltage relationship predicts zero drain current when the gate-to-

source voltage is less than or equal to the threshold voltage. Experimentally, ID is not 

zero when VGS � VT. Figure 11.1 shows a comparison between the ideal characteris-

tic that was derived, and the experimental results. The drain current, which exists for 

VGS � VT, is known as the subthreshold current.
 Figure 11.2 shows the energy-band diagram of an MOS structure with a p-type 

substrate biased so that �s � 2�fp. At the same time, the Fermi level is closer to the 

conduction band than the valence band, so the semiconductor surface develops the 

Figure 11.1 | Comparison of ideal 

and experimental plots of  �
__

 ID
   

versus VGS.

Experimental

Ideal

VT
VGS

ID

Figure 11.2 | Energy-band diagram 

when �fp 
� �s � 2�fp.

e�s
e�fp

EF

EFi

Ec

Ev
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characteristics of a lightly doped n-type material. We would expect, then, to  observe 

some conduction between the n� source and drain contacts through this weakly in-

verted channel. The condition for �fp � �s � 2�fp is known as weak  inversion.

 Figure 11.3 shows the surface potential along the length of the channel at 

 accumulation, weak inversion, and threshold for the case when a small drain voltage is 

applied. The bulk p-substrate is assumed to be at zero potential. Figure 11.3b, c shows 

the accumulation and weak inversion cases. There is a potential barrier  between the 

n� source and channel region which the electrons must overcome in order to generate 

a channel current. A comparison of these barriers with those in pn junctions would 

suggest that the channel current is an exponential function of VGS. In the inversion 

mode, shown in Figure 11.3d, the barrier is so small that we lose the exponential 

dependence, since the junction is more like an ohmic contact.

 The actual derivation of the subthreshold current is beyond the scope of this 

chapter. We can write that

 ID (sub) �  � exp  �   eVGS  _ 
kT

   �  �  ·  � 1 � exp  �   �eVDS  __ 
kT

   �  �  (11.1)

If VDS is larger than a few (kT�e) volts, then the subthreshold current is independent 

of VDS.

 Figure 11.4 shows the exponential behavior of the subthreshold current for sev-

eral body-to-source voltages. Also shown on the curves are the threshold voltage 

values. Ideally, a change in gate voltage on approximately 60 mV produces an order 

of mag nitude change in the subthreshold current. A detailed analysis of the sub-

threshold condition shows that the slope of the ID versus VDS curve is a function of 

the semiconductor doping and is also a function of the interface state density. The 

Figure 11.3 | (a) Cross section along channel length of n-channel MOSFET. Energy-band diagrams along channel 

length at (b) accumulation, (c) weak inversion, and (d) inversion.
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 measurement of the slope of these curves has been used to experimentally determine 

the oxide–semiconductor interface state density.

 If a MOSFET is biased at or even slightly below the threshold voltage, the drain 

current is not zero. The subthreshold current may add signifi cantly to power dissipa-

tion in a large-scale integrated circuit in which hundreds or thousands of MOSFETs 

are used. The circuit design must include the subthreshold current or  ensure that the 

MOSFET is biased suffi ciently below the threshold voltage in the “off ” state.

11.1.2 Channel Length Modulation

We assumed in the derivation of the ideal current–voltage relationship that the chan-

nel length L was a constant. However, when the MOSFET is biased in the satu-

ration region, the depletion region at the drain terminal extends laterally into the 

channel,  reducing the effective channel length. Since the depletion region width is 

bias  de pendent, the effective channel length is also bias dependent and is modulated 

by the drain-to-source voltage. This channel length modulation effect is shown in 

Fig ure 11.5 for an n-channel MOSFET.

 The depletion width extending into the p-region of a pn junction under zero bias 

can be written as

 xp �  �
______

   
2�s �f p  __ 

eNa 

     (11.2)

Figure 11.4 | Subthreshold current–

voltage characteristics for several values 

of substrate voltage (the threshold 

voltage is indicated on each curve). 
(From Schroder [17].)
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 11.1   Nonideal Effects 447

For a one-sided n�p junction, essentially all of the applied reverse-biased voltage is 

across the low-doped p region. The space charge width of the drain–substrate junc-

tion is approximately

 xp �  �
_____________

    
2�s  _ 
eNa 

   (�f p � VDS)   (11.3)

However, the space charge region defi ned by � L, as shown in Figure 11.5, does 

not begin to form until VDS 	 VDS (sat). As a fi rst approximation, we can write that 

� L is the total space charge width minus the space charge width that exists when 

VDS � VDS (sat), or

 � L �  �
____

   
2�s  _ 
eNa 

      �  �
___________________

  �f p � VDS (sat) � �VDS
   �  �

____________

  �f p � VDS (sat)   �  (11.4)

where

 �VDS � VDS � VDS (sat) (11.5)

The applied drain-to-source voltage is VDS and we are assuming that VDS 	 VDS (sat).

 As a second approximation at determining � L, we can consider Figure 11.6 and 

revisit the one-dimensional Poisson’s equation. The electric fi eld Esat is the lateral 

electric fi eld at the point where the inversion layer charge is pinched off. Neglecting 

any charges that exist due to current, we can write

   dE _ 
dx

   �   
� (x)

 _ �s 

   (11.6)

where � (x) � �eNa and is a constant for a uniformly doped substrate. Integrating 

Equation (11.6) and applying the boundary conditions give the electric fi eld in the 

space charge region defi ned by � L:

 E � �   
eNa x _ �s 

   � Esat (11.7)

Figure 11.5 | Cross-section of an n-channel MOSFET showing 

the channel length modulation effect.
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The potential in this region is

 �(x) � � 

∫
 

 

 

 
 

 

 

 
E dx �   

eNa x2

 _ 
2�s 

   � Esat x � C1 (11.8)

where C1 is a constant of integration. The boundary conditions are �(x � 0) � 

VDS (sat) and �(x � � L) � VDS. Substituting these boundary conditions into Equa-

tion (11.8), we obtain

 VDS �   
eNa(� L)2

 __ 
2�s 

   � Esat (� L) � VDS (sat) (11.9)

Solving for � L, we can write

 � L �  �
____

   
2�s  _ 
eNa 

      �  �
___________________

  �sat � [VDS � VDS(sat)]   �  �
___

 �sat    �  (11.10)

where

 �sat �   
2�s  _ 
eNa 

   ·   �   Esat _ 
2
   �  2 

In general, the value of Esat is in the range 104 � Esat � 2 
 105 V /cm.

 Other models used to determine � L include the negative charges due to the 

drain current and also include two-dimensional effects. These models are not consid-

ered here.

 Since the drain current is inversely proportional to the channel length, we may 

write

  I D  �   �  �   L __ 
L � � L

   �  ID  (11.11)

where  I D  �   is the actual drain current and ID is the ideal drain current. Since � L is a 

function of VDS,  I D  �   is now also a function of VDS even though the transistor is biased 

in the saturation region.

Figure 11.6 | Expanded view of cross section near the 

drain terminal of an n-channel MOSFET showing the 

channel length modulation effect.
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 11.1   Nonideal Effects 449

 Since  I D  �   is now a function of VDS, the output resistance is no longer infi nite. The 

drain current in the saturation region can be written as

 I�D �   
 k n  �   _ 
2
   ·   W _ 

L
   ·  � (VGS � VT)

2 (1 � �VDS) �  (11.12)

where � is the channel length modulation parameter.
 The output resistance is given by

 ro �   �   �I�D  _ 
�VDS 

   �  �1

  �   �    k n  �  _ 
2
   ·   W _ 

L
   · (VGS � VT)

2 · � 	  �1

  (11.13a)

Since � is normally small, Equation (11.13a) can be written as

 ro 
   1 _ 
�ID

   (11.13b)

 Figure 11.7 shows some typical I�D versus VDS curves with positive slopes in the 

saturation region due to channel length modulation. As the MOSFET dimensions 

become smaller, the change in the channel length � L becomes a larger fraction of the 

original length L, and the channel length modulation becomes more severe.

Figure 11.7 | Current–voltage 

characteristics of a MOSFET showing 

short-channel effects. 
(From Sze [22].)
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   EXAMPLE 11.1Objective: Determine the increase in drain current due to short channel modulation.

 Consider an n-channel MOSFET with a substrate doping concentration of Na � 2 
 

1016 cm�3, a threshold voltage of VT � 0.4 V, and a channel length of L � 1 �m. The device 

is biased at VGS � 1 V and VDS � 2.5 V. Determine the ratio of actual drain current compared 

to the ideal value.

■ Solution
We fi nd

 �f p � Vt ln  �   Na  _ ni 
   �  � (0.0259) ln  �   2 
 1016

 __ 
1.5 
 1010

   �  � 0.3653 V

VDS (sat) � VGS � VT � 1.0 � 0.4 � 0.6 V
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11.1.3 Mobility Variation

In the derivation of the ideal I–V relationship, we explicitly assumed that the mobil-

ity was a constant. However, this assumption must be modifi ed for two reasons. The 

fi rst effect to be considered is the variation in mobility with gate voltage. The second 

 reason for a mobility variation is that the effective carrier mobility decreases as the 

carrier approaches the velocity saturation limit. This effect is discussed in the next 

section.

 The inversion layer charge is induced by a vertical electric fi eld, which is shown 

in Figure 11.8 for an n-channel device. A positive gate voltage produces a force on 

the electrons in the inversion layer toward the surface. As the electrons travel through 

the channel toward the drain, they are attracted to the surface, but then are repelled 

by localized coulombic forces. This effect, schematically shown in Figure 11.9, is 

called surface scattering. The surface scattering effect reduces mobility. If there is a 

positive fi xed oxide charge near the oxide-semiconductor interface, the mobility will 

be further reduced due to the additional coulomb interaction.

and

 �VDS � VDS � VDS (sat) � 2.5 � 0.6 � 1.9 V

Using Equation (11.4), we determine

 �L �  �
____

   
2�s  _ 
eNa 

      �  �
___________________

  �f p � VDS (sat) � �VDS
   �  �

____________

  �f p � VDS (sat)   �  

  �  �
____________________

    
2(11.7)(8.85 
 10�14)

  ____  
(1.6 
 10�19)(2 
 1016)

      �  �
_________________

  0.3653 � 0.6 � 1.9   �  �
___________

  0.3653 � 0.6   � 

 � 1.807 
 10�5 cm

or

 � L � 0.1807 �m

Then

  
 I D  �    _ 
ID 

   �   L __ 
L � � L

   �   1 __ 
1 � 0.1807

   � 1.22

■ Comment
The actual drain current increases as the effective channel length decreases when the transistor 

is biased in the saturation region.

■ EXERCISE PROBLEM
Ex 11.1  An n-channel MOSFET has the same properties as described in Example 11.1 

 except for the channel length. The transistor is biased at VGS � 0.8 V and VDS � 

2.5 V. Find the minimum channel length such that the ratio of actual drain current 

to the ideal drain current due to channel length modulation is no larger than 1.35.

(Ans. L � 0.698 �m)
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 11.1   Nonideal Effects 451

 The relationship between the inversion charge mobility and the transverse elec-

tric fi eld is usually measured experimentally. An effective transverse electric fi eld 

can be defi ned as

 Eeff �   1 _ �s 

    � � Q SD  �   (max)� �   1 _ 
2
   Q�n  �  (11.14)

The effective inversion charge mobility can be determined from the channel con-

ductance as a function of gate voltage. Figure 11.10 shows the effective electron 

mobility at T � 300 K for different doping levels and different oxide thicknesses. 

The  effective mobility is only a function of the electric fi eld at the inversion layer 

and is independent of oxide thickness. The effective mobility may be represented by

 �eff � �0   �   Eeff _ 
E0

   �  �1 /3

  (11.15)

where �0 and E0 are constants determined from experimental results.

Figure 11.8 | Vertical electric fi eld in 

an n-channel MOSFET.
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 The effective inversion charge mobility is a strong function of temperature 

 because of lattice scattering. As the temperature is reduced, the mobility increases.

EXAMPLE 11.2 Objective: Calculate the effective electric fi eld at threshold for a given semiconductor 

doping concentration.

 Consider a p-type silicon substrate at T � 300 K doped to Na � 3 
 1016 cm�3.

■ Solution
From the results of Chapter 10, we can calculate

 �f p � Vt ln  �   Na  _ ni 
   �  � (0.0259) ln  �   3 
 1016

 __ 
1.5 
 1010

   �  � 0.376 V

and

 xdT �   �   4�s �f p  __ 
eNa 

   	  1 /2

  �   �   4(11.7)(8.85 
 10�14)(0.376)
   _____   

(1.6 
 10�19)(3 
 1016)
   	  1 /2

 

which is xdT � 0.18 �m. Then

  �  Q SD  �   (max) �  � eNa xdT � 8.64 
 10�8 C /cm2

At the threshold inversion point, we may assume that Q�n � 0, so the effective electric fi eld 

from Equation (11.14) is found as

 Eeff �   1 _ �s 

    �  Q SD  �   (max) �  �   8.64 
 10�8

  ____  
(11.7)(8.85 
 10�14)

   � 8.34 
 104 V /cm

■ Comment
We can see, from Figure 11.10, that this value of effective transverse electric fi eld at the sur-

face is suffi cient for the effective inversion charge mobility to be signifi cantly less than the 

bulk semiconductor value.

■ EXERCISE PROBLEM
Ex 11.2  Determine (using Figure 11.10) the effective inversion layer electron mobility for 

a surface electric fi eld of Eeff � 2 
 105 V /cm. 

(Ans. �n 
 550 cm
2
 /V-s)

The effective mobility is a function of gate voltage through the inversion charge den-

sity in Equation (11.14). As the gate voltage increases, the carrier mobility decreases 

even further.

11.1.4  Velocity Saturation

In the analysis of the long-channel MOSFET, we assume the mobility to be con-

stant, which means that the drift velocity increases without limit as the electric fi eld 

increases. In this ideal case, the carrier velocity increases until the ideal current is 

attained. However, we have seen that the carrier velocity saturates with  increasing 

electric fi eld. Velocity saturation will become more prominent in shorter-channel 

devices since the corresponding horizontal electric fi eld is generally larger.
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 11.1   Nonideal Effects 453

 In the ideal I–V relationship, current saturation occurs when the inversion charge 

density becomes zero at the drain terminal, or when

 VDS � VDS (sat) � VGS � VT (11.16)

for the n-channel MOSFET. However, velocity saturation can change this saturation 

condition. Velocity saturation will occur when the horizontal electric fi eld is ap-

proximately 104 V /cm. If VDS � 5 V in a device with a channel length of L � 1 �m, 

the average electric fi eld is 5 
 104 V /cm. Velocity saturation, then, is very likely to 

occur in short-channel devices.

 The modifi ed ID(sat) characteristics are described approximately by

 ID (sat) � W Cox (VGS � VT)vsat (11.17)

where vsat is the saturation velocity (approximately 107 cm /s for electrons in bulk 

silicon) and Cox is the gate oxide capacitance per cm2. The saturation velocity will 

decrease somewhat with applied gate voltage because of the vertical electric fi eld 

and surface scattering. Velocity saturation will yield an ID(sat) value smaller than 

that predicted by the ideal relation, and it will yield a smaller VDS (sat) value than 

predicted. The ID(sat) current is also approximately linear with VGS, instead of having 

the ideal square law dependence predicted previously.

 There are several models of mobility versus electric fi eld. One particular relation 

that is commonly used is

 � �   
�eff ___  

   � 1 �   �   �eff E
 _ vsat

   �  2  �  1 /2

 

   (11.18)

Figure 11.11 shows a comparison of drain current versus drain-to-source voltage 

 characteristics for constant mobility and for fi eld-dependent mobility. The smaller 

 values of ID(sat) and the approximate linear dependence on VGS may be noted for the 

fi eld-dependent mobility curves.

 The transconductance is found from

 gms �   
�ID(sat)

 __ 
�VGS 

   � WCox vsat (11.19)

which is now independent of VGS and VDS when velocity saturation occurs. The 

drain current is saturated by the velocity saturation effect, which leads to a constant 

transconductance.

 When velocity saturation occurs, the cutoff frequency is given by

 fT �   
gm  __ 

2� CG 

   �   
WCox vsat __ 

2� (Cox WL)
   �   

υsat _ 
2�L

   (11.20)

where the parasitic capacitances are assumed to be negligible.

11.1.5 Ballistic Transport

Scattering events in a semiconductor limit the velocity of carriers to an average drift 

velocity as discussed in Chapter 5. The average drift velocity is a function of the 
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454 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

mean time between collisions or the mean distance between scattering events. In the 

long-channel device, the channel length L is much longer than the mean distance 

between collisions l, so that an average carrier drift velocity exists. As the MOSFET 

channel length is  reduced, the mean distance between collisions l may become com-

parable to L so that the previous analysis may not be valid. If the channel length is 

further reduced so that L � l, then a large fraction of carriers could travel from the 

source to the drain without experiencing a scattering event. This motion of carriers 

is called ballistic transport.
 Ballistic transport means that carriers travel faster than the average drift velo-

city or the saturation velocity, and this effect can lead to very fast devices.  Ballistic 

transport occurs in submicron (L � 1 �m) devices. As the MOSFET technology 

continues to shrink the channel length toward the 0.1 �m value, the  ballistic transport 

phenomenon will become more important.

2.0

1.0

0

3.0

I D
 (

m
A

)

0 5

Constant

mobility

Velocity

saturation

4 V

VG � 5 V

VG � 5 V

3 V

4 V

3 V

1 V

2 V

10

VD (V)

Figure 11.11 | Comparison of  ID versus 

VD  characteristics for constant mobility 

(dashed curves) and for fi eld-dependent 

mobility and velocity saturation effects 

(solid curves).
(From Sze and Ng [22].)

  TEST YOUR UNDERSTANDING

TYU 11.1 Consider a MOSFET biased in the subthreshold region with VD � kT /e. For the 

ideal relationship given, what change in gate-to-source voltage produces a fac-

tor of 10 change in drain current?

(Ans. �VGS � 59.64 mV)
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11.2 | MOSFET SCALING
As we noted in the previous chapter, the frequency response of MOSFETs increases 

as the channel length decreases. The driving force in CMOS technology evolution 

in the last couple of decades has been reduced channel lengths. Channel lengths of 

0.13 �m or less are now the norm. One question that must be considered is what 

other device parameters must be scaled as the channel length is scaled down.

11.2.1  Constant-Field Scaling

The principle of constant-fi eld scaling is that device dimensions and device voltages 

be scaled such that electric fi elds (both horizontal and vertical) remain essentially 

constant. To ensure that the reliability of the scaled device is not compromised, the 

electric fi elds in the scaled device must not increase.

 Figure 11.12a shows the cross section and parameters of an original NMOS 

device and Figure 11.12b shows the scaled device, where the scaling parameter is k. 

Typically, k  0.7 per generation of a given technology.

 As seen in the fi gure, the channel length is scaled from L to kL. To maintain a 

constant horizontal electric fi eld, the drain voltage must also be scaled from VD to kVD. 

The maximum gate voltage will also be scaled from VG to kVG so that the gate and 

drain voltages remain compatible. To maintain a constant vertical electric fi eld, the 

oxide thickness then must also be scaled from tox to ktox.

 The maximum depletion width at the drain terminal, for a one-sided pn junction, is

 xD �  �
___________

   
2�(Vbi � VD)

 ___ 
eNa 

     (11.21)

Figure 11.12 | Cross section of (a) original NMOS transistor and (b) scaled NMOS transistor.

VG
kVG

tox ktox

L
kL

Na doping

(a) (b)

rj krj krjrj

VD kV0

Na

k
doping

TYU 11.2 Consider an NMOS transistor with the following parameters: �n � 1000 cm2 /V-s, 

Cox � 10�8 F /cm2, W � 10 �m, L � 1 �m, VT � 0.4 V, and vsat � 5 
 106 cm /s. 

Plot on the same graph ID (sat) versus VGS over the range 0 � VGS � 4 V for the 

case (a) of an ideal transistor (Equation (10.45a) and (b) when velocity satura-

tion  occurs (Equation (11.17).

[Ans. (a) ID (sat) � 50(VGS � 0.4)
2
 �A; (b) ID (sat) � 50(VGS � 0.4) �A]

nea29583_ch11_443-490.indd   455nea29583_ch11_443-490.indd   455 12/11/10   12:42 PM12/11/10   12:42 PM



456 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

Since the channel length is being reduced, the depletion widths also need to be re-

duced. If the substrate doping concentration is increased by the factor (1/k), then the 

depletion width is reduced by approximately the factor k since VD is reduced by k.

 The drain current per channel width, for the transistor biased in the saturation 

region, can be written as

   
ID  

 _ 
W

   �   
�n�ox   _ 
2toxL

   (VG � VT)
2 →   

�n�ox   __ 
2(ktox)(kL)

   (kVG � VT)
2  constant (11.22)

The drift current per channel width remains essentially a constant, so if the channel 

width is reduced by k, then the drain current is also reduced by k. The area of the 

device, A  WL, is then reduced by k2 and the power, P � IV, is also reduced by k2. 

The power density in the chip remains unchanged.

 Table 11.1 summarizes the device scaling and the effect on circuit parameters. 

Keep in mind that the width and length of interconnect lines are also assumed to be 

reduced by the same scaling factor.

11.2.2  Threshold Voltage—First Approximation

In constant-fi eld scaling, the device voltages are reduced by the scaling factor k. It 

would seem appropriate that the threshold voltage should also be scaled by the same 

factor. The threshold voltage, for a uniformly doped substrate, can be written as

 VT � VFB � 2�f p �   
 �

__________

 2�eNa(2�f p)  
  ___ 

Cox 
    (11.23)

The fi rst two terms in Equation (11.23) are functions of material parameters that do 

not scale and are only very slight functions of doping concentration. The last term is 

 approximately proportional to  �
__

 k  , so the threshold voltage does not scale directly 

with the scaling factor k.

Table 11.1 | Summary of constant-fi eld device scaling

  Scaling factor
 Device and circuit parameters (k � 1)

Scaled parameters Device dimensions  (L, tox, W, xj) k
 Doping concentration  (Na, Nd) 1�k
 Voltages k
Effect on device Electric fi eld 1
parameters Carrier velocity 1
 Depletion widths k
 Capacitance  (C � �A�t) k
 Drift current k
Effect on circuit Device density 1�k2 
parameters Power density 1
 Power dissipation per device  (P � IV ) k2

 Circuit delay time  (� CV�1) k
 Power�delay product (P	)  k3

Source: Taur and Ning [23].
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 The effect of short channels on the threshold voltage is discussed further in sec-

tion 11.3 of this chapter.

11.2.3  Generalized Scaling

In constant-fi eld scaling, the applied voltages are scaled with the same scaling fac-

tor k as the device dimensions. However, in actual technology evolution, voltages 

have not been reduced with the same scaling factor. There has been reluctance, for 

example, to change standardized power supply levels that have been used in circuits 

earlier. In addition, other factors that do not scale, such as threshold voltage and 

subthreshold currents, have made the reduction in applied voltages less desirable. 

As a consequence, electric fi elds in MOS devices have tended to increase as device 

dimensions shrinked.

 Consequences of increased electric fi elds are reduced reliability and increased 

power density. As the power density increases, the device temperature may increase. In-

creased temperature may affect the device reliability. As the oxide thickness is reduced 

and the electric fi eld is increased, gate oxides are closer to breakdown and oxide integ-

rity may be more diffi cult to maintain. In addition, direct tunneling of carriers through 

the oxide may be more likely to occur. Increased electric fi elds may also increase the 

chances of hot-electron effects, which are discussed later in this  chapter. Reducing de-

vice dimensions, then, can introduce challenging problems that must be solved.

TYU 11.3 An NMOS transistor has the following parameters: L � 1 �m, W � 10 �m, tox 

� 250 Å, Na � 5 
 1015 cm�3, and applied voltages of 3 V. If the device is to be 

scaled using constant-fi eld scaling, determine the new device parameters for a 

 scaling factor of k � 0.7. 

and applied voltages of 2.1 V)

(Ans. L � 0.7 �m, W � 7 �m, tox � 175 Å, Na � 7.14 
 10
15

 cm
�3

,

 

TEST YOUR UNDERSTANDING

11.3 | THRESHOLD VOLTAGE MODIFICATIONS
We have derived the ideal MOSFET relations in the previous chapter, including 

expressions for threshold voltage and for the current–voltage characteristics. We 

now consider some of the nonideal effects including channel length modulation. 

Additional effects on threshold voltage occur as the devices shrink in size. A re-

duction in channel length increases the transconductance and frequency response of 

the  MOSFET, and a reduction in channel width increases the packing density in an 

integrated circuit. A reduction in either or both the channel length and channel width 

can affect the threshold voltage.

11.3.1  Short-Channel Effects

For the ideal MOSFET, we have derived the threshold voltage using the concept of 

charge neutrality in which the sum of charges in the metal oxide inversion layer and 
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458 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

semiconductor space charge region is zero. We assumed that the gate area was the 

same as the active area in the semiconductor. Using this assumption, we have consid-

ered only equivalent surface charge densities and neglected any effects on threshold 

voltage that may occur due to source and drain space charge regions that extend into 

the active channel region.

 Figure 11.13a shows the cross section of a long n-channel MOSFET at fl at band, 

with zero source and drain voltage applied. The space charge regions at the source 

and drain extend into the channel region but occupy only a small fraction of the en-

tire channel region. The gate voltage, then, will control essentially all of the space 

charge induced in the channel region at inversion as shown in Figure 11.13b.

 As the channel length decreases, the fraction of charge in the channel region 

controlled by the gate decreases. This effect can be seen in Figure 11.14 for the 

fl at-band condition. As the drain voltage increases, the reverse-biased space charge 

region at the drain extends further into the channel area and the gate controls even 

less bulk charge. The amount of charge in the channel region,  Q SD  �   (max), controlled 

by the gate, affects the threshold voltage and can be seen from Equation (11.24)

 VTN �  �  �  Q SD  �  (max) �  �  Q ss  �   �   �   tox   _ �ox    �  � �ms � 2�f p  (11.24)

 We can quantitatively determine the short-channel effects on the threshold 

 voltage by considering the parameters shown in Figure 11.15. The source and drain 

junctions are characterized by a diffused junction depth rj. We will assume that the 

lateral diffusion distance under the gate is the same as the vertical diffusion distance. 

This assumption is a reasonably good approximation for diffused junctions but be-

comes less accurate for ion implanted junctions. We will initially consider the case 

when the source, drain, and body contacts are all at ground potential.

 The basic assumption in this analysis is that the bulk charge in the trapezoidal re-

gion under the gate is controlled by the gate. The potential difference across the bulk 

space charge region is 2�f p at the threshold inversion point, and the built-in potential 

barrier height of the source and drain junctions is also approximately 2 �f p, implying 

that the three space charge widths are essentially equal. We can then write

 xs  xd  xdT � xdT (11.25)

Figure 11.13 | Cross section of a long n-channel MOSFET (a) at fl at band and (b) at 

inversion.

(a)

Oxide

Gate

p

n� n�

Oxide Q�n

Q�SD(max)

Gate

p

n� n�

(b)
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Using the geometrical approximation, the average bulk charge per unit area  Q B  �   in 

the trapezoid is

  �  Q B  �   �  · L � eNa xdT  �   L � L�  __ 
2
   �  (11.26)

From the geometry, we can show that

   L � L� __ 
2L

   �  � 1 �   
rj   _ 
L

    �  �
________

 1 �   
2xdT   _ rj      � 1 �  �  (11.27)

Then

  �  Q B  �   �  � eNa xdT  � 1 �   
rj  _ 
L

    �  �
________

 1 �   
2xdT  _ rj      � 1 �  �   (11.28)

Equation (11.28) is now used in place of  �  Q SD  �  (max) �  in the expression for the thresh-

old voltage.

 Since  �  Q SD  �  (max) �  � eNa xdT, we can fi nd � VT as

 �VT � �   
eNa xdT  __ 

Cox 
    �   rj  _ 

L
    �  �

________

 1 �   
2xdT  _ rj      � 1 �  �  (11.29)

where

 �VT � VT (short channel) � VT (long channel) (11.30)

As the channel length decreases, the threshold voltage shifts in the negative direction 

so that an n-channel MOSFET shifts toward depletion mode.

Figure 11.14 | Cross section of a short 

n-channel MOSFET at fl at band.

Oxide

Gate

p

n� n�

Figure 11.15 | Charge sharing in the 

short-channel threshold voltage model.
(From Yau [26].)

VG

n� n�rj

L

p

L�

xdT

xs xd

   EXAMPLE 11.3Objective: Calculate the threshold voltage shift due to short-channel effects.

 Consider an n-channel MOSFET with Na � 3 
 1016 cm�3, L � 1.0 �m, rj � 0.3 �m, and 

tox � 20 nm � 200 Å. 
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The effect of short channels becomes more pronounced as the channel length is re-

duced further.

 The shift in threshold voltage with channel length for an n-channel MOSFET is 

shown in Figure 11.16. As the substrate doping increases, the initial threshold voltage 

increases, as we have seen in the previous chapter, and the short-channel threshold shift 

also becomes larger. The short-channel effects on threshold voltage do not become sig-

nifi cant until the channel length becomes less than approximately 2 �m. The threshold 

voltage shift also becomes smaller as the diffusion depth rj becomes smaller so that 

very shallow junctions reduce the threshold voltage dependence on channel length.

 Equation (11.29) is derived assuming that the source, channel, and drain space 

charge widths are all equal. If we now apply a drain voltage, the space charge width 

at the drain terminal widens, which makes L� smaller, and the amount of bulk charge 

controlled by the gate voltage decreases. This effect makes the threshold voltage a 

function of drain voltage. As the drain voltage increases, the threshold voltage of 

an n-channel MOSFET decreases. The threshold voltage versus channel length is 

■ Solution
We can fi nd 

 Cox �   
�ox  _ tox 

   �   
(3.9)(8.85 
 10�14)

  ____  
200 
 10�8

   � 1.726 
 10�7 F /cm2 

 �fp � Vt ln  �   Na  _ ni 
   �  � (0.0259) ln  �   3 
 1016  __ 

1.5 
 1010
   �  � 0.3758 V

and

 xdT �   �   4�s �fp 
 __ 

eNa 
   �  1�2

  �   �   4(11.7)(8.85 
 10�14)(0.3758)
   _____   

(1.6 
 10�19)(3 
 1016)
   �  1�2

  

 � 0.18 
 10�4 cm � 0.18 �m

The shift in threshold voltage is now found as

 �VT � �  
eNa xdT  __ 

Cox 
    �   rj 

 _ 
L 

    �  �
________

 1 �   
2xdT  _ rj 

     � 1 �  � 
 � �   

(1.6 
 10�19)(3 
 1016)(0.18 
 10�4)
   _______  

1.726 
 10�7
    �   0.3  _ 

1.0 
    �  �

__________

 1 �   
2(0.18)

 __ 
0.3

     � 1 �  � 
or

 �VT � �0.0726 V

■ Comment
If the design value of the threshold voltage of an n-channel MOSFET is to be VT � 0.35 V, for 

example, a shift of �VT � �0.0726 V due to short-channel effects is signifi cant and needs to 

be taken into account.

■ EXERCISE PROBLEM
Ex 11.3  Repeat Example 11.3 if the device parameters are Na � 1016 cm�3, L � 0.75 �m, 

rj � 0.25 �m, and tox � 12 nm � 120 Å. 

(Ans. �VT � �0.0469 V)
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 11.3   Threshold Voltage Modifi cations 461

plotted in Figure 11.17 for two values of drain-to-source voltage and two values of 

body-to-source voltage.

11.3.2  Narrow-Channel Effects

Figure 11.18 shows the cross section along the channel width of an n-channel 

 MOSFET biased at inversion. The current is perpendicular to the channel width 

through the inversion charge. We may note in the fi gure that there is an additional 

space charge region at each end of the channel width. This additional charge is con-

trolled by the gate voltage but is not included in the derivation of the ideal threshold 

voltage relation. The threshold voltage expression must be modifi ed to include this 

additional charge.

Figure 11.16 | Threshold voltage versus 

channel length for various substrate  dopings.
(From Yau [26].)
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Figure 11.17 | Threshold voltage versus 

channel length for two values of drain-to-

source and body-to-source voltage.
(From Yang [25].)
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 If we neglect short-channel effects, the gate-controlled bulk charge can be writ-

ten as

 QB � QB0 � �QB (11.31)

where QB is the total bulk charge, QB0 is the ideal bulk charge, and �QB is the ad-

ditional bulk charge at the ends of the channel width. For a uniformly doped p-type 

semiconductor biased at the threshold inversion point, we may write

  � QB0  �  � eNa WLxdT (11.32)

and

 �QB � eNa LxdT (
xdT) (11.33)

where 
 is a fi tting parameter that accounts for the lateral space charge width. The 

lateral space charge width may not be the same as the vertical width xdT due to the 

thicker fi eld oxide at the ends, and /or due to the nonuniform semiconductor doping 

created by an ion implantation. If the ends were a semicircle, then  � �/2.

 We may now write

  � QB  �  �  � QB0  �  �  � �QB  �  � eNa WL xdT � eNa LxdT (
xdT)

 � eNa WL xdT  � 1 �    

xdT  _ 
W 

   �  (11.34)

The effect of the end space charge regions becomes signifi cant as the width W de-

creases and the factor (
 xdT) becomes a signifi cant fraction of the width W.

 The change in threshold voltage due to the additional space charge is

 �VT �   
eNa xdT  __ 

Cox

    �   
xdT  _ 
W 

   �  (11.35)

The shift in threshold voltage due to a narrow channel is in the positive direction 

for the n-channel MOSFET. As the width W becomes smaller, the shift in threshold 

voltage becomes larger.

EXAMPLE 11.4 Objective: Design the channel width that will limit the threshold voltage shift because of 

narrow channel effects to a specifi ed value.

 Consider a silicon n-channel MOSFET with Na � 3 
 1016 cm�3 and tox � 20 nm � 200 Å. 

Let 
 � �/2. Assume that the threshold voltage shift is to be limited to �VT � 0.2 V.

■ Solution
We fi nd

 Cox � 1.726 
 10�7 F /cm2  and  xdT � 0.18 �m

From Equation (11.35), we can express the channel width as

 W �   
eNa  � 
  x dT  

2
   � 
 __ 

Cox (�VT)
   �   

(1.6 
 10�19)(3 
 1016) �   �  _ 
2
   �  (0.18 
 10�4)2 

    _______   
(1.726 
 10�7)(0.2)

  

 � 7.08 
 10�5 cm
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 Figure 11.19 shows the threshold voltage as a function of channel width. We 

can again note that the threshold voltage shift begins to become apparent for channel 

widths that are large compared to the induced space charge width.

 Figure 11.20a, b shows qualitatively the threshold voltage shifts due to short- 

channel and narrow-channel effects, respectively, in n-channel MOSFETs. The 

narrow-channel device produces a larger threshold voltage; the short-channel  device 

produces a smaller threshold voltage. For devices exhibiting both  short-channel and 

narrow-channel effects, the two models need to be combined into a three-dimen-

sional volume approximation of the space charge region controlled by the gate.

or

 W � 0.708 �m

■ Comment
We may note that the threshold voltage shift of �VT � 0.2 V occurs at a channel width of 

W � 0.708 �m, which is approximately four times larger than the induced space charge width xdT. 

■ EXERCISE PROBLEM
Ex 11.4  Repeat Example 11.4 for Na � 1016 cm�3 and tox � 8 nm � 80 Å. Determine the 

channel width such that the threshold voltage shift is limited to �VT � 0.1 V.

(Ans. W � 0.524 �m)

Figure 11.19 | Threshold voltage versus 

channel width (solid curves, theoretical; 

points, experimental).
(From Akers and Sanchez [1].)
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11.4 |  ADDITIONAL ELECTRICAL 
CHARACTERISTICS

There is a tremendous volume of information on MOSFETs that cannot be included 

in an introductory text on semiconductor physics and devices. However, two addi-

tional topics should be included here: breakdown voltage and threshold adjustment 

by ion implantation.

11.4.1  Breakdown Voltage

Several voltage breakdown mechanisms in the MOSFET must be considered, 

 including voltage breakdown across the oxide as well as the various voltage break-

down mechanisms in the semiconductor junctions.

Oxide Breakdown  We have assumed that the oxide is a perfect insulator. How-

ever, if the electric fi eld in the oxide becomes large enough, breakdown can occur, 

which can lead to a catastrophic failure. In silicon dioxide, the electric fi eld at break-

down is on the order of 6 
 106 V /cm. This breakdown fi eld is larger than that 

in  silicon, but the gate oxides are also quite thin. A gate voltage of approximately 

30 V would produce breakdown in an oxide with a thickness of 500 Å. However, 

a safety margin of a factor of 3 is common, so that the maximum safe gate voltage 

with tox � 500 Å would be 10 V. A safety margin is necessary since there may be 

defects in the oxide that lower the breakdown fi eld. Oxide breakdown is normally not 

a serious problem except in power devices and ultrathin oxide devices. Other oxide 

degradation problems are discussed later in this chapter.

Avalanche Breakdown  Avalanche breakdown may occur by impact ionization 

in the space charge region near the drain terminal. We have considered avalanche 

breakdown in pn junctions in Chapter 7. In an ideal planar one-sided pn junction, 

breakdown is a function primarily of the doping concentration in the low-doped re-

gion of the junction. For the MOSFET, the low-doped region corresponds to the 

semiconductor substrate. If a p-type substrate doping is Na � 3 
 1016 cm�3, for ex-

ample, the pn junction breakdown voltage would be approximately 25 V for a planar 

junction. However, the n� drain contact may be a fairly shallow diffused region with 

Figure 11.20 | Qualitative variation of threshold voltage (a) with channel length 

and (b) with channel width.
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 11.4   Additional Electrical Characteristics 465

a large curvature. The electric fi eld in the depletion region tends to be concentrated 

at the curvature, which lowers the breakdown voltage. This curvature effect is shown 

in Figure 11.21.

Near Avalanche and Snapback Breakdown1  Another breakdown mechanism re-

sults in the S-shaped breakdown curve shown in Figure 11.22. This breakdown pro-

cess is due to second order effects and can be explained with the aid of Figure 11.23. 

The n-channel enhancement-mode MOSFET geometry in Figure 11.23a shows the 

Figure 11.21 | Curvature effect on the 

electric fi eld in the drain junction.

G D

p

B

n�

E-field

Figure 11.22 | Current–voltage 

characteristic showing the snapback 

breakdown effect.

ID

VD

1This section may be postponed until after the bipolar transistor is considered in Chapter 12.
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466 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

n-type source and drain contacts along with the p-type substrate. The source and 

body are at ground potential. The n(source)-p(substrate)-n(drain) structure also 

forms a parasitic bipolar transistor. The equivalent circuit is shown in Figure 11.23b.

 Figure 11.24a shows the device when avalanche breakdown is just beginning 

in the space charge region near the drain. We tend to think of the avalanche break-

down suddenly occurring at a particular voltage. However, avalanche breakdown is 

a gradual process that starts at low current levels and for electric fi elds somewhat 

below the breakdown fi eld. The electrons generated by the avalanche process fl ow 

into the drain and contribute to the drain current. The avalanche-generated holes 

generally fl ow through the substrate to the body terminal. Since the substrate has a 

nonzero  resistance, a voltage drop is produced as shown. This potential difference 

drives the source-to-substrate pn junction into forward bias near the source terminal. 

The source is heavily doped n-type; thus, a large number of electrons can be injected 

from the source contact into the substrate under forward bias. This process becomes 

Figure 11.23 | (a) Cross section of the n-channel MOSFET. (b) Equivalent circuit 

 including the parasitic bipolar transistor.
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Figure 11.24 | (a) Substrate current–induced voltage drop caused by avalanche 

multiplication at the drain. (b) Currents in the parasitic bipolar transistor.
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severe as the voltage drop in the substrate approaches 0.6 to 0.7 V. A fraction of the 

injected electrons diffuses across the parasitic base region into the reverse-biased 

drain space charge region where they also add to the drain current.

 The avalanche breakdown process is a function of not only the electric fi eld 

but the number of carriers involved. The rate of avalanche breakdown increases as 

the number of carriers in the drain space charge region increases. We now have 

a regenerative or positive feedback mechanism. Avalanche breakdown near the 

drain terminal produces the substrate current, which produces the forward-biased 

 source-substrate pn junction voltage. The forward-biased junction injects carriers 

that can diffuse back to the drain and increase the avalanche process. The positive 

feedback produces an unstable system.

 The snapback or negative resistance portion of the curve shown in Figure 11.22 

can now be explained by using the parasitic bipolar transistor. The potential of the 

base of the bipolar transistor near the emitter (source) is almost fl oating, since this 

voltage is determined primarily by the avalanche-generated substrate current rather 

than an externally applied voltage.

 For the open-base bipolar transistor shown in Figure 11.24, we can write

 IC � �IE � ICB0 (11.36)

where � is the common base current gain and ICB0 is the base-collector leakage cur-

rent. For an open base, IC � IE, so Equation (11.36) becomes

 IC � �IC � ICB0 (11.37)

At breakdown, the current in the B–C junction is multiplied by the multiplication 

factor M, so we have

 IC � M(�IC � ICB0) (11.38)

Solving for IC we obtain

 IC �   
MICB0  __ 

1 � �M
   (11.39)

Breakdown is defi ned as the condition that produces IC → �. For a single reverse-

biased pn junction, M → � at breakdown. However, from Equation (11.39), break-

down is now defi ned to be the condition when �M → 1 or, for the open-base con-

dition, breakdown occurs when M → 1 /�, which is a much lower multiplication 

factor than for the simple pn junction.

 An empirical relation for the multiplication factor is usually written as

 M �   1  ___  
1 � (VCE /VBD)m 

   (11.40)

where m is an empirical constant in the range of 3 to 6 and VBD is the junction break-

down voltage.

 The common base current gain factor � is a strong function of collector current 

for small values of collector current. This effect will be discussed in Chapter 12 on 

bipolar transistors. At low currents, the recombination current in the B-E junction is a 

signifi cant fraction of the total current so that the common base current gain is small. 
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468 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

As the collector current increases, the value of � increases. As avalanche breakdown 

begins and IC is small, particular values of M and VCE are required to produce the con-

dition of �M � 1. As the collector current increases, � increases; therefore, smaller 

values of M and VCE are required to produce the avalanche breakdown condition. The 

snapback, or negative resistance, breakdown characteristic is then produced.

 Only a fraction of the injected electrons from the forward-biased  source-substrate 

junction are collected by the drain terminal. A more exact calculation of the snap-

back characteristic would necessarily involve taking into account this fraction; thus, 

the simple model would need to be modifi ed. However, the above discussion quali-

tatively describes the snapback effect. The snapback effect can be minimized by 

using a heavily doped substrate that will prevent any signifi cant voltage drop from 

being developed. A thin epitaxial p-type layer with the proper doping concentration 

to produce the required threshold voltage can be grown on a heavily doped substrate.

Near Punch-Through Effects  Punch-through is the condition at which the drain-

to-substrate space charge region extends completely across the channel region to the 

source-to-substrate space charge region. In this situation, the barrier between the 

source and drain is completely eliminated and a very large drain current would exist.

 However, the drain current will begin to increase rapidly before the actual 

punch-through condition is reached. This characteristic is referred to as the near 

punch-through condition, also known as Drain-Induced Barrier Lowering (DIBL). 

Figure 11.25a shows the ideal energy-band diagram from source to drain for a long 

n-channel MOSFET for the case when VGS � VT  and when the drain-to-source voltage 

is relatively small. The large potential barriers prevent signifi cant current between the 

drain and source. Figure 11.25b shows the energy-band  diagram when a relatively 

large drain voltage VDS2 is applied. The space charge region near the drain terminal 

is beginning to interact with the source space charge region and the potential barrier 

is being lowered. Since the current is an exponential function of barrier height, the 

current will increase very rapidly with drain voltage once this near punch-through 

Figure 11.25 | (a) Equipotential plot along the surface of a long-channel MOSFET. 

(b) Equipotential plot along the surface of a short-channel MOSFET before and 

after punch-through.
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condition has been reached. Figure 11.26 shows some typical characteristics of a 

short-channel device with a near punch-through condition.

Figure 11.26 | Typical I–V character-

istics of a MOSFET exhibiting punch-

through effects.

ID

VDS
0

   EXAMPLE 11.5Objective: Calculate the theoretical punch-through voltage assuming the abrupt junction 

approximation.

 Consider an n-channel MOSFET with source and drain doping concentrations of Nd � 

1019 cm�3 and a channel region doping of Na � 1016 cm�3. Assume a channel length of L � 

1.2 �m, and assume the source and body are at ground potential.

■ Solution
The pn junction built-in potential barrier is given by

 Vbi � Vt ln  �   Na Nd  _ 
 n 

i  
2  
   �  � (0.0259) ln  �   (1016)(1019) 

 ___ 
(1.5 
 1010)2

   �  � 0.874 V

The zero-biased source–substrate pn junction width is

 xd0 �   �   2�sVbi  _ 
eNa 

   �  1�2

  �   �   2(11.7)(8.85 
 10�14)(0.874) 
   _____  

(1.6 
 10�19)(1016)
   �   1�2

  � 0.336 �m

The reverse-biased drain-substrate pn junction width is given by

 xd �   �   2�s(Vbi � VDS) 
  ___ 

eNa 
   �  1�2

 

At punch-through, we will have

 xd0 � xd � L  or   0.336 � xd � 1.2

which gives xd � 0.864 �m at the punch-through condition. We can then fi nd

 Vbi � VDS �   
 x 

d  
2  eNa 

 __ 
2�s 

   �   
(0.864 
 10�4)2(1.6 
 10�19)(1016) 

   ______   
2(11.7)(8.85 
 10�14)

  

 � 5.77 V
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470 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

 For a doping of 1016 cm�3, the two space charge regions will begin to interact 

when the abrupt depletion layers are approximately 0.25 �m apart. The drain volt-

age at which this near punch-through condition, also known as drain-induced barrier 

lowering, occurs is signifi cantly less than the ideal punch-through voltage such as 

calculated in Example 11.5 (see Problem 11.33).

*11.4.2  The Lightly Doped Drain Transistor

The junction breakdown voltage is a function of the maximum electric fi eld. As the 

channel length becomes smaller, the bias voltages may not be scaled down accord-

ingly, so the junction electric fi elds become larger. As the electric fi eld increases, 

near avalanche breakdown and near punch-through effects become more serious. In 

addition, as device geometries are scaled down, the parasitic bipolar device becomes 

more dominant and breakdown effects are enhanced.

 One approach that reduces these breakdown effects is to alter the doping profi le 

of the drain contact. The Lightly Doped Drain (LDD) design and doping profi les are 

shown in Figure 11.27a, the conventional MOSFET and doping profi les are shown 

in Figure 11.27b for comparison. By introducing the lightly doped region, the peak 

electric fi eld in the space charge region is reduced and the breakdown effects are min-

imized. The peak electric fi eld at the drain junction is a function of the semiconductor 

doping as well as the curvature of the n� drain region. Figure 11.28 shows the physi-

cal geometries of a  conventional n� drain contact and an LDD structure superimposed 

on the same plot. The magnitude of the electric fi eld at the oxide– semiconductor 

 interface in the LDD structure is less than in the conventional structure. The electric 

fi eld in the conventional device peaks approximately at the metallurgical junction and 

drops quickly to zero in the drain because no fi eld can exist in the highly conductive 

n� region. On the other hand, the electric fi eld in the LDD device extends across the 

n-region before dropping to zero at the drain. This effect minimizes breakdown and 

the hot electron effects, which we discuss in Section 11.5.3.

 Two disadvantages of the LDD device are an increase in both fabrication com-

plexity and drain resistance. The added processing steps, however, produce a device 

with signifi cant improvements in performance. The cross section of the LDD device 

The punch-through voltage is then found as

 VDS � 5.77 � 0.874 � 4.9 V

■ Comment
As the two space charge regions approach punch-through, the abrupt junction approximation 

is no longer a good assumption. The drain current will begin to increase rapidly before the 

theoretical punch-through voltage is reached. 

■ EXERCISE PROBLEM
Ex 11.5  Repeat Example 11.5 for a substrate doping concentration of Na � 3 
 1016 cm�3 

and a channel length of L � 0.8 �m.

(Ans. VDS � 7.52 V)
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shown in Figure 11.27 indicates a lightly doped n region at the source terminal also. 

The inclusion of this region does not improve device performance, but does reduce 

the fabrication complexity as much as possible. The added series resistances in-

crease power dissipation in the device; this must be taken into account in high-power 

devices.

Figure 11.27 | (a) The lightly doped drain (LDD) structure. (b) Conventional structure.
(From Ogura et al. [12].)
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Figure 11.28 | Magnitude of the electric 

fi eld at the Si–SiO2 interface as a 

function of distance; VDS � 10 V. 

VSB � 2 V, VGS � VT. 
(From Ogura et al. [12].)
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11.4.3  Threshold Adjustment by Ion Implantation

Several factors, such as fi xed oxide charge, metal–semiconductor work function dif-

ference, oxide thickness, and semiconductor doping, infl uence the threshold voltage. 

Although all of these parameters may be fi xed in a particular design and fabrication 

process, the resulting threshold voltage may not be acceptable for all applications. 

Ion implantation can be used to change and adjust the substrate doping near the 

oxide–semiconductor surface to provide the desired threshold voltage. In addition, 

ion implantation is used for more than doping the channel. It is used extensively as 

a standard part of device fabrication; for example, it is used to form the source and 

drain regions of the transistor.

 To change the doping and thereby change the threshold voltage, a precise, con-

trolled number of either donor or acceptor ions are implanted into the semiconductor 

near the oxide surface. When an MOS device is biased in either depletion or inver-

sion and when the implanted dopant atoms are within the induced space charge re-

gion, then the ionized dopant charge adds to (or subtracts from) the maximum space 

charge density, which controls the threshold voltage. An implant of acceptor ions 

into either a p- or n-type substrate will shift the threshold voltage to more positive 

values, while an implant of donor ions will shift the threshold voltage to more nega-

tive values. Ion implantation can be carried out to change a depletion-mode device to 

enhancement-mode or an enhancement-mode device to depletion-mode, which is an 

important application of this technology.

 As a fi rst approximation, assume that DI acceptor atoms per cm2 are implanted 

into a p-type substrate directly adjacent to the oxide–semiconductor interface as 

shown in Figure 11.29a. The shift in threshold voltage due to the implant is

 �VT � �   
eDI  _ 
Cox 

   (11.41)

If donor atoms were implanted into the p-type substrate, the space charge density would 

be reduced; thus, the threshold voltage would shift in the negative voltage  direction.

Figure 11.29 | (a) Ion-implanted profi le approximated by a delta function. (b) Ion-

implanted profi le approximated by a step function in which the depth  xi is less than 

the space charge width  xdT.
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 A second type of implant approximation is the step junction, shown in Fig-

ure 11.29b. If the induced space charge width at the threshold inversion point is less 

than xI, then the threshold voltage is determined on the basis of a semiconductor 

with a uniform doping concentration of Ns atoms per cm3. On the other hand, if the 

induced space charge width is greater than xI at the threshold inversion point, then a 

new expression for xdT must be derived. We can apply Poisson’s equation and show 

that the maximum induced space charge width after the step implant is

 xdT �  �
____

   
2�s  _ 
eNa 

       � 2�f p �   
e x I  

2  
 _ 

2�s

    (Ns � Na) �  1�2

  (11.42)

 The threshold voltage after a step implant for the case when xdT 	 xI can be writ-

ten as

 VT � VT0 �   
eDI  _ 
Cox 

   (11.43)

where VT0 is the preimplant threshold voltage. The parameter DI is given by

 DI � (Ns � Na)xI (11.44)

which is the number per cm2 of implanted ions. The preimplant threshold voltage is

 VT0 � VFB0 � 2�f p0 �   
eNaxdT0  __ 

Cox 
   (11.45)

where the subscript 0 indicates the preimplant values.

   EXAMPLE 11.6Objective: Design the ion implant dose required to adjust the threshold voltage to a 

specifi ed value.

 Consider an n-channel silicon MOSFET with a doping of Na � 5 
 1015 cm�3, an oxide 

thickness of tox � 18 nm � 180 Å, and an initial fl at-band voltage of VFBO � �1.25 V. Deter-

mine the ion implantation dose such that a threshold voltage of VT � �0.4 V is obtained.

■ Solution
We fi nd that

 �fpO � Vt ln  �   Na  _ ni 
   �  � (0.0259) ln  �   5 
 1015  __ 

1.5 
 1010
   �  � 0.3294 V

 xdTO �   �   4�s �fpO 
 __ 

eNa 
   �  1�2

  �   �   4(11.7)(8.85 
 10�14)(0.3294)
   _____   

(1.6 
 10�19)(5 
 1015)
   �  1�2

  

 � 0.4130 
 10�4 cm

and

 Cox �   
�ox  _ tox 

   �   
(3.9)(8.85 
 10�14)

  ____  
180 
 10�8

   � 1.9175 
 10�7 F /cm2 

The initial pre-implant threshold voltage is

 VTO � VFBO � 2�fpO �   
eNa xdTO 

 __ 
Cox 

  

 � �1.25 � 2(0.3294) �   
(1.6 
 10�19)(5 
 1015)(0.4130 
 10�4)

    _______   
1.9175 
 10�7

  

 � �0.419 V
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 The actual implant dose versus distance is neither a delta function nor a step func-

tion; it tends to be a Gaussian-type distribution. The threshold shift due to a nonuni-

form ion implant density may be defi ned as the shift in curves of Ninv versus VG, where 

Ninv is the inversion carrier density per cm2. This shift corresponds to an experimental 

shift of drain current versus VG when the transistor is biased in the linear mode. The 

criteria of the threshold inversion point as �s � 2�f p in the implanted devices have an 

uncertain meaning because of the nonuniform doping in the substrate. The determina-

tion of the threshold voltage becomes more complicated and will not be made here.

The threshold voltage after implant, from Equation (11.43), is

 VT � VTO �   
eDI  _ 
Cox

  

so that

 �0.40 � �0.419 �   
(1.6 
 10�19)DI 

  ___  
1.9175 
 10�7

  

which gives

 DI � 9.815 
 1011 cm�2 

If the uniform step implant extends to a depth of xI � 0.15 �m, for example, then the equiva-

lent acceptor concentration at the surface is

 Ns � Na �   
DI  _ xI

  

or 

 Ns � 5 
 1015 �   9.815 
 1011  ___ 
0.15 
 10�4

  

so that

 Ns � 7.04 
 1016 cm�3 

■ Comment
It is assumed in the above calculation that the induced space charge width in the channel re-

gion is greater than the ion implant dept xI. The calculation satisfi es our assumptions.

■ EXERCISE PROBLEM
Ex 11.6  A silicon MOSFET has the following parameters: Na � 1015 cm�3, p� polysilicon 

gate with an initial fl at-band voltage of VFBO � �0.95 V, and an oxide thickness 

of tox � 12 nm � 120 Å. A fi nal threshold voltage of VT � �0.40 V is required. 

Assume the idealized delta function for the ion implant profi le shown in Fig-

ure 11.29a. (a) What type of ion (acceptor or donor) should be implanted? 

(b) Determine the required ion dose DI. 

[Ans. (a) donor ions; (b) DI � 2.11 
 10
12

 cm
�2

]

  TEST YOUR UNDERSTANDING

TYU 11.4 Repeat Exercise Problem Ex 11.6 for a fi nal threshold voltage of 

(a) VT � �0.25 V and (b) VT � �0.25 V.

[Ans. (a) DI � 8.02 
 10
11

 cm
�2

; (b) DI � 2.03 
 10
11

 cm
�2

 ]
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*11.5 | RADIATION AND HOT-ELECTRON EFFECTS
We have considered the effects of fi xed trapped oxide charge and interface state 

charge on the capacitance–voltage characteristics of MOS capacitors and on the 

MOSFET characteristics. These charges can exist because the oxide is essentially 

a perfect dielectric and a net charge density can exist in a dielectric material. Two 

processes that generate these charges are ionizing radiation and impact ionization in 

the drain region of a MOSFET operating near avalanche breakdown.

 MOS devices are exposed to ionizing radiation, for example, in communication 

satellites orbiting through the Van Allen radiation belts. The ionizing radiation can 

produce additional fi xed oxide charge and also additional interface states. In this 

short discussion of radiation effects in MOSFETs, we are concerned only with the 

permanent effects that occur in the device characteristics.

 Another source can generate oxide charge and interface states: the hot electron ef-

fect. Electrons near the drain terminal of a MOSFET operating near avalanche break-

down can have energies that are much larger than the thermal-equilibrium value. These 

hot electrons have energies suffi cient to penetrate the oxide–semiconductor barrier.

11.5.1  Radiation-Induced Oxide Charge

Gamma-rays or x-rays incident on semiconductor or oxide materials can interact 

with valence band electrons. The incident radiation photons can impart enough en-

ergy to a valence electron to elevate the electron into the conduction band; an empty 

state or hole is also produced in the valence band. This process generates electron–

hole pairs. These newly generated electrons and holes can move through a material 

under the infl uence of an electric fi eld.

 Figure 11.30 shows the energy-band diagram of an MOS device with a p-type 

substrate and a positive gate voltage. The bandgap energy of silicon dioxide is 

Figure 11.30 | Schematic of ionizing radiation–induced 

processes in an MOS capacitor with a positive gate bias.
(From Ma and Dressendorfer [7].)
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 approximately 9 eV. The fi gure schematically shows the creation of an electron–hole 

pair in the oxide by ionizing radiation. The force on the radiation-induced electron 

is toward the gate and the force on the radiation-induced hole is toward the semi-

conductor. It has been found that generated electrons in the oxide are fairly mobile, 

with a mobility value on the order of 20 cm2 /V-s. At high electric fi elds, the electron 

velocity in the oxide also saturates at approximately 107 cm /s, so that the electron 

transit time for typical gate oxide thicknesses is on the order of a few picoseconds. 

For positive gate voltages, the vast majority of radiation-induced electrons fl ow out 

through the gate terminal; for this reason, in general these electrons do not play a 

signifi cant role in the radiation response of MOS devices.

 The generated holes, on the other hand, undergo a stochastic hopping transport pro-

cess through the oxide (shown schematically in Figure 11.30). The hole transport pro-

cess is dispersive in time and is a function of the electric fi eld, temperature, and oxide 

thickness. The effective hole mobility in silicon dioxide is typically in the range of 10�4 

to 10�11 cm2 /V-s; thus, holes are relatively immobile when compared with electrons.

 When holes reach the silicon–silicon dioxide (Si–SiO2) interface, a fraction are 

captured in trapping sites while the remainder fl ow into the silicon. A net positive 

radiation-induced charge is then trapped in the oxide due to these captured holes. 

This trapped charge can last from hours to years. As we have seen, a positive oxide 

charge causes a negative shift in threshold voltage.

 The measured areal hole trap densities are in the range of 1012 to 1013 cm�2 de-

pending upon oxide and device processing. In general, these traps are located within 

approximately 50 Å of the Si–SiO2 interface. The hole trap is usually associated with 

a trivalent silicon defect that has an oxygen vacancy in the SiO2 structure. The oxy-

gen vacancies are located in a silicon-rich region near the Si–SiO2 interface.

 Since the threshold or fl at-band voltage shift is a function of the amount of trapped 

charge, the voltage shift is a function of applied voltage across the oxide. Figure 11.31 

shows the fl at-band voltage shift of an MOS capacitor as a function of gate voltage 

applied during irradiation. For small values of gate voltage, some  radiation-generated 

Figure 11.31 | Radiation-induced fl at-

band voltage shift in an MOS capacitor 

as a function of applied gate bias during 

irradiation. 
(From Ma and Dressendorfer [7].)
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holes and electrons recombine in the oxide. Hence, the amount of charge reaching 

the Si–SiO2 interface and being trapped is less than for a large positive gate voltage, 

where essentially all radiation-generated holes reach the interface without recombin-

ing with electrons. If the fraction of generated holes that become trapped is relatively 

constant, then the voltage shift becomes independent of positive gate bias, as shown 

in the fi gure. For negative applied gate voltages, the  radiation-induced holes move 

toward the gate terminal. There can be positive charge trapping in the oxide near the 

gate, but the effect of this trapped charge on the threshold voltage is small.

   EXAMPLE 11.7Objective: Calculate the threshold voltage shift due to radiation-induced oxide charge trapping.

 Consider a MOS device with an oxide thickness of tox � 25 nm � 250 Å. Assume that a 

pulse of ionizing radiation creates 1018 electron–hole pairs per cm3 in the oxide. Also assume 

that the electrons are swept out through the gate terminal with zero recombination, and that 

20 percent of the generated holes are trapped at the oxide–semiconductor interface.

■ Solution
The areal density of holes generated in the oxide is

 Nh � (1018)(250 
 10�8) � 2.5 
 1012 cm�2

The equivalent trapped surface charge is then

  Q ss  �   � (2.5 
 1012)(0.2)(1.6 
 10�19) � 8 
 10�8 C /cm2

We fi nd

 Cox �   
�ox  _ tox 

   �   
(3.9)(8.85 
 10�14)

  ____  
250 
 10�8 

   � 1.381 
 10�7 F /cm2

The threshold voltage shift is then

 �VT � �   
 Q ss  �   

 _ 
Cox 

   � �   8 
 10�8  ___  
1.381 
 10�7 

   � �0.579 V

■ Comment
As we have seen previously, a positive fi xed oxide charge shifts the threshold voltage in the 

negative voltage direction. The ionizing radiation may shift an enhancement-mode device into 

the depletion mode.

■ EXERCISE PROBLEM
Ex 11.7  Repeat Example 11.7 for a MOS device with an oxide thickness of (a) tox � 12 nm � 

120 Å and (b) tox � 8 nm � 80 Å. (c) What can be said about the shift in threshold 

voltage as the oxide thickness decreases? 

[Ans. (a) �VT � �0.134 V; (b) �VT � �0.0593 V; (c) less shift]

 One failure mechanism, therefore, caused by the radiation-induced oxide charge 

in an n-channel MOSFET in an integrated circuit is a shift from enhancement mode 

to depletion mode. The device will be turned on rather than off at zero gate voltage; 

consequently, the circuit function may be disrupted or an excessive power supply 

current may be generated in the circuit.
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478 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

 The gate voltage in a p-channel MOSFET is normally negative with respect to the 

substrate. Radiation-generated holes in the oxide are forced to the gate–oxide interface. 

The trapped charge in this region has less effect on the threshold voltage, so threshold 

shifts in p-channel MOSFETs are normally smaller if the trap concentrations at the 

gate–oxide and oxide–semiconductor interfaces are of the same order of magnitude.

11.5.2  Radiation-Induced Interface States

We have considered the effect of interface states on the C–V characteristics of an 

MOS capacitor and on the MOSFET characteristics. The net charge in the interface 

states of an n-channel MOS device at the threshold inversion point is negative. This 

negative charge causes a shift in threshold voltage in the positive voltage direction, 

which is opposite to the shift due to the positive oxide charge. In addition, since 

the interface states can be charged, they are another source of coulomb interaction 

with the inversion charge carrier, which means that the inversion carrier mobility is 

a function of the interface state density through surface-scattering effects. Interface 

states, then, affect both threshold voltage and carrier mobility.

 When MOS devices are exposed to ionizing radiation, additional interface states 

are generated at the Si–SiO2 interface. The radiation-induced interface states tend to 

be donor states in the lower half of the bandgap and acceptor states in the upper half. 

Figure 11.32 shows the threshold voltage in an n-channel and a p-channel MOSFET 

as a function of ionizing radiation dose. We initially see the negative threshold volt-

age shift in both devices due to the radiation-induced positive oxide charge. The 

 reversal in threshold shift at the higher dose levels is attributable to the creation 

of  radiation-induced  interface states that tend to compensate the radiation-induced 

 posi tive oxide charge.

 In our discussion of subthreshold conduction, we have mentioned that the slope 

of the ln ID versus VGS curves in the subthreshold region is a function of the density of 

interface states. Figure 11.33 shows the subthreshold current at several total ionizing 

103 106105104

Dose [rads (Si)]

(a)

(b)

T
h
re

sh
o
ld

 v
o
lt

ag
e 

(v
o
lt

s)

�3

�2

�1

2

1

0

Figure 11.32 | Threshold voltage versus 

total ionizing radiation dose of (a) an 

n-channel MOSFET and (b) a p-channel 

MOSFET.
(From Ma and Dressendorfer [7].)
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 11.5   Radiation and Hot-Electron Effects 479

dose levels. The change in slope indicates that the density of interface states is in-

creasing with total dose.

 The buildup of radiation-induced interface states occurs over a relatively long 

time period and is a very strong function of the applied electric fi eld in the oxide. Fig-

ure 11.34 shows the radiation-induced interface state density versus time for several 

applied fi elds. The fi nal interface state density is reached between 100 to 10,000 seconds 

after a pulse of ionizing radiation. Almost all models for the generation of radiation-

induced interface states depend on the transport or trapping of  radiation-generated 

holes near the Si–SiO2 interface. This transport and trapping process is time and fi eld 

dependent, supporting the time and fi eld dependence of the interface state buildup.

 The sensitivity of the Si–SiO2 interface to the buildup of radiation-induced in-

terface states is a strong function of device processing. The interface state buildup 

in  aluminum-gate MOSFETs tends to be smaller than in polysilicon-gate devices. 

This difference is probably more a result of variations between the two process-

ing  technologies than an inherent difference. Hydrogen appears to be important in 

the  radiation-induced interface state buildup—hydrogen tends to passivate dangling 

 silicon bonds at the interface, reducing the preradiation density of interface states. 

However, devices passivated with hydrogen appear to be more susceptible to the 

buildup of radiation-induced interface states. The silicon–hydrogen bond at the in-

terface may be broken by the radiation process, which leaves a dangling silicon bond 

that acts like an interface state trap. These traps at the interface have been identifi ed 

through electron spin resonance experiments.

 Interface states may seriously affect the MOSFET characteristics, which in turn 

can affect MOSFET circuit performance. Radiation-induced interface states can 

cause shifts in threshold voltage, affecting circuit performance as we have discussed. 

A reduction in mobility can affect the speed and output drive capability of a circuit.
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Figure 11.34 | Radiation-induced interface state density 

versus time after a pulse of ionizing radiation for several 

values of oxide electric fi eld.
(From Ma and Dressendorfer [7].)
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480 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

11.5.3  Hot-Electron Charging Effects

We have considered breakdown voltage effects in a MOSFET. In particular, as 

the electric fi eld in the drain junction space charge region increases, electron–hole 

pairs can be generated by impact ionization. The generated electrons tend to be 

swept to the drain and generated holes swept into the substrate in an n-channel 

MOSFET.

 Some of the electrons generated in the space charge region are attracted to 

the oxide due to the electric fi eld induced by a positive gate voltage; this effect is 

shown in Figure 11.35. These generated electrons have energies far greater than the 

thermal-equilibrium value and are called hot electrons. If the electrons have ener-

gies on the order of 1.5 eV, they may be able to tunnel into the oxide; or in some 

cases they may be able to overcome the silicon oxide potential barrier and produce a 

gate current, which may be in the range of femtoamperes (fA) (10�15 A) or perhaps 

picoamperes (pA) (10�12 A). A fraction of the electrons traveling through the oxide 

may be trapped, producing a net negative charge density in the oxide. The probability 

of electron trapping is usually less than that of hole trapping; but a hot electron– 

induced gate current may exist over a long period of time, therefore the negative 

charging effect may build up. The negative oxide charge trapping will cause a local 

positive shift in the threshold voltage.

 The energetic electrons, as they cross the Si–SiO2 interface, can generate ad-

ditional interface states. The probable cause of interface state generation is due to 

the breaking up of silicon-hydrogen bonds—a dangling silicon bond is produced, 

which acts as an interface state. The charge trapping in interface states causes a shift 

in threshold voltage, additional surface scattering, and reduced mobility. The hot-

electron charging effects are continuous processes, so the device degrades over a 

period of time. This degradation is obviously an undesirable effect and may tend to 

limit the useful life of the device. We have discussed the lightly doped drain (LDD) 

structure in Section 11.4.2. The maximum electric fi eld is reduced in this device, 

decreasing the probability of impact ionization and hot-electron effects.
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�
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Figure 11.35 | Hot carrier generation, 

current components, and electron 

injection into the oxide.
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11.6 | SUMMARY
■ Advanced concepts of MOSFETs have been discussed in this chapter.

■ Subthreshold conduction means that the drain current in a MOSFET is not zero even 

when the gate-to-source voltage is less than the threshold voltage. In this situation, the 

transistor is biased in the weak inversion mode and the drain current is dominated by 

the diffusion rather than the drift mechanism.

■ The effective channel length decreases with an increase in drain voltage when the 

MOSFET is biased in the saturation region, since the depletion region at the drain 

extends into the channel. This effect is known as channel length modulation.

■ The mobility of carriers in the inversion layer is not a constant. As the gate voltage 

 increases, the transverse electric fi eld at the oxide interface increases, causing additional 

surface scattering. The increased carrier scattering leads to a reduced mobility and a 

 deviation from the ideal current–voltage relation.

■ As the channel length decreases, the lateral electric fi eld increases so that carriers fl ow-

ing through the channel may reach their saturation velocity. In this case, the drain cur-

rent becomes a linear function of gate-to-source voltage.

■ The tendency in MOSFET design is to make devices smaller. The principle of constant-

fi eld scaling has been discussed.

■ Modifi cation in threshold voltage as device dimensions shrink has been discussed. 

Because of charge-sharing effects in the substrate, the threshold voltage decreases as 

channel length decreases and increases as channel width decreases.

■ Several voltage breakdown mechanisms have been discussed. These include oxide 

breakdown, avalanche breakdown, near avalanche or snapback breakdown, and near 

punch-through effects. These mechanisms are all enhanced as device dimensions shrink. 

The lightly doped drain transistor tends to minimize the drain breakdown effects.

■ Ion implantation can be used as essentially a fi nal process step to change and adjust the 

substrate doping in the channel region to provide the desired threshold voltage. This 

process is referred to as threshold voltage adjustment by ion implantation and is used 

extensively in device fabrication.

■ The effect of ionization radiation and hot-electron effects on MOSFET behavior have 

been briefl y discussed.

GLOSSARY OF IMPORTANT TERMS
channel length modulation  The change in effective channel length with drain-to-source 

voltage when the MOSFET is biased in saturation.

drain-induced barrier lowering  The near punch-through condition in which the potential 

barrier between the source and channel region in an off transistor is lowered due to a large 

applied drain voltage.

hot electrons  Electrons with energies far greater than the thermal-equilibrium value caused 

by acceleration in high electric fi elds.

lightly doped drain (LDD)  A MOSFET with a lightly doped drain region adjacent to the 

channel to reduce voltage breakdown effects.

narrow-channel effects  The shift in threshold voltage as the channel width narrows.

near punch-through  The reduction in the potential barrier between source and substrate by 

the drain-to-substrate voltage, resulting in a rapid increase in drain current.

short-channel effects  The shift in threshold voltage as the channel length becomes smaller.
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482 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

snapback  The negative resistance effect during breakdown in a MOSFET caused by the 

variable current gain in a parasitic bipolar transistor.

subthreshold conduction  The process of current conduction in a MOSFET when the tran-

sistor is biased below the threshold inversion point.

surface scattering  The process of electric fi eld attraction and coulomb repulsion of carriers 

at the oxide–semiconductor interface as the carriers drift between source and drain.

threshold adjustment  The process of altering the threshold voltage by changing the semi-

conductor doping concentration through ion implantation.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Describe the concept and effects of subthreshold conduction.

■ Discuss channel length modulation.

■ Describe carrier mobility versus gate-to-source voltage and discuss the effects on the 

current–voltage characteristics of a MOSFET.

■ Discuss the effect of velocity saturation on the current–voltage relationship of a MOSFET.

■ Defi ne what is meant by constant-fi eld scaling in MOSFET device design, and discuss 

how device parameters change in constant-fi eld scaling.

■ Describe why the threshold voltage changes as the channel length decreases and as the 

channel width decreases.

■ Describe the various voltage breakdown mechanisms in a MOSFET, such as oxide 

breakdown, avalanche breakdown, snapback breakdown, and near punch-through effects.

■ Describe the advantages of the lightly doped drain transistor.

■ Discuss the advantages and the process of threshold adjustment by ion implantation.

REVIEW QUESTIONS
 1. What is subthreshold conduction? Sketch a drain current versus gate voltage plot that 

shows the subthreshold current for the transistor biased in the saturation region.

 2. What is channel length modulation? Sketch an I–V curve that shows the channel length 

modulation effect.

 3. Why, in general, is the mobility of carriers in the inversion layer not a constant with 

 applied voltage?

 4. What is velocity saturation and what is its effect on the I–V relation of a MOSFET?

 5. What is constant-fi eld scaling and what parameters in a MOSFET are changed in 

 constant-fi eld scaling?

 6. Sketch the space charge region in the channel of a short-channel MOSFET and show 

the charge-sharing effect. Why does the threshold voltage decrease in a short-channel 

NMOS device?

 7. Sketch the space charge region along the width of an NMOS device. Why does the 

threshold voltage increase as the channel width of the NMOS device decreases?

 8. Sketch ID versus VD for an NMOS device, showing the snapback breakdown effect.

 9. Sketch the energy bands of an NMOS device between source and drain, showing the 

near punch-through effect.
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10. Sketch the cross section of a lightly doped drain transistor. What are the advantages and 

disadvantages of this design?

11. What type of ion should be implanted into a MOSFET to increase the threshold 

 voltage? What type of ion should be implanted into a MOSFET to decrease the 

 threshold voltage?

PROBLEMS
(Note: In the following problems, assume the semiconductor and oxide in the MOS system 

are silicon and silicon dioxide, respectively, and assume the temperature is T � 300 K unless 

otherwise stated.)

Section 11.1  Nonideal Effects

11.1 Assume that the subthreshold current of a MOSFET is given by

ID � 10�15 exp  �   VGS  __ 
(2.1)Vt 

   � 
 over the range 0 � VGS � 1 volt and where the factor 2.1 takes into account the 

 effect of interface states. Assume that 106 identical transistors on a chip are all 

 biased at the same VGS and at VDD � 5 V. (a) Calculate the total current that must be 

supplied to the chip at VGS � 0.5, 0.7, and 0.9 V. (b) Calculate the total power dis-

sipated in the chip for the same VGS values.

11.2 The subthreshold current in a MOSFET is given by ID � IS exp (VGS�nVt). 

Determine the change in applied VGS for a factor of 10 increase in ID for (a) n � 1, 

(b) n � 1.5, and (c) n � 2.1.

11.3 A silicon n-channel MOSFET has a doping concentration of Na � 2 
 1016 cm�3 

and a threshold voltage of VT � 0.40 V. Determine the change in channel length, 

�L, for (a) VGS � 1.0 V, VDS � 2.0 V; (b) VGS � 1.0, VDS � 4.0 V; (c) VGS � 2.0 V, 

VDS � 2.0 V; and (d) VGS � 2.0, VDS � 4.0.

11.4 Consider the MOSFET described in Problem 11.3. (a) Determine the minimum 

channel length so that the incremental change �L is no more than 10 percent of the 

original length L for applied voltages of VGS � 2 V and VDS � 3 V. (b) Repeat part 

(a) for VDS � 5 V.

11.5 A silicon MOSFET has parameters Na � 4 
 1016 cm�3, tox � 12 nm � 120 Å, 

 Q ss  �   � 4 
 1010 cm�2, and �ms � �0.5 V. The transistor is biased at VGS � 1.25 V 

and VSB � 0. (a) Calculate �L for (i) �VDS � 1 V, (ii) �VDS � 2 V, and 

(iii) �VDS � 4 V. (b) Determine the minimum channel length L such that 

�L�L � 0.12 for VGS � 1.25 V and �VDS � 4 V.

11.6 The parameters of a silicon MOSFET are Na � 3 
 1016 cm�3, VT � 0.40 V, 

 k n  �  � 50 �A/V2, L � 0.80 �m, and W � 15 �m. (a) Determine the current  I D  �   at 

VGS � 1.0 V for (i) VDS � 2.0 V and (ii) VDS � 4.0 V. (b) Defi ning the output resis-

tance as ro � (� I D  �  ��VDS)�1, determine ro for part (a). (c) Repeat parts (a) and (b) 

for VGS � 2.0 V.

11.7 Consider an n-channel silicon MOSFET. The parameters are  k n  �  � 75 �A/V2, 

W�L � 10, and VT � 0.35 V. The applied drain-to-source voltage is VDS � 1.5 V. 

(a) For VGS � 0.8 V, fi nd (i) the ideal drain current, (ii) the drain current if � � 0.02 V�1, 

and (iii) the output resistance for � � 0.02 V�1. (b) Repeat part (a) for VGS � 1.25 V.
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11.8 An n-channel MOSFET has a substrate doping concentration of Na � 1016 cm�3 

and VDS(sat) � 2 V. Using Equation (11.10), plot �L versus VDS over the range 

2 � VDS � 5 V for (a) Esat � 104 V /cm and Esat � 2 
 105 V /cm.

11.9 Assume that the lateral electric fi eld at the point where the inversion charge pinches 

off is given by Esat � VDS(sat) �L. (a) Determine Esat for L � 3, 1.0, 0.50, 0.25, and 

0.13 �m. (b) For each case given in part (a), estimate the carrier drift velocity.

11.10 A silicon n-channel MOSFET has the following parameters: VT � 0.45 V, 

�n � 425 cm2/V-s, tox � 11 nm � 110 Å, W � 20 �m, and L � 1.2 �m. The 

substrate doping is Na � 3 
 1016 cm�3. (a) Using Equations (11.4) and (11.11), 

calculate the output resistance, ro � (� I D  �  ��VDS)�1, for VGS � 0.8 V and �VDS � 2 V. 

(b) Repeat part (a) if the channel length is reduced to L � 0.80 �m.

11.11 (a) Consider an n-channel enhancement mode MOSFET with (W �L) � 10, 

Cox � 6.9 
 10�8 F/cm2, and VT � �1 V. Assume a constant mobility of 

�n � 500 cm2 /V-s. Plot  �
__

 ID
   versus VGS for 0 � VGS � 5 V when the transistor is 

 biased in the saturation region. (b) Now assume that the effective mobility in the 

channel is given by

 �eff � �0   �   Eeff  _ 
Ec 

   �  �1 �3

 

  where �0 � 1000 cm2 /V-s and Ec � 2.5 
 104 V /cm. As a fi rst approximation, let 

Eeff � VGS  /tox. Using �eff in place of �n in the  �
__

 ID
   versus VGS relation, plot  �

__
 ID
   

versus VGS over the same VGS range as in part (a). (c) Plot the curves from parts 

(a) and (b) on the same graph. What can be said about the slopes of the two curves?

11.12 One model used to describe the variation in electron mobility in an NMOS device is

 �eff �   
�0 
 ___  

1 � �(VGS � VTN)
  

  where � is called the mobility degradation parameter. Assume the following param-

eters: Cox � 10�8 F /cm2, (W �L) � 25, �0 � 800 cm2 /V-s, and VTN � 0.5 V. Plot, 

on the same graph,  �
__

 ID
   versus VGS for the NMOS device biased in the saturation 

region over the range 0 � VGS � 3 V for (a) � � 0 (ideal case) and (b) � � 0.5 V�1.

11.13 The parameters of an n-channel enhancement-mode MOSFET are VT � 0.40 V, 

tox � 20 nm � 200 Å, L � 1.0 �m, and W � 10 �m. (a) Assuming a constant 

mobility of �n � 475 cm2/V-s, calculate ID for VGS � VT � 2.0 V when biased 

at (i) VDS � 0.5 V, (ii) VDS � 1.0 V, (iii) VDS � 1.25 V, and (iv) VDS � 2.0 V. 

(b) Consider the piecewise linear model of the carrier velocity versus VDS shown 

in Figure P11.13. Calculate ID for the same voltage values given in part (a). [See 

Equation (11.17).] (c) Determine the VDS (sat) values for parts (a) and (b).

Figure P11.13 | Figure for 

Problems 11.13 and 11.14.

4 � 106

1.250
VDS (V)

vds

(cm /s)
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11.14 Consider an NMOS transistor with a threshold voltage of VTN � 0.4 V. Plot, on 

the same graph, VDS(sat) over the range 0 � VGS � 3 V for (a) an ideal MOSFET 

 (constant mobility) and (b) a device whose drift velocity is given in Figure P11.13.

Section 11.2  MOSFET Scaling

11.15 Apply constant-fi eld scaling to the ideal current–voltage relations in both the 

 saturation and nonsaturation bias regions. (a) How does the drain current scale in each 

bias  region? (b) How does the power dissipation per device scale in each bias region?

11.16 Consider a MOSFET biased such that carriers are traveling at their saturated veloc-

ity in the n channel. If constant-fi eld scaling is applied to the device, how does the 

drain current scale?

11.17 The initial parameters of an n-channel MOSFET are  k n  �   � 0.15 mA/V2, L � 1.2 �m, 

W � 6.0 �m, and VT � 0.45 V. The device operates over a voltage range of 0 to 

3 V. Assume a constant-fi eld scaling factor of k � 0.65, but assume the threshold 

voltage is constant. (a) Determine the maximum drain current in the (i) original 

device and (ii) scaled device. (b) Determine the maximum power dissipation in the 

(i) original device and (ii) scaled device.

Section 11.3  Threshold Voltage Modifi cations

11.18 Consider an n-channel MOSFET with parameters Na � 5 
 1016 cm�3, tox � 12 nm �
120 Å, and L � 0.80 �m. If rj � 0.25 �m, determine the threshold voltage shift 

due to short-channel effects.

11.19 The parameters of an n-channel MOSFET are Na � 2 
 1016 cm�3, L � 0.70 �m, 

and tox � 8 nm � 80 Å. The diffused junction radius is rj � 0.30 �m. The designed 

threshold voltage is to be VT � 0.35 V taking into account the shift due to short-

channel effects. What is the equivalent long-channel threshold voltage?

11.20 An n-channel MOSFET is doped to Na � 3 
 1016 cm�3 and has an oxide thickness 

of tox � 20 nm � 200 Å. The diffused junction radius is rj � 0.30 �m. Determine 

the minimum channel length such that the threshold voltage shift due to short-

channel effects is limited to �VT � �0.15 V.

*11.21 The shift in threshold voltage due to short-channel effects given by Equation (11.29) 

assumed all space charge regions were of equal width. If a drain voltage is applied, 

this condition is no longer valid. Using the same trapezoidal approximation, show 

that the threshold voltage shift is given by

 �VT � �   
eNa xdT  __ 

Cox 
   ·   rj  

 _ 
2L

    �  �  �
________

 1 �   
2xds  _ rj      � �2 � 1 �  �  �  �

________

 1 �   
2xdD 

 _ rj      � 2 � 1 �  � 
 where

 �2 �   
 x ds  

2
   �  x dT  

2
   
 __ 

 r j  
2 
    2 �   

 x dD  2
   �  x dT  

2
   
 __ 

 r j  
2 
  

  and where xds and xdD are the source and drain space charge widths, respectively.

*11.22 The threshold voltage shift due to short channel effects, given by Equation (11.29), 

has been derived assuming L is large enough so that a trapezoidal charge region 

*Asterisks next to problems indicate problems that are more diffi cult.
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can be defi ned as shown in Figure 11.15. Derive the expression for �VT for the case 

when L becomes small enough such that the trapezoid becomes a triangle. Assume 

punch-through does not occur.

11.23 Consider the short-channel effect. Plot VT � VFB versus L as shown in Figure 11.16 

over the range 0.5 � L � 6 �m. Use the parameters given in the fi gure and assume 

VSB � 0.

11.24 Repeat Problem 11.23 at Na � 1016 and 1017 cm�3 for VSB � 0, 2, 4, and 6 V.

11.25 Equation (11.29) describes the shift in threshold voltage due to short channel ef-

fects. If constant-fi eld scaling is applied, what is the scaling factor in �VT?

11.26 An n-channel MOSFET has parameters of Na � 3 
 1016 cm�3, W � 2.2 �m, 

and tox � 8 nm � 80 Å. Neglecting short-channel effects, calculate the shift in 

threshold voltage due to narrow-channel effects. Assume the fi tting parameter 

is 
 � ��2.

11.27 Consider an n-channel MOSFET with Na � 1016 cm�3 and tox � 12 nm � 120 Å. 

The depletion region at each end of the channel can be approximated by a triangular 

region, as shown in Figure P11.27. Assume both the lateral and vertical depletion 

widths are equal to xdT. The threshold voltage shift due to narrow-channel effects 

is to be limited to �VT � �0.045 V. Determine the minimum channel width W. 

Neglect short-channel effects.

11.28 Consider the narrow-channel effect. Use the transistor parameters described in 

 Example 11.4. Plot VT � VFB over the range 0.5 � W � 5 �m for a long-channel 

device.

11.29 Equation (11.35) describes the shift in threshold voltage due to narrow-channel 

 effects. If constant-fi eld scaling is applied, what is the scaling factor in �VT?

Section  11.4  Additional Electrical Characteristics

11.30 (a) A MOS device has a silicon dioxide insulator with a thickness of tox � 20 nm � 200 Å. 

(i) Determine the ideal breakdown voltage. (ii) If a safety factor of 3 is required, 

determine the maximum safe gate voltage that may be applied. (b) Repeat part 

(a) for an oxide thickness of tox � 8 nm � 80 Å.

11.31 (a) In a power MOSFET, a maximum gate voltage of 8 V is to be applied. Deter-

mine the minimum oxide thickness necessary if a safety factor of 3 is specifi ed. 

(b) Repeat part (a) if the maximum gate voltage is 12 V.

p type

W

L xdT

Figure P11.27 | Figure for Problem 11.27.
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*11.32 The snapback breakdown condition is defi ned to be when �M � 1, where � is the 

common base current gain and M is the multiplication constant given by Equation 

(11.40). Let m � 3 and let VBD � 15 V. The common base current gain is a very 

strong function of junction current ID. Assume � is described by the relation

� � (0.18) log10  �   ID 
 __ 

3 
 10�9 
   � 

  where ID is given in amperes. Plot the curve of ID versus VCE which satisfi es the snap-

back condition over the range 10�8 � ID � 10�3 A. (Use a log scale for the current.)

11.33 Near punch-through occurs when the two depletion regions are within approxi-

mately six Debye lengths of each other. The extrinsic Debye length LD is defi ned as

 LD �   �   �s(kT �e) 
 __ 

eNa 
   �  1 �2

 

  Consider the n-channel MOSFET in Example 11.5. Calculate the near punch-

through voltage. How does this voltage compare to the ideal punch-through voltage 

determined in the example?

11.34 The near punch-through voltage (see Problem 11.33) of an n-channel MOSFET 

is to be no less than VDS � 5 V. The source and drain regions are doped 

Nd � 1019 cm�3, and the channel region is doped Na � 3 
 1016 cm�3. The source 

and body are at ground potential. Determine the minimum channel length.

11.35 Repeat Problem 11.34 if a source–substrate voltage VSB � 2 V is applied.

11.36 The threshold voltage of an n-channel MOSFET, with an oxide thickness of 

tox � 12 nm � 120 Å, needs to be shifted in the positive direction by 0.80 V. 

Determine the type of ion implant and the implant dose required.

11.37 The threshold voltage of a p-channel MOSFET, with an oxide thickness of 

tox � 18 nm � 180 Å, needs to be shifted in the negative direction by 0.60 V. 

Determine the type of ion implant and the implant dose required.

11.38 An n-channel MOSFET has an n� polysilicon gate, a substrate doping of 

Na � 6 
 1015 cm�3, an oxide thickness of tox � 15 nm � 150 Å, and an oxide 

trapped charge density of  Q ss  �   � 5 
 1010 cm�2. (a) Determine the threshold voltage. 

(b) The required threshold voltage is VT � �0.50 V. Determine the type and ion 

implant density necessary to achieve this specifi cation. Assume the implant is 

directly adjacent to the oxide-semiconductor interface.

11.39 A p-channel MOSFET has a p� polysilicon gate, a substrate doping of 

Nd � 2 
 1016 cm�3, an oxide thickness of tox � 18 nm � 180 Å, and an oxide 

trapped charge density of  Q ss  �   � 1011 cm�2. (a) Calculate the threshold voltage. 

(b) The required threshold voltage is VT � �0.40 V. Determine the type and ion 

implant density necessary to achieve this specifi cation. Assume the implant is 

directly adjacent to the oxide-semiconductor interface.

11.40 Consider an n-channel MOSFET with a substrate doping of Na � 4 
 1015 cm�3, 

an oxide thickness of tox � 8 nm � 80 Å, and an initial fl at-band voltage of 

VFB � �1.25 V. (a) Determine the threshold voltage. (b) For an enhancement-mode 

device, the required threshold voltage is VT � �0.40 V. Determine the type and ion 

implant density that is necessary to achieve this specifi cation. (c) Repeat part (b) for 

a depletion-mode device with a required threshold voltage of VT � �0.40 V.

11.41 The channel of a device with tox � 500 Å and a p-type substrate with Na � 1014 cm�3 

is implanted with acceptors using an effective dose of DI � 1012 cm�2. The 
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 implant is approximated as a step function with xI � 0.2 �m. Calculate the shift in 

threshold voltage due to back bias effects for VSB � 1.3, and 5 volts.

11.42 A MOSFET has the following parameters: n� poly gate, tox � 80 Å, Nd � 1017 cm�3, 

and  Q ss  �   � 5 
 1010 cm�2. (a) What is the threshold voltage of this MOSFET? Is the 

device enhancement- or depletion-mode? (b) What type of implant and dose are 

required such that VT � 0?

Section 11.5  Radiation and Hot-Electron Effects

11.43 One rad (Si) produces on the average 8 
 1012 electron–hole pairs /cm3 in silicon 

dioxide.1 Assume that a pulse of ionizing radiation with a total dose of 105 rads (Si) 

is incident on an MOS device with a 750 Å oxide. Assume that there is no electron-

hole recombination and that the electrons are swept out through the gate terminal. 

If 10 percent of the generated holes are trapped at the oxide–semiconductor inter-

face, calculate the threshold voltage shift.

11.44 Reconsider Problem 11.43. If the threshold voltage shift is to be no more than 

�VT � �0.50 V, calculate the maximum percentage of holes that can be trapped.

11.45 Show that, for the simple model for radiation-induced hole trapping we have con-

sidered, the threshold voltage shift is proportional to �VT � � t ox  
2
  . Thin oxides are 

one requirement for radiation-tolerant MOS devices.

Summary and Review

*11.46 Design a silicon n-channel MOSFET with a polysilicon gate to have a threshold 

voltage of VT � �0.30 V. The oxide thickness is to be tox � 12 nm � 120 Å and the 

channel length is to be L � 0.80 �m. Assume  Q ss  �   � 0. It is desired to have a drain 

current of ID � 80 �A at VGS � 1.25 V and VDS � 0.25 V. Determine the substrate 

doping concentration, channel width, and type of gate required. Specify any pos-

sible ion implantation process and take short channel effects into account.

*11.47 A particular process produces an n-channel MOSFET with the following properties:

   tox � 325 Å L � 0.8 �m

   Na � 1016 cm3 W � 20 �m

   n� polysilicon gate rj � 0.35 �m

    Q ss  �   � 1011 cm�2

  The desired threshold voltage is VT � 0.35 V at T � 300 K. Design an additional 

process to achieve this objective by using ion implantation, which produces a step 

function profi le that is 0.35 �m deep.

*11.48 A CMOS inverter is to be designed in which both the n-channel and p-channel 

 devices have the same magnitude of doping concentration equal to 1016 cm�3, equal 

oxide thickness of tox � 150 Å, equal oxide trapped charge of  Q ss  �   � �8 
 1010 cm�2. 

The gate of the n channel is p� poly and the gate of the p channel is n� poly. Deter-

mine the type of ion implant and the implant dose in each device such that the fi nal 

threshold voltages are VTN � �0.5 V and VTP � �0.5 V.

1One rad (Si) is equivalent to 100 ergs of energy deposited per cm3 in silicon. We normally use this same 

total dose notation for the total dose effects in silicon dioxide.

nea29583_ch11_443-490.indd   488nea29583_ch11_443-490.indd   488 12/11/10   12:42 PM12/11/10   12:42 PM



 Reading List 489

READING LIST
 1. Akers, L. A., and J. J. Sanchez. “Threshold Voltage Models of Short, Narrow, and 

Small Geometry MOSFETs: A Review.” Solid State Electronics 25 (July 1982), 

pp. 621–641.

 2. Baliga, B. J. Fundamentals of Power Semiconductor Devices. Springer, Berlin, 

 Germany 2008.

 3. Brews, J. R. “Threshold Shifts Due to Nonuniform Doping Profi les in Surface 

 Channel MOSFETs.” IEEE Transactions on Electron Devices ED-26 (November 

1979), pp. 1696–1710.

 4. Dimitrijev, S. Principles of Semiconductor Devices. New York: Oxford University 

Press, 2006.

 5. Kano, K. Semiconductor Devices. Upper Saddle River, NJ: Prentice Hall, 1998.

 6. Klaassen, F. M., and W. Hes. “On the Temperature Coeffi cient of the MOSFET 

Threshold Voltage.” Solid State Electronics 29 (August 1986), pp. 787–789.

 7. Ma, T. P., and P. V. Dressendorfer. Ionizing Radiation Effects in MOS Devices and 
Circuits. New York: John Wiley and Sons, 1989.

 8. Muller, R. S., and T. I. Kamins. Device Electronics for Integrated Circuits. 2nd ed. 

New York: John Wiley and Sons, 1986.

 9. Neamen, D. A., B. Buchanan, and W. Shedd. “Ionizing Radiation Effects in SOS 

Structures.” IEEE Transactions on Nuclear Science NS–22 (December 1975), 

pp. 2179–2202.

 *10. Nicollian, E. H., and J. R. Brews. MOS Physics and Technology. New York: John 

Wiley and Sons, 1982.

 11. Ning, T. H., P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H. N. 

Yu. “1 �m MOSFET VLSI Technology: Part IV––Hot Electron Design Constraints.” 

IEEE Transactions on Electron Devices ED-26 (April 1979), pp. 346–353.

 12. Ogura, S., P. J. Tsang, W. W. Walker, D. L. Critchlow, and J. F. Shepard. “Design 

and Characteristics of the Lightly Doped Drain-Source (LDD) Insulated Gate Field-

Effect Transistor.” IEEE Transactions on Electron Devices ED-27 (August 1980), 

pp. 1359–1367.

 13. Ong, D. G. Modern MOS Technology: Processes, Devices, and Design. New York: 

McGraw-Hill, 1984.

 14. Pierret, R. F. Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 

1996.

 15. Roulston, D. J. An Introduction to the Physics of Semiconductor Devices. New York: 

Oxford University Press, 1999.

 16. Sanchez, J. J., K. K. Hsueh, and T. A. DeMassa. “Drain-Engineered  Hot-Electron-

Resistant Device Structures: A Review.” IEEE Transactions on Electron Devices  

ED-36 (June 1989), pp. 1125–1132.

 17. Schroder, D. K. Advanced MOS Devices, Modular Series on Solid State Devices. 

Reading, MA: Addison-Wesley, 1987.

 18. Shur, M. Introduction to Electronic Devices. New York: John Wiley and Sons, 1996.

 *19. _______. Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice Hall, 

1990.

nea29583_ch11_443-490.indd   489nea29583_ch11_443-490.indd   489 12/11/10   12:42 PM12/11/10   12:42 PM



490 CHAPTER 11   Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

 20. Singh, J. Semiconductor Devices: Basic Principles. New York: John Wiley and 

Sons, 2001.

 21. Streetman, B. G., and S. Banerjee. Solid State Electronic Devices. 6th ed. Upper 

Saddle River, NJ: Pearson Prentice Hall, 2006.

 22. Sze, S. M., and K. K. Ng. Physics of Semiconductor Devices, 3rd ed. Hoboken, NJ: 

John Wiley and Sons, 2007.

 23. Taur, Y. and T. H. Ning. Fundamentals of Modern VLSI Devices, 2nd ed.  New York 

Cambridge University Press, 2009.

 *24. Tsividis, Y. Operation and Modeling of the MOS Transistor, 2nd ed. Burr Ridge, IL: 

McGraw-Hill, 1999.

 25. Yang, E. S. Microelectronic Devices. New York: McGraw-Hill, 1988.

 26. Yau, L. D. “A Simple Theory to Predict the Threshold Voltage of Short-Channel 

IGFETs.” Solid-State Electronics 17 (October 1974), pp. 1059–1063.

*Indicates references that are at an advanced level compared to this text.

nea29583_ch11_443-490.indd   490nea29583_ch11_443-490.indd   490 12/11/10   12:42 PM12/11/10   12:42 PM



491

12
The Bipolar Transistor

T
he transistor is a multijunction semiconductor device that, in conjunc-

tion with other circuit elements, is capable of current gain, voltage gain, 

and signal power gain. The transistor is therefore referred to as an active 

device, whereas the diode is passive. The basic transistor action is the control of 

current at one terminal by the voltage applied across the other two terminals of 

the device.

 The Bipolar Junction Transistor (BJT) is one of two major types of transistors. 

The fundamental physics of the BJT is developed in this chapter. The bipolar transis-

tor is used extensively in analog electronic circuits because of its high current gain.

 Two complementary confi gurations of BJTs, the npn and pnp devices, can be 

fabricated. Electronic circuit design becomes very versatile when the two types of 

devices are used in the same circuit. ■

12.0 | PREVIEW
In this chapter, we will:

■ Discuss the physical structure of the bipolar transistor, which has three sepa-

rately doped regions and two pn junctions that are suffi ciently close together so 

interactions occur between the two junctions.

■ Discuss the basic principle of operation of the bipolar transistor, including the 

various possible modes of operation.

■ Derive expressions for the minority carrier concentrations through the device 

for various operating modes.

■ Derive expressions for the various current components in the bipolar transistor.

■ Defi ne common-base and common-emitter current gains.

■ Defi ne the limiting factors and derive expressions for the current gain.

■ Discuss several nonideal effects in bipolar transistors, including base width 

modulation and high-level injection effects.

C H A P T E R
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■ Develop the small-signal equivalent circuit of the bipolar transistor. This cir-

cuit is used to relate small-signal currents and voltages in analog circuits.

■ Defi ne and derive expressions for the frequency limiting factors.

■ Present the geometries and characteristics of a few specialized bipolar transis-

tor designs.

12.1 | THE BIPOLAR TRANSISTOR ACTION
The bipolar transistor has three separately doped regions and two pn junctions. Fig-

ure 12.1 shows the basic structure of an npn bipolar transistor and a pnp bipolar tran-

sistor, along with the circuit symbols. The three terminal connections are called the 

emitter, base, and collector. The width of the base region is small compared to the 

minority carrier diffusion length. The (��) and (�) notation indicates the relative 

magnitudes of the impurity doping concentrations normally used in the bipolar tran-

sistor, with (��) meaning very heavily doped and (�) meaning moderately doped. 

The emitter region has the largest doping concentration; the collector region has the 

smallest. The reasons for using these relative impurity concentrations, and for the nar-

row base width, will become clear as we develop the theory of the bipolar transistor. 

The concepts developed for the pn junction apply directly to the bipolar transistor.

 The block diagrams of Figure 12.1 show the basic structure of the transistor, 

but in very simplifi ed sketches. Figure 12.2a shows a cross section of a classic npn 

bipolar transistor fabricated in an integrated circuit confi guration, and Figure 12.2b 

shows the cross section of an npn bipolar transistor fabricated by a more modern 

technology. One can immediately observe that the actual structure of the bipolar 

transistor is not nearly as simple as the block diagrams of Figure 12.1 might suggest. 

A reason for the complexity is that terminal connections are made at the surface; in 

order to minimize semiconductor resistances, heavily doped n� buried layers must 

be included. Another reason for complexity arises out of the desire to fabricate more 

than one bipolar transistor on a single piece of semiconductor material. Individual 

transistors must be isolated from each other since all collectors, for example, will 

not be at the same potential. This isolation is accomplished by adding p� regions so 

that devices are separated by reverse-biased pn junctions as shown in Figure 12.2a, 

or they are isolated by large oxide regions as shown in Figure 12.2b.

n�� p� n
Emitter

Base

Collector

B

C

E

(a)

p�� n� p
Emitter

Base

Collector

B

C

E

(b)

Figure 12.1 | Simplifi ed block diagrams and circuit symbols of (a) npn and (b) pnp 

bipolar transistors.
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 An important point to note from the devices shown in Figure 12.2 is that the 

bipolar transistor is not a symmetrical device. Although the transistor may contain 

two  n regions or two p regions, the impurity doping concentrations in the emitter 

and collector are different and the geometry of these regions can be vastly different. 

The block diagrams of Figure 12.1 are highly simplifi ed, but useful, concepts in the 

development of the basic transistor theory.

12.1.1  The Basic Principle of Operation

The npn and pnp transistors are complementary devices. We develop the bipolar 

transistor theory using the npn transistor, but the same basic principles and equations 

also apply to the pnp device. Figure 12.3 shows an idealized impurity doping profi le 

in an npn bipolar transistor for the case when each region is uniformly doped. Typi-

cal impurity doping concentrations in the emitter, base, and collector may be on the 

order of 1019, 1017, and 1015 cm�3, respectively.

 The base–emitter (B–E) pn junction is forward biased and the base–collector 

(B–C) pn junction is reverse biased in the normal bias confi guration as shown in 

Conventional npn transistor

Isolation Emitter Aluminum
Epitaxial

layer
SiO2

B E C

n

p

n��n��

n��

p�

p� p� 

Buried

layer

Base Silicon

substrate

(a) (b)

B E C
n��

Oxide
p�

n�

p�

p�

���

� �

Figure 12.2 | Cross section of (a) a conventional integrated circuit npn bipolar transistor and (b) an oxide-isolated npn 

bipolar transistor. 
(From Muller and Kamins [4].)

B

E C
n�� p� n

(a)

(N
d 

�
 N

a)

(b)

Figure 12.3 | Idealized doping profi le of a uniformly doped npn bipolar transistor.
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Figure 12.4a. This confi guration is called the forward-active operating mode: The 

B–E junction is forward biased so electrons from the emitter are injected across 

the B–E junction into the base. These injected electrons create an excess concen-

tration of minority carriers in the base. The B–C junction is reverse biased, so the 

minority carrier electron concentration at the edge of the B–C junction is ideally 

zero. We expect the electron concentration in the base to be like that shown in 

(a)

n�� p�

�

�

��

�

�

niE iC

RE vBE

VBB
� �VCC

vCB RC

E C

B

(b)

E-
fieldE-field

E–B space
charge region

B–C space
charge region

pn(x)

pn(x)

np(x)

np0

pn0

pn0

Collector
-n-

Base
-p-

Emitter
-n-

(c)

Forward active

Ec
EFe

Ev

EFb

EFc

e�

Zero bias

Ec

EF

Ev

E

(n)

C

(n)

B (p)

Figure 12.4 | (a) Biasing of an npn bipolar transistor in the forward-active mode, 

(b) minority carrier distribution in an npn bipolar transistor operating in the forward-active 

mode, and (c) energy-band diagram of the npn bipolar transistor under zero bias and under a 

forward-active mode bias.
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Figure 12.4b. The large gradient in the electron concentration means that electrons 

injected from the emitter will diffuse across the base region into the B–C space 

charge region, where the electric fi eld will sweep the electrons into the collector. 

We want as many electrons as possible to reach the collector without recombining 

with any majority carrier holes in the base. For this reason, the width of the base 

needs to be small compared with the minority carrier diffusion length. If the base 

width is small, then the minority carrier electron concentration is a function of 

both the B–E and B–C junction voltages. The two junctions are close enough to be 

called interacting pn junctions.

 Figure 12.5 shows a cross section of an npn transistor with the injection of elec-

trons from the n-type emitter (hence the name emitter) and the collection of the 

electrons in the collector (hence the name collector).

12.1.2  Simplifi ed Transistor Current Relation—Qualitative Discussion

We can gain a basic understanding of the operation of the transistor and the relations 

between the various currents and voltages by considering a simplifi ed analysis. After 

this discussion, we delve into a more detailed analysis of the physics of the bipolar 

transistor.

 The minority carrier concentrations are again shown in Figure 12.6 for an npn 

bipolar transistor biased in the forward-active mode. Ideally, the minority carrier 

electron concentration in the base is a linear function of distance, which implies no 

recombination. The electrons diffuse across the base and are swept into the collector 

by the electric fi eld in the B–C space charge region.

Collector Current  Assuming the ideal linear electron distribution in the base, the 

collector current can be written as a diffusion current given by

 iC � eDn ABE   
dn(x)

 _ 
dx

   � eDn ABE  �   nB(0) � 0
 __ 

0 �xB 
   �  �   

�eDnABE 
 __ xB    � nB0 exp  �   �BE 

 _ 
Vt 

   �  (12.1)

where ABE is the cross-sectional area of the B–E junction, nB0 is the thermal-

equilibrium electron concentration in the base, and Vt is the thermal voltage. The 

B EC

n

n

p

Electrons

Figure 12.5 | Cross section of an npn 

bipolar transistor showing the injection 

and collection of electrons in the 

forward-active mode.
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diffusion of electrons is in the �x direction so that the conventional current is in the 

�x direction. Considering magnitudes only, Equation (12.1) can be written as

 iC � IS exp  �   �BE 
 _ 

Vt 
   �  (12.2)

The collector current is controlled by the base–emitter voltage; that is, the cur-

rent at one terminal of the device is controlled by the voltage applied to the other 

two terminals of the device. As we have mentioned, this is the basic transistor 

action.

Emitter Current  One component of emitter current, iE1, shown in Figure 12.6 is 

due to the fl ow of electrons injected from the emitter into the base. This current, then, 

is equal to the collector current given by Equation (12.1).

 Since the base–emitter junction is forward biased, majority carrier holes in the 

base are injected across the B–E junction into the emitter. These injected holes pro-

duce a pn junction current iE2 as indicated in Figure 12.6. This current is only a B–E 

junction current so this component of emitter current is not part of the collector 

current. Since iE2 is a forward-biased pn junction current, we can write (considering 

magnitude only)

 iE2 � IS2 exp  �   �BE 
 _ 

Vt 
   �  (12.3)

B (p)

Actual

Ideal

(linear)

E (n)

iE1

nB0

iE iC

iE2

iBa

x � 0 x � xB

iBb

iB

C (n)

E-field

nB(0) � nB0 exp (vBE

Vt
)

Figure 12.6 | Minority carrier distributions and basic currents in a 

forward-biased npn bipolar transistor.
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 12.1   The Bipolar Transistor Action 497

where IS2 involves the minority carrier hole parameters in the emitter. The total emit-

ter current is the sum of the two components, or

 iE � iE1 � iE2 � iC � iE2 � ISE exp  �   �BE 
 _ 

Vt 
   �  (12.4)

Since all current components in Equation (12.4) are functions of exp (�BE�Vt), the 

ratio of collector current to emitter current is a constant. We can write

   
iC 

 _ 
iE 

   � � (12.5)

where � is called the common-base current gain. By considering Equation (12.4), 

we see that iC � iE or � � 1. Since iE2 is not part of the basic transistor action, we 

would like this component of current to be as small as possible. We would then like 

the common-base current gain to be as close to unity as possible.

 Referring to Figure 12.4a and Equation (12.4), note that the emitter current is an 

exponential function of the base–emitter voltage and the collector current is iC � �iE. 

To a fi rst approximation, the collector current is independent of the base– collector 

voltage as long as the B–C junction is reverse biased. We can sketch the common-

base transistor characteristics as shown in Figure 12.7. The bipolar transistor acts 

like a constant current source.

Base Current  As shown in Figure 12.6, the component of emitter current iE2 is a 

B–E junction current so that this current is also a component of base current shown 

as iBa. This component of base current is proportional to exp (�BE�Vt).

 There is also a second component of base current. We have considered the ideal 

case in which there is no recombination of minority carrier electrons with majority 

carrier holes in the base. However, in reality, there will be some recombination. 

Since majority carrier holes in the base are disappearing, they must be resupplied 

by a fl ow of positive charge into the base terminal. This fl ow of charge is indicated 

as a current iBb in Figure 12.6. The number of holes per unit time recombining in 

the base is directly related to the number of minority carrier electrons in the base 

�iE4

iC

iE4

�iE3 iE3

�iE2 iE2

�iE1 iE1

vCB0

Figure 12.7 | Ideal bipolar transistor common-base 

current–voltage characteristics.

nea29583_ch12_491-570.indd   497nea29583_ch12_491-570.indd   497 12/11/10   12:44 PM12/11/10   12:44 PM



498 CHAPTER 12   The Bipolar Transistor

[see Equation (6.13)]. Therefore, the current iBb is also proportional to exp (�BE�Vt). 

The total base current is the sum of iBa and iBb and is proportional to exp (�BE�Vt).

 The ratio of collector current to base current is a constant since both currents are 

directly proportional to exp (�BE�Vt). We can then write

   
iC 

 _ 
iB 

   � � (12.6)

where � is called the common-emitter current gain. Normally, the base current will 

be relatively small so that, in general, the common-emitter current gain is much larger 

than unity (on the order of 100 or larger).

12.1.3  The Modes of Operation

Figure 12.8 shows the npn transistor in a simple circuit. In this confi guration, the 

transistor may be biased in one of three modes of operation. If the B–E voltage is 

zero or reverse biased (VBE � 0), then majority carrier electrons from the emitter 

will not be injected into the base. The B–C junction is also reverse biased; thus, the 

emitter and collector currents will be zero for this case. This condition is referred to 

as cutoff—all currents in the transistor are zero.

 When the B–E junction becomes forward biased, an emitter current will be gener-

ated as we have discussed, and the injection of electrons into the base results in a col-

lector current. We may write the KVL equations around the collector–emitter loop as

 VCC � IC RC � VCB � VBE � VR � VCE (12.7)

If VCC is large enough and if VR is small enough, then VCB � 0, which means that the 

B–C junction is reverse biased for this npn transistor. Again, this condition is the 

forward-active region of  operation.

 As the forward-biased B–E voltage increases, the collector current and hence 

VR will also increase. The increase in VR means that the reverse-biased C–B voltage 

 decreases, or �VCB� decreases. At some point, the collector current may become large 

VCC

VCE

VCB

�

�

�

�

�

�

�

�

�

VBB
VBE

�

�
�

IE

IB

RB

RCVR

IC

B

C

E

n

n

p

Figure 12.8 | An npn bipolar transistor in 

a common-emitter circuit confi guration.
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 12.1   The Bipolar Transistor Action 499

enough that the combination of VR and VCC produces 0 V across the B–C junction. 

A slight increase in IC beyond this point will cause a slight increase in VR and the 

B–C junction will become forward biased (VCB � 0). This condition is called satura-
tion.1 In the saturation mode of operation, both B–E and B–C junctions are  forward 

biased and the collector current is no longer controlled by the B–E voltage.

 Figure 12.9 shows the transistor current characteristics, IC versus VCE, for con-

stant base currents when the transistor is connected in the common-emitter confi gu-

ration (Figure 12.8). When the collector–emitter voltage is large enough so that the 

base–collector junction is reverse biased, the collector current is a constant in this 

fi rst-order theory. For small values of C–E voltage, the base–collector junction be-

comes forward biased and the collector current decreases to zero for a constant base 

current.

 Writing a Kirchhoff’s voltage equation around the C–E loop, we fi nd

 VCE � VCC � IC RC (12.8)

Equation (12.8) shows a linear relation between collector current and collector– 

emitter voltage. This linear relation is called a load line and is plotted in Figure 12.9. 

The load line, superimposed on the transistor characteristics, can be used to visual-

ize the bias condition and operating mode of the transistor. The cutoff mode occurs 

when IC � 0, saturation occurs when there is no longer a change in collector current 

for a change in base current, and the forward-active mode occurs when the relation 

IC � �IB is valid. These three operating modes are indicated on the fi gure.

 A fourth mode of operation for the bipolar transistor is possible, although not 

with the circuit confi guration shown in Figure 12.8. This fourth mode, known as 

IC

VCEVCC

Saturation

Cutoff

Increasing

IB
Forward active

Figure 12.9 | Bipolar transistor common-emitter current–voltage 

characteristics with load line superimposed.

1The concept of “saturation” for the bipolar transistor is not the same as the principle of the “saturation 

region” for the MOSFET described in Chapter 10. The term “saturation” as applied to the BJT means 

that the output current and output voltage do not change as the base–emitter voltage changes. The term 

“saturation region” as applied to the MOSFET means that the output current does not change (ideally) 

with a change in the drain-to-source voltage.

nea29583_ch12_491-570.indd   499nea29583_ch12_491-570.indd   499 12/11/10   12:44 PM12/11/10   12:44 PM



500 CHAPTER 12   The Bipolar Transistor

inverse active, occurs when the B–E junction is reverse biased and the B–C junction 

is forward biased. In this case the transistor is operating “upside down,” and the roles 

of the emitter and collector are reversed. We have argued that the transistor is not a 

symmetrical device; therefore, the inverse-active characteristics will not be the same 

as the forward-active characteristics.

 The junction voltage conditions for the four operating modes are shown in Fig-

ure 12.10. 

12.1.4  Amplifi cation with Bipolar Transistors

Voltages and currents can be amplifi ed by bipolar transistors in conjunction with 

other elements. We demonstrate this amplifi cation qualitatively in the following 

discussion. Figure 12.11 shows an npn bipolar transistor in a common-emitter con-

fi guration. The dc voltage sources, VBB and VCC, are used to bias the transistor in the 

forward-active mode. The voltage source �i represents a time-varying input voltage 

(such as a signal from a satellite) that needs to be amplifi ed.

 Figure 12.12 shows the various voltages and currents that are generated in the 

circuit assuming that �i is a sinusoidal voltage. The sinusoidal voltage �i induces a 

sinusoidal component of base current superimposed on a dc quiescent value. Since 

iC � �iB, then a relatively large sinusoidal collector current is superimposed on a 

dc value of collector current. The time-varying collector current induces a time- 

varying voltage across the RC resistor which, by Kirchhoff’s voltage law, means 

that a sinusoidal voltage, superimposed on a dc value, exists between the collector 

and emitter of the bipolar transistor. The sinusoidal voltages in the collector–emitter 

 portion of the circuit are larger than the signal input voltage �i, so that the circuit has 

produced a voltage gain in the time-varying signals. Hence, the circuit is known as 

a voltage amplifi er.

VBE

VCB

Saturation

Cutoff
Forward

active

Inverse

active

Figure 12.10 | Junction 

voltage conditions for the four 

operating modes of a bipolar 

transistor.
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iB

iC

RB

E

B

C

Figure 12.11 | Common-emitter npn bipolar 

circuit confi guration with a time-varying signal 

voltage �i included in the base–emitter loop.
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 12.2   Minority Carrier Distribution 501

 In the remainder of the chapter, we consider the operation and characteristics of 

the bipolar transistor in more detail.

12.2 | MINORITY CARRIER DISTRIBUTION
We are interested in calculating currents in the bipolar transistor that, as in the simple 

pn junction, are determined by minority carrier diffusion. Since diffusion currents are 

produced by minority carrier gradients, we must determine the steady-state  minority 

carrier distribution in each of the three transistor regions. Let us fi rst consider the 

forward-active mode, and then the other modes of operation. Table 12.1 summarizes 

the notation used in the following analysis.

vi

iC

iB

Current

ICQ

IBQ

vR

vR

VRQ

(a)

(b)

(c)

Figure 12.12 | Currents and voltages existing in the 

circuit shown in Figure 12.11. (a) Input sinusoidal 

signal voltage. (b) Sinusoidal base and collector 

currents superimposed on the quiescent dc values. 

(c) Sinusoidal voltage across the RC resistor 

super imposed on the quiescent dc value.
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502 CHAPTER 12   The Bipolar Transistor

12.2.1  Forward-Active Mode

Consider a uniformly doped npn bipolar transistor with the geometry shown in Fig-

ure 12.13. When we consider the individual emitter, base, and collector regions, we 

shift the origin to the edge of the space charge region and consider a positive x, x�, or 

x	 coordinate as shown in the fi gure.

 In the forward-active mode, the B–E junction is forward biased and the B–C is 

reverse biased. We expect the minority carrier distributions to look like those shown 

Table 12.1 | Notation used in the analysis of the bipolar transistor

Notation Defi nition

For both the npn and pnp transistors
NE, NB, NC Doping concentrations in the emitter, base, and collector

xE, xB, xC Widths of neutral emitter, base, and collector regions

DE, DB, DC  Minority carrier diffusion coeffi cients in emitter, base, and 
collector regions

LE, LB, LC  Minority carrier diffusion lengths in emitter, base, and collec-
tor regions

�E0, �B0, �C0  Minority carrier lifetimes in emitter, base, and collector 
regions

For the npn
pE0, nB0, pC0  Thermal-equilibrium minority carrier hole, electron, and hole 

concentrations in the emitter, base, and collector

pE(x�), nB (x), pC (x	 )  Total minority carrier hole, electron, and hole concentrations 
in the emitter, base, and collector

�pE(x�), �nB (x), �pC (x 	)  Excess minority carrier hole, electron, and hole concentra-
tions in the emitter, base, and collector

For the pnp
nE0, pB0, nC0  Thermal-equilibrium minority carrier electron, hole, and elec-

tron concentrations in the emitter, base, and collector

nE(x�), pB (x), nC (x	 )  Total minority carrier electron, hole, and electron concentra-
tions in the emitter, base, and collector

�nE(x�), �pB (x), �nC (x 	)  Excess minority carrier electron, hole, and electron concentra-
tions in the emitter, base, and collector

xE

x� � xE x � xBx� � 0 x 	 � 0 x 	 � xCx � 0

xB xC

x	xx�

Collector

-n-

Base

-p-

Emitter

-n-

Figure 12.13 | Geometry of the npn bipolar transistor used 

to calculate the minority carrier distribution.
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in Figure 12.14. As there are two n regions, we have minority carrier holes in both 

emitter and collector. To distinguish between these two minority carrier hole distribu-

tions, we use the notation shown in the fi gure. Keep in mind that we are  dealing only 

with minority carriers. The parameters pE0, nB0, and pC0 denote the  thermal-equilibrium 

minority carrier concentrations in the emitter, base, and collector, respectively. The 

functions pE (x�), nB (x), and pC (x	) denote the steady-state  minority carrier concen-

trations in the emitter, base, and collector, respectively. We  assume that the neutral 

collector length xC is long compared to the minority carrier diffusion length LC in the 

collector, but we take into account a fi nite emitter length xE. If we assume that the sur-

face recombination velocity at x� � xE is infi nite, then the  excess minority carrier con-

centration at x� � xE is zero, or pE (x� � xE) � pE0. An infi nite surface recombination 

velocity is a good approximation when an ohmic contact is fabricated at x� � xE.

Base Region  The steady-state excess minority carrier electron concentration 

is found from the ambipolar transport equation, which we discussed in detail in 

Chapter 6. For a zero electric fi eld in the neutral base region, the ambipolar transport 

equation in steady state reduces to

 DB   

2(�nB(x))

 __ 

x2 

   �   
�nB(x)

 __ �B0 
   � 0 (12.9)

where �nB is the excess minority carrier electron concentration, and DB and �B0 are 

the minority carrier diffusion coeffi cient and lifetime in the base region, respectively. 

The excess electron concentration is defi ned as

 �nB(x) � nB(x) � nB0 (12.10)

The general solution to Equation (12.9) can be written as

 �nB(x) � A exp  �   �x _ 
LB 

   �  � B exp  �   �x _ 
LB 

   �  (12.11)

pE(x�)

pC(x 	)

nB(x)

nB0

pE0

pC0

Collector

-n-

Base

-p-

Emitter

-n-

x� � xE x � xBx� � 0

x� x
x 	 � 0

x	
x � 0

Figure 12.14 | Minority carrier distribution in an npn 

bipolar transistor operating in the forward-active mode.
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504 CHAPTER 12   The Bipolar Transistor

where LB is the minority carrier diffusion length in the base, given by LB �  	
_____

 DB�B0
  . 

The base is of fi nite width so both exponential terms in Equation (12.11) must be 

retained.

 The excess minority carrier electron concentrations at the two boundaries become

 �nB (x � 0) � �nB (0) � A � B (12.12a)

and

 �nB (x � xB) � �nB (xB) � A exp  �   �xB 
 _ 

LB 
   �  � B exp  �   �xB 

 _ 
LB 

   �  (12.12b)

The B–E junction is forward biased, so the boundary condition at x � 0 is

 �nB(0) � nB (x � 0) � nB0 � nB0  � exp  �   eVBE 
 _ 

kT 
   �  � 1 �  (12.13a)

The B–C junction is reverse biased, so the second boundary condition at x � xB is

 �nB (xB) � nB (x � xB) � nB0 � 0 � nB0 � �nB0 (12.13b)

 From the boundary conditions given by Equations (12.13a) and (12.13b), the 

 coeffi cients A and B from Equations (12.12a) and (12.12b) can be determined. The 

results are

 A �   

�nB0 � nB0  � exp  �   eVBE 
 _ 

kT 
   �  � 1 �  exp  �   �xB 

 _ 
LB 

   � 
    _______  

2 sinh  �   xB 
 _ 

LB 
   � 
   (12.14a)

and

 B �   

nB0  � exp  �   eVBE 
 _ 

kT 
   �  � 1 �  exp  �   xB 

 _ 
LB 

   �  � nB0 

   ______  
2 sinh  �   xB 

 _ 
LB 

   � 
   (12.14b)

Then, substituting Equations (12.14a) and (12.14b) into Equation (12.9), we can 

write the  excess minority carrier electron concentration in the base region as

 �nB(x) �   

nB0  
  � exp  �   eVBE 
 _ 

kT 
   �  � 1 �  sinh  �   xB � x 

 __ 
LB 

   �  � sinh  �   x  _ 
LB 

   �  �  
    _________   

sinh  �   xB 
 _ 

LB 
   � 
   (12.15a)

 Equation (12.15a) may look formidable with the sinh functions. We have 

stressed that we want the base width xB to be small compared to the minority carrier 

diffusion length LB. This condition may seem somewhat arbitrary at this point, but 

the reason becomes clear as we proceed through all of the calculations. Since we 

want xB � LB, the argument in the sinh functions is always less than unity and in 

most cases will be much less than unity. Figure 12.15 shows a plot of sinh (y) for 

0 � y � 1 and also shows the linear approximation for small values of y. If y � 0.4, 

the sinh (y) function differs from its linear approximation by less than 3 percent. All 

of this leads to the conclusion that the excess electron concentration �nB in Equa-
tion (12.15a) is approximately a linear function of x through the neutral base region. 
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Using the approximation that sinh (x) � x for x � 1, the excess electron concentra-

tion in the base is given by

 �nB(x) �   
nB0  _ xB     
  � exp  �   eVBE 

 _ 
kT 

   �  � 1 �  (xB � x) � x �  (12.15b)

 We use this linear approximation later in some of the example calculations. The 

difference in the excess carrier concentrations determined from Equations (12.15a) 

and (12.15b) is demonstrated in the following exercise.

Figure 12.15 | Hyperbolic sine function 

and its linear approximation.
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TYU 12.1 The emitter and base of a silicon npn bipolar transistor are uniformly doped at 

 impurity concentrations of 1018 cm�3 and 1016 cm�3, respectively. A forward-bias 

B–E voltage of VBE � 0.610 V is applied. The neutral base width is xB � 2 �m 

and the minority carrier diffusion length in the base is LB � 10 �m. Calculate 

the  excess  minority carrier concentration in the base at (a) x � 0 and (b) x � 

xB �2. (c) Determine the ratio of the actual minority carrier concentration at x � 

xB �2 [Equation (12.15a)] to that in the ideal case of a linear minority carrier dis-

tribution [Equation (12.15b)].

1.8947 � 10
14

 cm
�3

; (c) Ratio � (1.8947 � 10
14

�1.9042 � 10
14

) � 0.9950]

[Ans. (a) nB (0) � 3.81 � 10
14

 cm
�3

; (b) �nB (xB�2) � nB(xB�2) �

TEST YOUR UNDERSTANDING

 Table 12.2 shows the Taylor expansions of some of the hyperbolic functions that 

are encountered in this section of the chapter. In most cases, we consider only the 

linear terms when expanding these functions.
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506 CHAPTER 12   The Bipolar Transistor

Emitter Region  Consider, now, the minority carrier hole concentration in the 

emitter. The steady-state excess hole concentration is determined from the equation

 DE   

2[�pE (x�)] 

 __ 

x�2 

   �   
�pE(x�) 

 __ �E0 
   � 0 (12.16)

where DE and �E0 are the minority carrier diffusion coeffi cient and minority carrier 

lifetime, respectively, in the emitter. The excess hole concentration is given by

 �pE (x�) � pE (x�) � pE0 (12.17)

The general solution to Equation (12.16) can be written as

 �pE (x�) � C exp  �   �x�  _ 
LE 

   �  � D exp  �   �x�  _ 
LE 

   �  (12.18)

where LE �  	
_____

 DE�E0
  . If we assume the neutral emitter length xE is not necessarily 

long compared to LE, then both exponential terms in Equation (12.18) must be 

 retained.

 The excess minority carrier hole concentrations at the two boundaries are

 �pE (x� � 0) � �pE (0) � C � D (12.19a)

and

 �pE (x� � xE) � �pE (xE) � C exp  �   xE 
 _ 

LE 
   �  � D exp  �   �xE 

 _ 
LE 

   �  (12.19b)

Again, the B–E junction is forward biased, so

 �pE (0) � pE (x� � 0) � pE0 � pE0  � exp  �   eVBE 
 _ 

kT 
   �  � 1 �  (12.20a)

An infi nite surface recombination velocity at x� � xE implies that

 �pE (xE) � 0 (12.20b)

 Solving for C and D using Equations (12.19) and (12.20) yields the excess 

 mi nor ity carrier hole concentration in Equation (12.18):

 �pE (x�) �   

pE0  � exp  �   eVBE 
 _ 

kT 
   �  � 1 �  sinh  �   xE � x� 

 __ 
LE 

   � 
   ______  

sinh  �   xE 
 _ 

LE 
   � 
   (12.21a)

Table 12.2 | Taylor expansions of hyperbolic 
functions

Function Taylor expansion

sinh (x) x �   x
3

 _ 
3!

   �   x
5

 _ 
5!

   � · · ·
cosh (x) 1 �   x

2

 _ 
2!

   �   x
4

 _ 
4!

   � · · ·

tanh (x) x �   x
3

 _ 
3
   �   2x5

 _ 
15

   � · · · 
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This excess concentration will also vary approximately linearly with distance if xE 

is small. We fi nd

 �pE (x�) �   
pE0 

 _ xE
    � exp  �   eVBE 

 _ 
kT 

   �  � 1 �  (xE � x�)  (12.21b)

If xE is comparable to LE, then �pE (x�) shows an exponential dependence on xE.

TYU 12.2 Consider a silicon npn bipolar transistor with emitter and base regions uniformly 

doped at concentrations of 1018 cm�3 and 1016 cm�3, respectively. A forward-bias 

B–E voltage of VBE � 0.610 V is applied. The neutral emitter width is xE � 4 �m 

and the minority carrier diffusion length in the emitter is LE � 4 �m. Calculate the 

excess minority carrier concentration in the emitter at (a) x� � 0 and (b) x� � xE �2. 

[Ans. (a) 3.808 � 10
12

 cm
�3

; (b) 1.689 � 10
12

 cm
�3

]

TEST YOUR UNDERSTANDING

Collector Region  The excess minority carrier hole concentration in the collector 

can be determined from the equation

 DC   

2[�pC (x	)] 

 __ 

x	2

   �   
�pC (x	) 

 __ �C0

   � 0 (12.22)

where DC and �C0 are the minority carrier diffusion coeffi cient and minority carrier 

lifetime, respectively, in the collector. We can express the excess minority carrier 

hole concentration in the collector as

 �pC (x	) � pC (x	) � pC0 (12.23)

 The general solution to Equation (12.22) can be written as

 �pC (x	) � G exp  �   x	  _ 
LC 

   �  � H exp  �   �x	  _ 
LC 

   �  (12.24)

where LC �  	
_____

 DC�C0
  . If we assume that the collector is long, then the coeffi cient G 

must be zero since the excess concentration must remain fi nite. The second boundary 

condition gives

 �pC (x	 � 0) � �pC (0) � pC (x	 � 0) � pC0 � 0 � pC0 � �pC0 (12.25)

The excess minority carrier hole concentration in the collector is then given as

 �pC (x	) � �pC0 exp  �   �x	  _ 
LC 

   �  (12.26)

This result is exactly what we expect from the results of a reverse-biased pn  junction.

TYU 12.3 Consider the collector region of an npn bipolar transistor biased in the forward-

active region. At what value of x	, compared to LC, does the magnitude of the 

minority carrier concentration reach 95 percent of the thermal-equilibrium 

value? 

(Ans. x	�LC � 3)

TEST YOUR UNDERSTANDING
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508 CHAPTER 12   The Bipolar Transistor

12.2.2  Other Modes of Operation

The bipolar transistor can also operate in the cutoff, saturation, or inverse-active 

mode. We qualitatively discuss the minority carrier distributions for these operating 

conditions and treat the actual calculations as problems at the end of the chapter.

 Figure 12.16a shows the minority carrier distribution in an npn bipolar transis-

tor in cutoff. In cutoff, both the B–E and B–C junctions are reverse biased; thus, the 

minority carrier concentrations are zero at each space charge edge. The emitter and 

collector regions are assumed to be “long” in this fi gure, while the base is narrow 

compared with the minority carrier diffusion length. Since xB � LB, essentially all 

minority carriers are swept out of the base region.

 Figure 12.16b shows the minority carrier distribution in the npn bipolar transis-

tor operating in saturation. Both the B–E and B–C junctions are forward biased; thus, 

excess minority carriers exist at the edge of each space charge region. However, 

since a collector current still exists when the transistor is in saturation, a gradient will 

still exist in the minority carrier electron concentration in the base.

 Finally, Figure 12.17a shows the minority carrier distribution in the npn transis-

tor for the inverse-active mode. In this case, the B–E is reverse biased and the B–C 

is  forward biased. Electrons from the collector are now injected into the base. The 

 gradient in the minority carrier electron concentration in the base is in the opposite 

Figure 12.16 | Minority carrier distribution in an npn bipolar transistor operating in (a) cutoff and (b) saturation.
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Figure 12.17 | (a) Minority carrier distribution in an npn bipolar transistor operating in the inverse-active mode. 

(b) Cross section of an npn bipolar transistor showing the injection and collection of electrons in the inverse-active mode.
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 12.3    Transistor Currents and Low-Frequency Common-Base Current Gain 509

direction compared with the forward-active mode, so the emitter and collector cur-

rents will change direction. Figure 12.17b shows the injection of electrons from the 

collector into the base. Since the B–C area is normally much larger than the B–E 

area, not all of the injected electrons will be collected by the emitter. The relative 

doping concentrations in the base and collector are also different compared with 

those in the base and emitter; thus, we see that the transistor is not symmetrical. 

We then expect the characteristics to be signifi cantly different between the forward-

active and  inverse-active modes of operation.

12.3 |  TRANSISTOR CURRENTS AND 
LOW-FREQUENCY COMMON-BASE 
CURRENT GAIN

The basic principle of operation of the bipolar transistor is the control of the collec-

tor current by the B–E voltage. The collector current is a function of the number of 

majority carriers reaching the collector after being injected from the emitter across 

the B–E junction. The common-base current gain is defi ned as the ratio of collector 

current to emitter current. The fl ow of various charged carriers leads to defi nitions 

of particular currents in the device. We can use these defi nitions to defi ne the current 

gain of the transistor in terms of several factors.

12.3.1  Current Gain—Contributing Factors

Figure 12.18 shows the various particle fl ux components in the npn bipolar transis-

tor. We defi ne the various fl ux components and then consider the resulting currents. 

Although there seems to be a large number of fl ux components, we may help clarify 

the situation by correlating each factor with the minority carrier distributions shown 

in Figure 12.14.

 The factor  J  nE  �
   is the electron fl ux injected from the emitter into the base. As the 

electrons diffuse across the base, a few will recombine with majority carrier holes. 

The majority carrier holes that are lost by recombination must be replenished from 

the base terminal. This replacement hole fl ux is denoted by  J  RB  �
  . The electron fl ux that 

reaches the collector is  J  nC  �
  . The majority carrier holes from the base that are injected 

back into the emitter result in a hole fl ux denoted by  J  pE  �
  . Some electrons and holes 

Figure 12.18 | Particle current density or fl ux components in 

an npn bipolar transistor operating in the forward-active mode.
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510 CHAPTER 12   The Bipolar Transistor

that are injected into the forward-biased B–E space charge region will recombine in 

this region. This recombination leads to the electron fl ux  J  R  � . Generation of electrons 

and holes  occurs in the reverse-biased B–C junction. This generation yields a hole 

fl ux  J  G  � . Finally, the ideal reverse-saturation current in the B–C junction is  denoted 

by the hole fl ux  J  pc0  
�
  .

 The corresponding electric current density components in the npn transistor are 

shown in Figure 12.19 along with the minority carrier distributions for the forward- 

active mode. The curves are the same as in Figure 12.14. As in the pn junction, the 

currents in the bipolar transistor are defi ned in terms of minority carrier diffusion 

currents. The current densities are defi ned as follows:

JnE: Due to the diffusion of minority carrier electrons in the base at x � 0.

JnC: Due to the diffusion of minority carrier electrons in the base at x � xB.

JRB: The difference between JnE and JnC, which is due to the recombination 

of excess minority carrier electrons with majority carrier holes in the base. 

The JRB current is the fl ow of holes into the base to replace the holes lost by 

recombination.

JpE: Due to the diffusion of minority carrier holes in the emitter at x� � 0.

JR: Due to the recombination of carriers in the forward-biased B–E junction.

Jpc0: Due to the diffusion of minority carrier holes in the collector at x	 � 0.

JG: Due to the generation of carriers in the reverse-biased B–C junction.

Figure 12.19 | Current density components in an npn bipolar transistor operating in the 

forward-active mode.

Collector

-n-

Base

-p-

Emitter

-n-

x� � xE
x � xBx� � 0

JB

JE

x 	 � 0x � 0

x 	x�

JC

JG

Jpc0

JpE

JnE

JRB

JnC

JR

nea29583_ch12_491-570.indd   510nea29583_ch12_491-570.indd   510 12/11/10   12:44 PM12/11/10   12:44 PM
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 The currents JRB, JpE, and JR are B–E junction currents only and do not contrib-

ute to the collector current. The currents Jpc0 and JG are B–C junction currents only. 

These current components do not contribute to the transistor action or the current 

gain.

 The dc common-base current gain is defi ned as

 �0 �   
IC 

 _ 
IE 

   (12.27)

If we assume that the active cross-sectional area is the same for the collector and 

emitter, then we can write the current gain in terms of the current densities, or

 �0 �   
JC 

 _ 
JE 

   �   
JnC � JG � Jpc0 

  ___  
JnE � JR � JpE

   (12.28)

 We are primarily interested in determining how the collector current will change 

with a change in emitter current. The small-signal, or sinusoidal, common-base cur-

rent gain is defi ned as

 � �   

JC 

 _ 

JE 

   �   
JnC 
 ___  

JnE � JR � JpE

   (12.29)

The reverse-biased B–C currents, JG and Jpc0, are not functions of the emitter current.

 We can rewrite Equation (12.29) in the form

 � �  �   JnE 
 __ 

JnE � JpE 
   �   �   JnC 

 _ 
JnE 

   �  �   JnE � JpE 
 ___  

JnE � JR � JpE 
   �  (12.30a)

or

 � � ��T � (12.30b)

The factors in Equation (12.30b) are defi ned as:

 � �  �   JnE 
 __ 

JnE � JpE 
   �  � emitter injection effi ciency factor (12.31a)

 �T �  �   JnC 
 _ 

JnE 
   �  � base transport factor (12.31b)

 � �   
JnE � JpE 

 ___  
JnE � JR � JpE 

   � recombination factor (12.31c)

 We would like to have the change in collector current be exactly the same as 

the change in emitter current or, ideally, to have � � 1. However, a consideration of 

Equation (12.29) shows that � will always be less than unity. The goal is to make � 

as close to unity as possible. To achieve this goal, we must make each term in Equa-

tion (12.30b) as close to unity as possible, since each factor is less than unity.

 The emitter injection effi ciency factor � takes into account the minority car-

rier hole diffusion current in the emitter. This current is part of the emitter current, 

but does not contribute to the transistor action in that JpE is not part of the collec-

tor current. The base transport factor �T takes into account any recombination of 

excess minority carrier electrons in the base. Ideally, we want no recombination in 

the base. The recombination factor � takes into account the recombination in the 
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512 CHAPTER 12   The Bipolar Transistor

forward- biased B–E junction. The current JR contributes to the emitter current, but 

does not contribute to collector current.

12.3.2   Derivation of Transistor Current Components 
and Current Gain Factors

We now wish to determine the various transistor current components and each of the 

gain factors in terms of the electrical and geometrical parameters of the transistor. 

The results of these derivations show how the various parameters in the transistor 

infl uence the electrical properties of the device and point the way to the design of a 

“good” bipolar transistor.

Emitter Injection Effi ciency Factor  Consider, initially, the emitter injection ef-

fi ciency factor. We have from Equation (12.31a)

 � �  �   JnE 
 __ 

JnE � JpE 
   �  �   1  __ 

 � 1 �   
JpE 

 _ 
JnE 

   � 
   (12.32)

We derived the minority carrier distribution functions for the forward-active mode 

in Section 12.2.1. Noting that JnE, as defi ned in Figure 12.19, is in the negative 

x direction, we can write the current densities as

 JpE � �eDE      d[�pE (x�)] 
 __ 

dx� 
     

x��0
  (12.33a)

and

 JnE � (�)eDB      d[�nB(x)] 
 __ 

dx
     x�0

  (12.33b)

where �pE(x�) and �nB(x) are given by Equations (12.21) and (12.15), respectively.

 Taking the appropriate derivatives of �pE(x�) and �nB(x), we obtain

 JpE �   
eDEpE0 

 __ 
LE 

    � exp  �   eVBE 
 _ 

kT
   �  � 1 �  �   1  __ 

tanh (xE �LE)
   (12.34a)

and

 JnE �   
eDBnB0  __ 

LB 
    
   1  __ 

sinh (xB �LB)
   �   

[exp (eVBE �kT ) � 1] 
  ____  

tanh (xB �LB)
   �  (12.34b)

Positive JpE and JnE values imply that the currents are in the directions shown in 

 Figure 12.19. If we assume that the B–E junction is biased suffi ciently far in the 

forward bias so that VBE � kT �e, then

 exp  �   eVBE 
 _ 

kT
   �  � 1

and also

   
exp (eVBE �kT ) 

  ___  
tanh (xB �LB)

   �   1  __ 
sinh (xB �LB)
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 12.3    Transistor Currents and Low-Frequency Common-Base Current Gain 513

The emitter injection effi ciency, from Equation (12.32), then becomes

 � �   1   _____   

1 �   
pE0 DE LB 

 __ 
nB0 DB LE 

   �   
tanh (xB �LB) 

 ___ 
tanh (xE �LE)

  

   
(12.35a)

 If we assume that all the parameters in Equation (12.35a) except pE0 and nB0 are 

fi xed, then in order for � � 1, we must have pE0 � nB0. We can write

 pE0 �   
 n i  

2  
 _ 

NE 
    and  nB0 �   

 n i  
2  
 _ 

NB 
  

where NE and NB are the impurity doping concentrations in the emitter and base, re-

spectively. Then the condition that pE0 � nB0 implies that NE � NB. For the emitter 

injection effi ciency to be close to unity, the emitter doping must be large compared to 

the base doping. This condition means that many more electrons from the n-type emit-

ter than holes from the p-type base will be injected across the B–E space charge region. 

If both xB � LB and xE � LE, then the emitter injection effi ciency can be written as

 � �   1  ___  

1 �   
NB 

 _ 
NE 

   �   
DE 

 _ 
DB 

   �   
xB 

 _ xE   
   

(12.35b)

   EXAMPLE 12.1Objective: Calculate the emitter injection effi ciency.

 Assume the following transistor parameters: NB � 1015 cm�3, NE � 1017 cm�3, DE � 10 cm2 /s, 

DB � 20 cm2 /s, xB � 0.80 �m, and xE � 0.60 �m.

■ Solution
From Equation (12.35b), we fi nd

 � �   1  ____  

1 �  �   NB 
 _ 

NE 
   �  �   DE 

 _ 
DB 

   �  �   xB 
 _ xE    � 

   �   1  ____  

1 �  �   1015  _ 
1017 

   �  �   10  _ 
20

   �  �   0.80  _ 
0.60

   � 
   � 0.9934

■ Comment
This simple example shows a typical magnitude of the emitter injection effi ciency.

■ EXERCISE PROBLEM
Ex 12.1  Repeat Example 12.1 if the base and emitter doping concentrations are 

NB � 5 � 1015 cm�3 and NE � 1018 cm�3, respectively. 

(Ans. � � 0.9967)

Base Transport Factor  The next term to consider is the base transport factor, 

given by Equation (12.31b) as �T � JnC �JnE. From the defi nitions of the current 

 directions shown in Figure 12.19, we can write

 JnC � (�)eDB
      d[�nB(x)] 

 __ 
dx

     x�xB

  (12.36a)
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514 CHAPTER 12   The Bipolar Transistor

and

 JnE � (�)eDB
      d[�nB (x)] 

 __
 dx     x�0

  (12.36b)

Using the expression for �nB (x) given in Equation (12.15), we fi nd that

 JnC �   
eDBnB0  __ 

LB 
    
   [exp (eVBE �kT ) � 1] 

  ____  
sinh (xB �LB)

   �   1  __ 
tanh (xB �LB)

   �  (12.37)

The expression for JnE is given in Equation (12.34a).

 If we again assume that the B–E junction is biased suffi ciently far in the forward 

bias so that VBE � kT �e, then exp (eVBE �kT ) � 1. Substituting Equations (12.37) and 

(12.34b) into Equation (12.31b), we have

 �T �   
JnC 

 _ 
JnE 

   �   
exp (eVBE �kT ) � cosh (xB �LB) 

   ______   
1 � exp (eVBE �kT ) cosh (xB �LB)

   (12.38)

In order for �T to be close to unity, the neutral base width xB must be much smaller 

than the minority carrier diffusion length in the base LB. If xB � LB, then cosh (xB �LB) 

will be just slightly greater than unity. In addition, if exp (eVBE �kT ) � 1, then the 

base transport factor is approximately

 �T �   1 ___ 
cosh (xB�LB)

   (12.39a)

For xB � LB, we may expand the cosh function in a Taylor series, so that

 �T �   1 ___ 
cosh (xB�LB)

   �   1 ___  
1 �   1 _ 

2
  (xB�LB)2 

   � 1 �   1 _ 
2
   (xB�LB)2  (12.39b)

The base transport factor �T will be close to one if xB � LB. We can now see why we 

indicated earlier that the neutral base width xB would be less than LB.

EXAMPLE 12.2 Objective: Calculate the base transport factor.

 Assume transistor parameters of xB � 0.80 �m and LB � 10.0 �m.

■ Solution
From Equation (12.39a), we fi nd

�T �   1  __ 
cosh  �   xB 

 _ 
LB 

   � 
   �   1  ___ 

cosh  �   0.80  _ 
10.0

    � 
  � 0.9968

■ Comment
This simple example shows a typical magnitude of the base transport factor.

■ EXERCISE PROBLEM
Ex 12.2  Repeat Example 12.2 for xB � 1.2 �m and LB � 10.0 �m. 

(Ans. �T � 0.9928)
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Recombination Factor  The recombination factor is given by Equation (12.31c). 

We can write

 � �   
JnE � JpE 

 ___  
JnE � JR � JpE 

   �   
JnE 
 __ 

JnE � JR 
   �   1  __ 

1 � JR �JnE

   (12.40)

We have assumed in Equation (12.40) that JpE � JnE. The recombination current 

density, due to the recombination in a forward-biased pn junction, was discussed in 

Chapter 8 and can be written as

 JR �   
exBEni  _ 

2�0

   exp  �   eVBE 
 _ 

2kT
   �  � Jr0 exp  �   eVBE 

 _ 
2kT

   �  (12.41)

where xBE is the B–E space charge width.

 The current JnE from Equation (12.34b) can be approximated as

 JnE � Js0 exp  �   eVBE 
 _ 

kT
   �  (12.42)

where

 Js0 �   
eDBnB0  ___  

LB tanh (xB �LB)
   (12.43)

The recombination factor, from Equation (12.40), can then be written as

 � �   1  ____  

1 �   
Jr0  _ 
Js0

   exp  �   �eVBE 
 __ 

2kT
   � 

   (12.44)

The recombination factor is a function of the B–E voltage. As VBE increases, 

the recombination current becomes less dominant and the recombination factor 

 approaches unity.

   EXAMPLE 12.3Objective: Calculate the recombination factor.

 Assume the following transistor parameters: xBE � 0.10 �m, �o � 10�7 s, NB � 5 � 1015 cm�3, 

DB � 20 cm2 /s, LB � 10 �m, and xB � 0.80 �m. Assume VBE � 0.50 V.

■ Solution
From Equation (12.41), we fi nd

Jr0 �   
exBE ni  __ 

2�o 
   �   

(1.6 � 10�19)(0.10 � 10�4)(1.5 � 1010)
   _______  

2(10�7)
   � 1.2 � 10�7 A /cm2

and from Equation (12.43), we fi nd

 Js0 �   
eDB nB0  ___  

LB tanh (xB�LB)
   �   

eDB ( n i  
2 �NB)

  ___  
LB tanh (xB�LB)

  

 �   
(1.6 � 10�19)(20)[(1.5 � 1010)2�5 � 1015] 

    _______   
(10 � 10�4) tanh (0.80�10.0)

   � 1.804 � 10�9 A /cm2
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Figure 12.20 | The surface at the E–B junction showing the diffusion of carriers toward the 

surface.

Then from Equation (12.44), the recombination factor is found as

 � �   1  ____  

1 �   
Jr0  _ 
Js0

   � exp  �   �VBE 
 _ 

2Vt 
   � 

   �   1   _______   

1 �  �   1.2 � 10�7  ___  
1.804 � 10�9 

   �  � exp  �   �0.50  __ 
2(0.0259)

   � 
  

 � 0.99574

■ Comment
This simple example shows a typical magnitude of the recombination factor.

■ EXERCISE PROBLEM
Ex 12.3  Repeat Example 12.3 for VBE � 0.65 V. 

(Ans. � � 0.99976)

 The recombination factor must also include surface effects. The surface effects 

can be described by the surface recombination velocity as we discussed in Chapter 6. 

Figure 12.20a shows the B–E junction of an npn transistor near the semiconductor 

surface. We assume that the B–E junction is forward biased. Figure 12.20b shows 

the excess minority carrier electron concentration in the base along the cross section 

A-A�. This curve is the usual forward-biased junction minority carrier concentration. 

Figure 12.20c shows the excess minority carrier electron concentration along the 

cross section C-C� from the surface. We have showed earlier that the excess concen-

tration at a surface is smaller than the excess concentration in the bulk material. With 

this electron distribution, there is a diffusion of electrons from the bulk toward the 

surface where the electrons recombine with the majority carrier holes. Figure 12.20d 

shows the injection of electrons from the emitter into the base and the diffusion of 
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electrons toward the surface. This diffusion generates another component of recom-

bination current and this component of recombination current must be  included in 

the recombination factor �. Although the actual calculation is diffi cult  because of the 

two-dimensional analysis required, the form of the recombination  current is the same 

as that of Equation (12.41).

12.3.3  Summary

Although we have considered an npn transistor in all of the derivations, exactly the 

same analysis applies to a pnp transistor; the same minority carrier distributions are 

obtained except that the electron concentrations become hole concentrations and 

vice versa. The current directions and voltage polarities also change.

 We have been considering the common-base current gain, defi ned in Equa-

tion (12.27) as �0 � IC �IE. The common-emitter current gain is defi ned as �0 � IC �IB. 

From Figure 12.8 we see that IE � IB � IC. We can determine the  relation between 

common-emitter and common-base current gains from the KCL equation. We can 

write

   
IE 

 _ 
IC

   �   
IB 

 _ 
IC

   � 1

Substituting the defi nitions of current gains, we have

   1  _ �0

   �   1  _ 
�0

   � 1

Since this relation actually holds for both dc and small-signal conditions, we can 

drop the subscript. The common-emitter current gain can now be written in terms of 

the common-base current gain as

 � �   �  __ 
1 � �

  

The common-base current gain, in terms of the common-emitter current gain, is 

found to be

 � �   
� 
 __ 

1 � �
  

 Table 12.3 summarizes the expressions for the limiting factors in the 

common-base current gain assuming that xB � LB and xE � LE. Also given are 

the approximate expressions for the common-base current gain and the common-

emitter current gain.

12.3.4  Example Calculations of the Gain Factors

If we assume a typical value of � to be 100, then � � 0.99. If we also assume that 

� � �T � �, then each factor would have to be equal to 0.9967 in order that � � 100. 

This calculation gives an indication of how close to unity each factor must be in 

order to achieve a reasonable current gain.
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518 CHAPTER 12   The Bipolar Transistor

Table 12.3 | Summary of limiting factors

Emitter injection effi ciency

� �   1 ___  

1 �   
NB 

 _ 
NE 

   �   
DE 

 _ 
DB

   �   xB 
 _ xE
  
    (xB � LB), (xE � LE)

Base transport factor

�T �   1 ___ 

1 �   1 _ 
2
     �   xB 

 _ 
LB 

   �  2 
    (xB � LB)

Recombination factor

� �   1 ____  

1 �   
Jr0  _ 
Js0 

    exp  �   �eVBE 
 __ 

2kT
   � 

  

Common-base current gain

� � ��T � �   1  ________    

1 �   
NB 

 _ 
NE 

   �   
DE 

 _ 
DB 

   �   
xB 

 _ xE    �   1 _ 
2
     �   xB 

 _ 
LB 

   �  2  �   
Jr0  _ 
Js0 

    exp  �   �eVBE 
 __ 

2kT
   � 

  

Common-emitter current gain

� �   � __ 
1 � �

   �   1  ________    

  
NB 

 _ 
NE 

   �   
DE 

 _ 
DB 

   �   
xB 

 _ xE    �   1 _ 
2
     �   xB 

 _ 
LB 

   �  2  �   
Jr0  _ 
Js0 

   exp  �   �eVBE 
 __ 

2kT
   � 

  

DESIGN 
EXAMPLE 12.4 

Objective: Design the ratio of emitter doping to base doping in order to achieve an emitter 

injection  effi ciency factor of � � 0.9967.

 Consider an npn bipolar transistor. Assume, for simplicity, that DE � DB, LE � LB, and 

xE � xB.

■ Solution
Equation (12.35b) reduces to

� �   1  __ 

1 �   
pE0 

 _ nB0 
  
   �   1  __ 

1 �   
 n i  

2  �NE 
 _ 

 n i  
2  �NB

  

  

so

� �   1  __ 

1 �   
NB 

 _ 
NE 

  
   � 0.9967

Then

  
NB 

 _ 
NE 

   � 0.00331  or    
NE 

 _ 
NB 

   � 302

■ Comment
The emitter doping concentration must be much larger than the base doping concentration to 

achieve a high emitter injection effi ciency.
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■ EXERCISE PROBLEM
Ex 12.4  Assume that transistor parameters are the same as described in Example 12.4. In 

addition, let NE � 6 � 1018 cm�3. Determine the base doping concentration such 

that the emitter injection effi ciency is � � 0.9950. 

(Ans. NB � 3.02 � 10
16

 cm
�3

)

   DESIGN
   EXAMPLE 12.6
Objective: Determine the forward-biased B–E voltage required to achieve a recombination 

factor equal to � � 0.9967.

 Consider an npn bipolar transistor at T � 300 K. Assume that Jr 0 � 10�8 A /cm2 and that 

Js0 � 10�11 A /cm2.

■ Solution
The recombination factor, from Equation (12.44), is

� �   1  ____  

1 �   
Jr0  _ 
Js0 

   exp  �   �eVBE 
 __ 

2kT
   � 

  

   DESIGN
   EXAMPLE 12.5
Objective: Design the base width required to achieve a base transport factor of �T � 0.9967.

 Consider a pnp bipolar transistor. Assume that DB � 10 cm2 /s and �B0 � 10�7s.

■ Solution
The base transport factor applies to both pnp and npn transistors and is given by

 �T �   1  ___ 
cosh (xB �LB)

   � 0.9967

Then

 xB �LB � 0.0814

We have

 LB �  	
_____

 DB�B0
   �  	

_________

 (10)(10�7)   � 10�3 cm

so that the base width must then be

 xB � 0.814 � 10�4 cm � 0.814 �m

■ Comment
If the base width is less than approximately 0.8 �m, then the required base transport factor 

will be achieved. In most cases, the base transport factor will not be the limiting factor in the 

bipolar transistor current gain.

■ EXERCISE PROBLEM
Ex 12.5  Assume that transistor parameters are the same as described in Example 12.5. 

Determine the minimum base width xB such that the base transport factor is 

�T � 0.9980. 

 (Ans. xB � 0.633 �m)
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We then have

 0.9967 �   1  ____  

1 �   10�8  _ 
10�11 

   exp  �   �eVBE 
 __ 

2kT
   � 

  

We can rearrange this equation and write

 exp  �   �eVBE 
 __ 

2kT
   �  �   0.9967 � 103   ___ 

1 � 0.9967
   � 3.02 � 105

Then

 VBE � 2(0.0259) ln (3.02 � 105) � 0.654 V

■ Comment
This example demonstrates that the recombination factor may be an important limiting factor 

in the bipolar current gain. In this example, if VBE is smaller than 0.654 V, then the recombina-

tion factor � will fall below the desired 0.9967 value.

■ EXERCISE PROBLEM
Ex 12.6  If Jr 0 � 10�8 A /cm2 and Js0 � 10�11 A /cm2, determine the value of VBE such that 

� � 0.9950.  

(Ans. VBE � 0.6320 V)

EXAMPLE 12.7 Objective: Calculate the common-emitter current gain of a silicon npn bipolar transistor at 

T � 300 K given a set of parameters.

 Assume the following parameters:

  DE � 10 cm2 /s xB � 0.70 �m

  DB � 25 cm2 /s xE � 0.50 �m

  �E0 � 1 � 10�7 s NE � 1 � 1018 cm�3

  �B0 � 5 � 10�7 s NB � 1 � 1016 cm�3

  Jr0 � 5 � 10�8 A /cm2 VBE � 0.65 V

The following parameters are calculated:

 pE0 �   
(1.5 � 1010)2 

 ___ 
1 � 1018 

   � 2.25 � 102 cm�3

 nB0 �   
(1.5 � 1010)2 

 ___ 
1 � 1016 

   � 2.25 � 104 cm�3

 LE �  	
_____

 DE�E0
   � 10�3 cm

 LB �  	
_____

 DB�B0
   � 3.54 � 10�3 cm

■ Solution
The emitter injection effi ciency factor, from Equation (12.35a), is

� �   1    _________    

1 �   
(2.25 � 102)(10)(3.54 � 10�3) 

   _____   
(2.25 � 104)(25)(10�3)

   �   
tanh (0.0198) 

  ___ 
tanh (0.050)

  

   � 0.9944
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The base transport factor, from Equation (12.39a), is

 �T �   1  ____  

cosh  �   0.70 � 10�4  ___ 
3.54 � 10�3 

   � 
   � 0.9998

The recombination factor, from Equation (12.44), is

 � �   1   _____   

1 �   5 � 10�8  __ 
Js0 

   exp  �   �0.65  __ 
2(0.0259)

   � 
  

where

 Js0 �   
eDBnB0  ___ 

LB tanh  �   xB 
 _ 

LB 
   � 
   �   

(1.6 � 10�19)(25)(2.25 � 104) 
   ______   

3.54 � 10�3 tanh (1.977 � 10�2)
   � 1.29 � 10�9 A /cm2

We can now calculate � � 0.99986. The common-base current gain is then

 � � ��T � � (0.9944)(0.9998)(0.99986) � 0.99406

which gives a common-emitter current gain of

 � �   �  _ 
1 � a

   �   0.99406  ___ 
1 � 0.99406

   � 167

■ Comment
In this example, the emitter injection effi ciency is the limiting factor in the current gain.

■ EXERCISE PROBLEM
Ex 12.7  Assume that � � �T � 0.9980, Jr 0 � 5 � 10�9 A /cm2, and Js0 � 2 � 10�11 A /cm2. 

Determine the common-emitter current gain � for (a) VBE � 0.550 V and 

(b) VBE � 0.650 V. 

[Ans. (a) � � 98.5; (b) � � 204]

NOTE: In the following Test Your Understanding questions, assume a silicon npn bipo-

lar transistor at T � 300 K has the following minority carrier parameters: DE � 8 cm2 /s, 

DB � 20 cm2 /s, DC � 12 cm2 /s, �E0 � 10�8 s, �B0 � 10�7 s, and �C0 � 10�6 s.

TYU 12.4 If the emitter doping concentration is NE � 5 � 1018 cm�3, fi nd the base doping 

concentration such that the emitter injection effi ciency is � � 0.9950. Assume 

xE � 2xB � 2 �m. 

(Ans. NB � 1.08 � 10
17

 cm
�3

)

TYU 12.5 Assume that �T � � � 0.9967, xB � xE � 1 �m, NB � 5 � 1016 cm�3, and 

NE � 5 � 1018 cm�3. Determine the common-emitter current gain �.

(Ans. � � 92.4)

TYU 12.6 Assume that � � � � 0.9967 and xB � 0.80 �m. Determine the common-

emitter current gain �.

(Ans. � � 121)

TEST YOUR UNDERSTANDING
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522 CHAPTER 12   The Bipolar Transistor

12.4 | NONIDEAL EFFECTS
In all previous discussions, we have considered a transistor with uniformly doped 

regions, low injection, constant emitter and base widths, an ideal constant energy 

bandgap, uniform current densities, and junctions that are not in breakdown. If any of 

these ideal conditions is not present, then the transistor properties will deviate from 

the ideal characteristics we have derived.

12.4.1  Base Width Modulation

We have implicitly assumed that the neutral base width xB is constant. This base width, 

however, is a function of the B–C voltage, since the width of the space charge region 

extending into the base region varies with B–C voltage. As the B–C reverse-biased 

voltage increases, the B–C space charge region width increases, which reduces xB. A 

change in the neutral base width will change the collector current as can be observed 

in Figure 12.21. A reduction in base width will cause the gradient in the  minority car-

rier concentration to increase, which in turn causes an increase in the  diffusion current. 

This effect is known as base width modulation; it is also called the Early effect.
 The Early effect can be seen in the current–voltage characteristics shown in Fig-

ure 12.22. In most cases, a constant base current is equivalent to a constant B–E volt-

age. Ideally the collector current is independent of the B–C voltage so that the slope 

of the curves would be zero; thus, the output conductance of the transistor would be 

zero. However, the base width modulation, or Early effect, produces a nonzero slope 

and gives rise to a fi nite output conductance. If the collector current characteristics 

are extrapolated to zero collector current, the curves intersect the voltage axis at a 

point that is defi ned as the Early voltage. The Early voltage is considered to be a 

positive value. It is a common parameter given in transistor specifi cations; typical 

values of Early voltage are in the 100- to 300-V range.

Base

Increasing
minority

carrier
gradient

Moving space
charge edge
with increasing
C–B voltage

x � 0 x � xB

Figure 12.21 | The change in the base width and the change 

in the minority carrier gradient as the B–C space charge 

width changes.

nea29583_ch12_491-570.indd   522nea29583_ch12_491-570.indd   522 12/11/10   12:44 PM12/11/10   12:44 PM



 12.4   Nonideal Effects 523

From Figure 12.22, we can write that

   
dIC 

 _ 
dVCE 

   � go �   
IC 
 __ 

VCE � VA 
   �   1  _ ro 

   (12.45a)

where VA and VCE are defi ned as positive quantities, go is defi ned as the output con-

ductance, and ro is defi ned as the output resistance. Equation (12.45a) can be rewrit-

ten in the form

 IC � go (VCE � VA) �   1  _ ro 
   (VCE � VA) (12.45b)

showing that the collector current is now an explicit function of the collector–emitter 

voltage or the collector–base voltage.

IC

VA VCE

VBE

Figure 12.22 | The collector current versus collector– 

emitter voltage showing the Early effect and Early voltage.

   EXAMPLE 12.8Objective: Calculate the change in collector current with a change in neutral base width, and 

estimate the Early voltage.

 Consider a uniformly doped silicon npn bipolar transistor with the following parameters: 

NB � 5 � 1016 cm�3, NC � 2 � 1015 cm�3, xB0 � 0.70 �m, and DB � 25 cm2 /s. Assume that 

xB0 � LB and that VBE � 0.60 V. The collector–base voltage is in the range 2 � VCB � 10 V.

■ Solution
Assuming xB0 � LB, the excess minority carrier electron concentration in the base can be ap-

proximated by Equation (12.15b), which is

 �nB (x) �   
nB0  _ xB     
  � exp �   VBE 

 _ 
Vt 

   �  � 1 �  (xB � x) � x � 
The collector current is

 �JC� � eDB   
d[�nB(x)]

 __ 
dx

   �   
eDB nB0  __ xB    exp  �   VBE 

 _ 
Vt 

   � 
The value of nB0 is found as

 nB0 �   
 n i  

2  
 _ 

NB 
   �   

(1.5 � 1010)2 
 ___ 

5 � 1016 
   � 4.5 � 103 cm�3

For VCB � 2 V, we fi nd (see the following Exercise Problem Ex 12.8)

 xB � xB0 � xdB � 0.70 � 0.0518 � 0.6482 �m
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and

 �JC� �   
(1.6 � 10�19)(25)(4.5 � 103)

   _____  
0.6482 � 10�4 

   exp  �   0.60  __ 
0.0259

   �  � 3.195 A /cm2

For VCB � 10 V, we fi nd (see the following Exercise Problem Ex 12.8)

 xB � 0.70 � 0.103 � 0.597 �m

and

 �JC� �   
(1.6 � 10�19)(25)(4.5 � 103)

   _____  
0.597 � 10�4 

   exp  �   0.60  __ 
0.0259

   �  � 3.469 A /cm2

We now can fi nd, from Equation (12.45a)

   
dJC 

 _ 
dVCE 

   �   
JC 

 _ 
VCB 

   �   
JC 
 __ 

VCE � VA 
   �   

JC 
 ___  

VBE � VCB � VA

   

or

   3.469 � 3.195   ___ 
8
   �   3.195  ___  

0.60 � 2 � VA 
  

The Early voltage is then determined to be

 VA � 90.7 V

■ Comment
This example indicates how much the collector current can change as the neutral base width 

changes with a change in the B–C space charge width, and it also indicates the magnitude of 

the Early voltage.

■ EXERCISE PROBLEM
Ex 12.8  Consider a silicon npn bipolar transistor with parameters described in 

Example 12.8. Determine the neutral base width for a C–B voltage of 

(a) VCB � 2 V and (b) VCB � 10 V. Neglect the B–E space charge width. 

[Ans. (a) xB � 0.6482 �m; (b) xB � 0.597 �m]

 The previous example and exercise problem demonstrate, too, that we can 

expect variations in transistor properties due to tolerances in transistor-fabrication 

processes. There will be variations, in particular, in the base width of narrow-base 

transistors that will cause variations in the collector current characteristics simply 

due to the tolerances in processing.

12.4.2  High Injection

The ambipolar transport equation that we have used to determine the minority carrier 

distributions assumed low injection. As VBE increases, the injected minority car-

rier concentration may approach, or even become larger than, the majority carrier 

concen tration. If we assume quasi–charge neutrality, then the majority carrier hole 

concentration in the p-type base at x � 0 will increase as shown in Figure 12.23 be-

cause of the excess holes.
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 Two effects occur in the transistor at high injection. The fi rst effect is a reduction 

in emitter injection effi ciency. Since the majority carrier hole concentration at x � 0 

increases with high injection, more holes are injected back into the emitter because 

of the forward-biased B–E voltage. An increase in the hole injection causes an in-

crease in the JpE current and an increase in JpE reduces the emitter injection effi ciency. 

The common-emitter current gain decreases, then, with high injection. Figure 12.24 

shows a typical common-emitter current gain versus collector current curve. The low 

gain at low currents is due to the small recombination factor and the drop-off at the 

high current is due to the high-injection effect.

 We now consider the second high-injection effect. At low injection, the majority 

carrier hole concentration at x � 0 for the npn transistor is

 pp(0) � pp0 � Na (12.46a)

and the minority carrier electron concentration is

 np(0) � np0 exp  �   eVBE 
 _ 

kT
   �  (12.46b)

The pn product is

 pp(0)np(0) � pp0np0 exp  �   eVBE 
 _ 

kT
   �  (12.46c)

At high injection, Equation (12.46c) still applies. However, pp(0) will also increase, 

and for very high injection it will increase at nearly the same rate as np(0). The in-

crease in np(0) will asymptotically approach the function

 np(0) � np0 exp  �   eVBE 
 _ 

2kT
   �  (12.47)

p-base

pp(x)

nB(x)

nB0

NB

x � 0 x � xB

Figure 12.23 | Minority and majority 

carrier concentrations in the base under 

low and high injection (solid line: low 

injection; dashed line: high injection).
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Figure 12.24 | Common-emitter current 

gain versus collector current.
(From Shur [14].)
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The excess minority carrier concentration in the base, and hence the collector cur-

rent, will increase at a slower rate with B–E voltage in high injection than low injec-

tion. This effect is shown in Figure 12.25. The high-injection effect is very similar to 

the effect of a series resistance in a pn junction diode.

12.4.3  Emitter Bandgap Narrowing

Another phenomenon affecting the emitter injection effi ciency is bandgap nar-

rowing. We have implied from our previous discussion that the emitter injection 

effi ciency factor will continue to increase and approach unity as the ratio of emitter 

doping to base doping continues to increase. As silicon becomes heavily doped, 

the discrete donor energy level in an n-type emitter splits into a band of energies. 

The distance between donor atoms decreases as the concentration of impurity donor 

atoms increases, and the splitting of the donor level is caused by the interaction of 

donor atoms with each other. As the doping continues to increase, the donor band 

widens, becomes skewed, and moves up toward the conduction band, eventually 

merging with it. At this point, the effective bandgap energy has decreased. Fig-

ure 12.26 shows a plot of the change in the bandgap energy with impurity doping 

concentration.

 A reduction in the bandgap energy increases the intrinsic carrier concentration. 

The intrinsic carrier concentration is given by

  n i  
2  � Nc Nv exp  �   �Eg 

 _ 
kT

   �  (12.48)

In a heavily doped emitter, the intrinsic carrier concentration can be written as

  n iE  2
   � Nc Nv exp  �   �(Eg0 � Eg) 

  ___ 
kT

   �  �  n i  
2  exp  �   Eg 

 _ 
kT

   �  (12.49)

High-

injection

effects

VBE

I C
 (

lo
g
 s

ca
le

)
Figure 12.25 | Collector current versus 

base–emitter voltage showing high-

injection effects.
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where Eg0 is the bandgap energy at a low doping concentration and Eg is the band-

gap narrowing factor.

 The emitter injection effi ciency factor is given by Equation (12.35) as

 � �   1   _____   

1 �   
pE0DE LB 

 __ 
nB0DBLE 

   �   
tanh (xB �LB) 

 ___ 
tanh (xE �LE)

  

  

The term  p E0  �   is the thermal-equilibrium minority carrier concentration in the emitter, 

taking into account bandgap narrowing, and can be written as

  p E0  �   �   
 n iE  2

   
 _ 

NE 
   �   

 n i  
2  
 _ 

NE 
   exp  �   Eg 

 _ 
kT

   �  (12.50)

As the emitter doping concentration increases, Eg increases; thus,  p E0  �   does not con-

tinue to decrease with increasing emitter doping NE. If  p E0  �   starts to increase because 

of the bandgap narrowing, the emitter injection effi ciency begins to fall off instead 

of continuing to increase with increased emitter doping.
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Figure 12.26 | Bandgap narrowing factor versus donor 

impurity concentration in silicon.
(From Sze [19].)

   EXAMPLE 12.9Objective: Determine the increase in pE0 in the emitter due to bandgap narrowing.

 Consider a silicon emitter at T � 300 K. Assume the emitter doping increases from 1018 

to 1019 cm�3. Determine the new value of  p E0  �   and determine the ratio  p E0  �  �pE0.

■ Solution
For emitter doping concentrations of NE � 1018 and 1019 cm�3, we have, neglecting bandgap 

narrowing,

 pE0 �   
 n i  

2  
 _ 

NE 
   �   

(1.5 � 1010)2 
 ___ 

1018 
   � 2.25 � 102 cm�3

and

 pE0 �   
 n i  

2  
 _ 

NE 
   �   

(1.5 � 1010)2 
 ___ 

1019 
   � 2.25 � 101 cm�3
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Taking into account the bandgap narrowing effect shown in Figure 12.26, we obtain, respec-

tively, for NE � 1018 and 1019 cm�3 ,

  p E0  �   �   
 n i  

2  
 _ 

NE 
    exp  �   Eg 

 _ 
kT

    �  �   
(1.5 � 1010)2 

 ___ 
1018 

   exp  �   0.020  __ 
0.0259

   �  � 4.87 � 102 cm�3

and

  p E0  �   �   
(1.5 � 1010)2 

 ___ 
1019 

   exp  �   0.080  __ 
0.0259

   �  � 4.94 � 102 cm�3

Taking the ratio of  p E0  �  �pE0 for NE � 1018 cm�3, we fi nd

   
 p E0  �  

 _ pE0 
   � exp  �   Eg 

 _ 
kT

   �  � exp  �   0.020  __ 
0.0259

   �  � 2.16

and for NE � 1019 cm�3, we fi nd

   
 p E0  �  

 _ pE0 
   � exp  �   0.080  __ 

0.0259
   �  � 21.95

■ Comment
If the emitter doping concentration increases from 1018 to 1019 cm�3, the thermal-equilibrium 

minority carrier concentration actually increases rather than decreasing by a factor of 10 as 

would be expected.

■ EXERCISE PROBLEM
Ex 12.9  Determine the thermal-equilibrium minority carrier concentration for an emitter 

doping concentration of NE � 1020 cm�3 taking into account bandgap narrowing. 
(Ans. pE0 � 2.25 cm

�3
,  p E0  �   � 1.618 � 10

4
 cm

�3
)

 As the emitter doping increases, the bandgap narrowing factor, Eg, will increase; 

this can actually cause pE0 to increase. As pE0 increases, the emitter injection effi ciency 

decreases; this then causes the transistor gain to decrease, as shown in Figure 12.24. 

A very high emitter doping may result in a smaller current gain than we anticipate be-

cause of the bandgap narrowing effect.

12.4.4  Current Crowding

It is tempting to neglect the effects of base current in a transistor since the base 

current is usually much smaller than either the collector or the emitter current. Fig-

ure 12.27 is a cross section of an npn transistor showing the lateral distribution of 

base current. The base region is typically less than a micrometer thick, so there can 

be a sizable base resistance. The nonzero base resistance results in a lateral potential 

difference under the emitter region. For the npn transistor, the potential decreases 

from the edge of the emitter toward the center. The emitter is highly doped, so as a 

fi rst approximation the emitter can be considered an equipotential region.

 The number of electrons from the emitter injected into the base is exponentially 

dependent on the B–E voltage. With the lateral voltage drop in the base between the 

edge and center of the emitter, more electrons will be injected near the emitter edges 

than in the center, causing the emitter current to be crowded toward the edges. This 
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current crowding effect is schematically shown in Figure 12.28. The larger current 

density near the emitter edge may cause localized heating effects as well as localized 

high-injection effects. The nonuniform emitter current also results in a nonuniform 

lateral base current under the emitter. A two-dimensional analysis would be required 

to calculate the actual potential drop versus distance because of the nonuniform base 

current. Another approach is to slice the transistor into a number of smaller parallel 

transistors and to lump the resistance of each base section into an equivalent external 

resistance.

 Power transistors, designed to handle large currents, require large emitter areas 

to maintain reasonable current densities. To avoid the current crowding effect, these 

 transistors are usually designed with narrow emitter widths and fabricated with an 

interdigitated design. Figure 12.29 shows the basic geometry. In effect, many narrow 

emitters are connected in parallel to achieve the required emitter area.

� �� �

n� emitterp base p base

EmitterBase

IE

IB/2 IB/2

Collector

Figure 12.27 | Cross section of an npn bipolar transistor 

showing the base current distribution and the lateral 

potential drop in the base region.

Base
-p-

Base
-p-

Collector current

Emittern� n�

Figure 12.28 | Cross section of an npn 

bipolar transistor showing the emitter 

current crowding effect.
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Figure 12.29 | (a) Top view and (b) cross section of an interdigitated npn bipolar transistor structure.
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*12.4.5  Nonuniform Base Doping

In the analysis of the bipolar transistor, we have assumed uniformly doped regions. 

However, uniform doping rarely occurs. Figure 12.31 shows a doping profi le in a 

doubly diffused npn transistor. We can start with a uniformly doped n-type substrate, 

diffuse acceptor atoms from the surface to form a compensated p-type base, and then 

diffuse donor atoms from the surface to form a doubly compensated n-type emitter. 

The  diffusion process results in a nonuniform doping profi le.

 We determined in Chapter 5 that a graded impurity concentration leads to an in-

duced electric fi eld. For the p-type base region in thermal equilibrium, we can write

 Jp � e�pNa E � eDp   
dNa  _ 
dx

   � 0 (12.51)

Then

 E � � �   kT  _ e   �    1  _ 
Na 

     
dNa  _ 
dx

   (12.52)

According to the example of Figure 12.31, dNa �dx is negative; hence, the induced 

electric fi eld is in the negative x direction.

  TEST YOUR UNDERSTANDING

TYU 12.7 Consider the geometry shown in Figure 12.30. The base doping concentra-

tion is NB � 1016 cm�3, the neutral base width is xB � 0.80 �m, the emitter 

width is S � 10 �m, and the emitter length is L � 10 �m. (a) Determine the 

resistance of the base between x � 0 and x � S �2. Assume a hole mobility of 

�p � 400 cm2 /V-s. (b) If the base current in this region is uniform and given by 

IB �2 � 5 �A, determine the potential difference between x � 0 and x � S �2. 

(c) Using the results of part (b), what is the ratio of emitter current density at 

x � 0 to that at x � S �2? 

[Ans. (a) 9.77 k�; (b) 48.83 mV; (c) 6.59]

L

S

p base 

n collector

n� emitter

xB

IB�2

x � S�2x � 0

Figure 12.30 | Figure for TYU 12.7.
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 Electrons are injected from the n-type emitter into the base, and the minority car-

rier base electrons begin diffusing toward the collector region. The induced electric 

fi eld in the base, because of the nonuniform doping, produces a force on the electrons 

in the direction toward the collector. The induced electric fi eld, then, aids the fl ow of 

minority carriers across the base region. This electric fi eld is called an accelerating 

fi eld.
 The accelerating fi eld will produce a drift component of current that is in addi-

tion to the existing diffusion current. Since the minority carrier electron concentra-

tion varies across the base, the drift current density will not be constant. The total 

current across the base, however, is nearly constant. The induced electric fi eld in 

the base due to nonuniform base doping will alter the minority carrier distribution 

through the base so that the sum of drift current and diffusion current will be a con-

stant. Calculations have shown that the uniformly doped base theory is very useful 

for estimating the base characteristics.

12.4.6  Breakdown Voltage

There are two breakdown mechanisms to consider in a bipolar transistor. The fi rst is 

called punch-through. As the reverse-biased B–C voltage increases, the B–C space 

charge region widens and extends farther into the neutral base. It is possible for the 

B–C  depletion region to penetrate completely through the base and reach the B–E 

space charge region, the effect called punch-through. Figure 12.32a shows the 

 energy-band diagram of an npn bipolar transistor in thermal equilibrium, and Fig-

ure 12.32b shows the energy-band diagram for two values of reverse-biased B–C 

junction voltage. When a small C–B voltage, VR1, is applied, the B–E potential bar-

rier is not affected; thus, the transistor current is still essentially zero. When a large 

reverse-biased voltage, VR2, is applied, the depletion region extends through the base 

region and the B–E  potential barrier is  lowered because of the C–B voltage. The low-

ering of the potential barrier at the B–E junction produces a large increase in current 

with a very small  increase in C–B voltage. This effect is the punch-through breakdown 

phenomenon.

5 � 1015

5 � 1017

5 � 1019 Nd n-type

emitter

Nd n-type

collector

Na p-type

base

x

Figure 12.31 | Impurity concentration 

profi les of a double-diffused npn bipolar 

transistor.
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532 CHAPTER 12   The Bipolar Transistor

 Figure 12.33 shows the geometry for calculating the punch-through voltage. As-

sume that NB and NC are the uniform impurity doping concentrations in the base and 

collector, respectively. Let xBO be the metallurgical width of the base and let xdB be 

the space charge width extending into the base from the B–C junction. If we neglect 

the narrow space charge width of a zero-biased or forward-biased B–E junction, then 

punch-through, assuming the abrupt junction approximation, occurs when xdB � xBO. 

We can write that

 xdB � xBO �   
   2	s(Vbi � Vpt) 
  ___ e   �   

NC 
 _ 

NB 
   �   1  __ 

NC � NB 
   �  1 �2

  (12.53)

where Vpt is the reverse-biased B–C voltage at punch-through. Neglecting Vbi com-

pared to Vpt, we can solve for Vpt as

 Vpt �   
e x BO  2

   
 _ 

2	s 
   �   

NB
 (NC � NB) 

 ___ 
NC 

   (12.54)

E

Ec
EF

Ev

B C

(a) (b)

E

Ec
EF

VR2

VR1

Ev

B C

Figure 12.32 | Energy-band diagram of an npn bipolar transistor (a) in thermal 

equilibrium, and (b) with a reverse-biased B–C voltage before punch-through, VR1, 

and after punch-through, VR2.

E B C

xdB
xBO

xdC

Figure 12.33 | Geometry of a bipolar 

transistor to calculate the punch-

through voltage.
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   DESIGN
   EXAMPLE 12.10
Objective: Design the collector doping concentration and collector width to meet a punch-

through voltage specifi cation.

 Consider a uniformly doped silicon bipolar transistor with a metallurgical base width of 

0.5 �m and a base doping of NB � 1016 cm�3. The punch-through voltage is to be Vpt � 25 V.

■ Solution
The maximum collector doping concentration can be determined from Equation (12.54) as

 25 �   
(1.6 � 10�19)(0.5 � 10�4)2(1016)(NC � 1016) 

    ________   
2(11.7)(8.85 � 10�14)NC 

  

or

 12.94 � 1 �   1016  _ 
NC 

  

which yields

 NC � 8.38 � 1014 cm�3

Using this n-type doping concentration for the collector, we can determine the minimum width 

of the collector region such that the depletion region extending into the collector will not 

reach the substrate and cause breakdown in the collector region. We have, using the results 

of Chapter 7,

 xdC � xC � 5.97 �m

■ Comment
From Figure 7.15, the expected avalanche breakdown voltage for this junction is greater than 

300 V. Obviously punch-through will occur before the normal breakdown voltage in this case. 

For a larger punch-through voltage, a larger metallurgical base width will be required, since a 

lower collector doping concentration is becoming impractical. A larger punch-through voltage 

will also require a larger collector width in order to avoid premature breakdown in this region.

■ EXERCISE PROBLEM
Ex 12.10  The metallurgical base width of a silicon npn bipolar transistor is xB0 � 0.80 �m. 

The base and collector doping concentrations are NB � 5 � 1016 cm�3 and 

NC � 2 � 1015 cm�3, respectively. (a) Determine the punch-through voltage. 

(b) What is the expected avalanche breakdown voltage?

[Ans. (a) Vpt � 643 V; (b) BV � 180 V]

 The second breakdown mechanism to consider is avalanche breakdown, but tak-

ing into account the gain of the transistor.2 Figure 12.34a is an npn transistor with 

a reverse-biased voltage applied to the B–C junction and with the emitter left open. 

The current ICBO is the reverse-biased junction current. Figure 12.34b shows the tran-

sistor with an applied C–E voltage and with the base terminal left open. This bias 

2The doping concentrations in the base and collector of the transistor are small enough that Zener break-

down is not a factor to be considered.
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534 CHAPTER 12   The Bipolar Transistor

condition also makes the B–C junction reverse biased. The current in the transistor 

for this bias confi guration is denoted as ICEO.

 The current ICBO shown in Figure 12.34b is the normal reverse-biased B–C junc-

tion current. Part of this current is due to the fl ow of minority carrier holes from the 

collector across the B–C space charge region into the base. The fl ow of holes into 

the base makes the base positive with respect to the emitter, and the B–E junction 

becomes forward biased. The forward-biased B–E junction produces the current ICEO, 

due primarily to the injection of electrons from the emitter into the base. The injected 

electrons diffuse across the base toward the B–C junction. These electrons are sub-

ject to all of the recombination processes in the bipolar transistor. When the electrons 

reach the B–C junction, this current component is �ICEO where � is the common-base 

current gain. We therefore have

 ICEO � �ICEO � ICBO (12.55a)

or

 ICEO �   
ICBO 

 __ 
1 � �

   � �ICBO (12.55b)

where � is the common-emitter current gain. The reverse-biased junction current 

ICBO is multiplied by the current gain � when the transistor is biased in the open-base 

confi guration.

 When the transistor is biased in the open-emitter confi guration as in Figure 12.34a, 

the current ICBO at breakdown becomes ICBO → MICBO, where M is the multiplication fac-

tor. An empirical approximation for the multiplication factor is usually written as

 M �   1  ___  
1 � (VCB �BVCBO)n 

   (12.56)

where n is an empirical constant, usually between 3 and 6, and BVCBO is the B–C 

breakdown voltage with the emitter left open.

 When the transistor is biased with the base open circuited as shown in Fig-

ure 12.34b, the currents in the B–C junction at breakdown are multiplied, so that

 ICEO � M(�ICEO � ICBO) (12.57)

Solving for ICEO, we obtain

 ICEO �   
MICBO 

 __ 
1 � �M

   (12.58)

(a)

VCB

ICBO

� �

n p n
E C

B

(b)

VCE

ICEO

ICEO

ICBO

�ICEO

� �

n p nE C

B

Figure 12.34 | (a) Open-emitter confi guration with saturation current ICBO: (b) Open-base 

confi guration with saturation current ICEO.
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 The condition for breakdown corresponds to

 �M � 1 (12.59)

Using Equation (12.56) and assuming that VCB � VCE, Equation (12.59) becomes

   �  ____  
1 � (BVCEO �BVCBO)n 

   � 1 (12.60)

where BVCEO is the C–E voltage at breakdown in the open-base confi guration. Solving 

for BVCEO, we fi nd

 BVCEO � BVCBO   
n
 	
______

 1 � �   (12.61)

where, again, � is the common-base current gain. The common-emitter and 

 common-base current gains are related by

 � �   �  __ 
1 � �

   (12.62a)

Normally � � 1, so that

 1 � � �   1  _ 
�

   (12.62b)

Then Equation (12.61) can be written as

 BVCEO �   
BVCBO  

 __ 
  
n
 	
__

 �  
   (12.63)

The breakdown voltage in the open-base confi guration is smaller, by the factor   
n
 	
__

 �  , 
than the actual avalanche junction breakdown voltage. This characteristic is shown 

in Figure 12.35. 

V

Open

base

Open

emitterIC

ICEO

ICBO

BVCEO BVCBO

Figure 12.35 | Relative breakdown 

voltages and saturation currents 

of the open-base and open-emitter 

confi gurations.

   DESIGN
   EXAMPLE 12.11
Objective: Design a bipolar transistor to meet a breakdown voltage specifi cation.

 Consider a silicon bipolar transistor with a common-emitter current gain of � � 100 and 

a base doping concentration of NB � 1017 cm�3. The minimum open-base breakdown voltage 

is to be 15 V.
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536 CHAPTER 12   The Bipolar Transistor

■ Solution
From Equation (12.63), the minimum open-emitter junction breakdown voltage must be

 BVCBO �   
n
 	
__

 �  BVCEO

Assuming the empirical constant n is 3, we fi nd

 BVCBO �   
3

 	
____

 100  (15) � 69.6 V

From Figure 7.15, the maximum collector doping concentration should be approximately 

7 � 1015 cm�3 to achieve this breakdown voltage.

■ Comment
In a transistor circuit, the transistor must be designed to operate under a worst-case situation. 

In this example, the transistor must be able to operate in an open-base confi guration without 

going into breakdown. As we have determined previously, an increase in breakdown voltage 

can be achieved by decreasing the collector doping concentration.

■ EXERCISE PROBLEM
Ex 12.11  A uniformly doped silicon bipolar transistor has base and collector doping 

concentrations of NB � 7 � 1016 cm�3 and NC � 3 � 1015 cm�3, respectively. The 

common-emitter current gain is � � 125. Assuming an empirical constant of 

n � 3, determine (a) BVCBO and (b) BVCEO.

[Ans. (a) BVCBO � 125 V; (b) BVCEO � 25 V]
  TEST YOUR UNDERSTANDING

TYU 12.8 A particular transistor has an output resistance of 200 k� and an Early voltage 

of VA � 125 V. Determine the change in collector current when VCE increases 

from 2 V to 8 V. 

(Ans. IC � 30 �A)

TYU 12.9 (a) If, because of fabrication tolerances, the neutral base width for a set of tran-

sistors varies over the range of 0.800 � xB � 1.00 �m, determine the variation 

in the base transport factor �T. Assume LB � 1.414 � 10�3 cm. (b) Using the re-

sults of part (a) and assuming � � � � 0.9967, what is the variation in common-

emitter current gain? 

[Ans. (a) 0.9975 � �T � 0.9984; (b) 109 � � � 121]

TYU 12.10 The base impurity doping concentration is NB � 3 � 1016 cm�3 and the metal-

lurgical base width is xB � 0.70 �m. The minimum required punch-through 

 breakdown voltage is specifi ed to be Vpt � 70 V. What is the maximum allowed 

collector doping concentration? 

(Ans. NC � 5.81 � 10
15

 cm
�3

)

12.5 | EQUIVALENT CIRCUIT MODELS
In order to analyze a transistor circuit either by hand calculations or using computer 

codes, one needs a mathematical model, or equivalent circuit, of the transistor. There 

are several possible models, each one having certain advantages and disadvantages. 
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A detailed study of all possible models is beyond the scope of this chapter. However, 

we will consider three equivalent circuit models. Each of these follows directly from 

the work we have done on the pn junction diode and on the bipolar transistor. Com-

puter analysis of electronic circuits is more commonly used than hand calculations, 

but it is instructive to consider the types of transistor model used in computer codes.

 It is useful to divide bipolar transistors into two categories—switching and 

 amplifi cation—defi ned by their use in electronic circuits. Switching usually involves 

turning a transistor from its “off” state, or cutoff, to its “on” state, either forward- 

active or saturation, and then back to its “off” state. Amplifi cation usually involves 

superimposing sinusoidal signals on dc values so that bias voltages and currents 

are only perturbed. The Ebers–Moll model is used in switching applications; the 

hybrid-pi model is used in amplifi cation applications.

*12.5.1  Ebers–Moll Model

The Ebers–Moll model, or equivalent circuit, is one of the classic models of the 

bipolar transistor. This particular model is based on the interacting diode junctions 

and is applicable in any of the transistor operating modes. Figure 12.36 shows the 

current  directions and voltage polarities used in the Ebers–Moll model. The currents 

are defi ned as all entering the terminals so that

 IE � IB � IC � 0 (12.64)

The direction of the emitter current is opposite to what we have considered up to this 

point, but as long as we are consistent in the analysis, the defi ned direction does not 

matter.

 The collector current can be written in general as

 IC � �F IF � IR (12.65a)

where �F is the common-base current gain in the forward-active mode. In this mode, 

Equation (12.65a) becomes

 IC � �F IF � ICS (12.65b)

where the current ICS is the reverse-biased B–C junction current. The current IF is given by

 IF � IES  � exp  �   eVBE 
 _ 

kT
   �  � 1 �  (12.66)

ICIE

IB

VBCVBE

n p n

�� ��

E

B

C

Figure 12.36 | Current direction and 

voltage polarity defi nitions for the 

Ebers–Moll model.
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538 CHAPTER 12   The Bipolar Transistor

If the B–C junction becomes forward biased, such as in saturation, then we can write 

the current IR as

 IR � ICS  � exp  �   eVBC 
 _ 

kT
   �  � 1 �  (12.67)

Using Equations (12.66) and (12.67), the collector current from Equation (12.65a) 

can be written as

 IC � �F IES  � exp  �   eVBE 
 _ 

kT
   �  � 1 �  � ICS  � exp  �   eVBC 

 _ 
kT

   �  � 1 �  (12.68)

We can also write the emitter current as

 IE � �R IR � IF (12.69)

or

 IE � �R ICS  � exp  �   eVBC 
 _ 

kT
   �  � 1 �  � IES  � exp  �   eVBE 

 _ 
kT

   �  � 1 �  (12.70)

The current IES is the reverse-biased B–E junction current and �R is the common-base 

current gain for the inverse-active mode. Equations (12.68) and (12.70) are the clas-

sic Ebers–Moll equations.

 Figure 12.37 shows the equivalent circuit corresponding to Equations (12.68) 

and (12.70). The current sources in the equivalent circuit represent current compo-

nents that depend on voltages across other junctions. The Ebers–Moll model has four 

parameters: �F, �R, IES, and ICS. However, only three parameters are independent. The 

reciprocity relationship states that

 �F IES � �R ICS (12.71)

 Since the Ebers–Moll model is valid in each of the four operating modes, we 

can, for example, use the model for the transistor in saturation. In the saturation 

mode, both B–E and B–C junctions are forward biased, so that VBE � 0 and VBC � 0. 

The B–E voltage will be a known parameter since we will apply a voltage across 

this junction. The forward-biased B–C voltage is a result of driving the transistor 

into saturation and is the unknown to be determined from the Ebers–Moll equations. 

E

B

C

��� �

ICIE

IF IR

�RIR �FIF

VBCVBE

IF � IES[exp ( ) � 1]
eVBE

kT
IR � ICS[exp ( ) � 1]

eVBC

kT

Figure 12.37 | Basic Ebers–Moll equivalent circuit.
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Normally in electronic circuit applications, the collector–emitter voltage at satura-

tion is of interest. We can defi ne the C–E saturation voltage as

 VCE (sat) � VBE � VBC (12.72)

We fi nd an expression for VCE(sat) by combining the Ebers–Moll equations. In the 

following example, we see how the Ebers–Moll equations can be used in a hand 

calculation, and we may also see how a computer analysis would make the calcula-

tions easier.

 Combining Equations (12.64) and (12.70), we have

 �(IB � IC) � �R ICS  � exp  �   eVBC 
 _ 

kT
   �  � 1 �  � IES  � exp  �   eVBE 

 _ 
kT

   �  � 1 �  (12.73)

If we solve for [exp (eVBC �kT) � 1] from Equation (12.73), and substitute the  result ing 

expression into Equation (12.68), we can then fi nd VBE as

 VBE � Vt ln  �   IC (1 � �R) � IB � IES(1 � �F �R) 
   ______  

IES(1 � �F �R)
   �  (12.74)

where Vt is the thermal voltage. Similarly, if we solve for [exp (eVBE �kT) � 1] from 

Equation (12.68), and substitute this expression into Equation (12.73), we can fi nd 

VBC as

 VBC � Vt ln  �   �F IB � (1 � �F)IC � ICS(1 � �F �R) 
   ______  

ICS(1 � �F �R)
   �  (12.75)

We may neglect the IES and ICS terms in the numerators of Equations (12.74) and 

(12.75). Solving for VCE (sat), we have

 VCE (sat) � VBE � VCB � Vt ln  �   IC(1 � �R) � IB 
  ____  

�F IB � (1 � �F)IC 
   �   

ICS  _ 
IES 

   �  (12.76)

The ratio of ICS to IES can be written in terms of �F and �R from Equation (12.71). We 

can fi nally write

 VCE (sat) � Vt ln  �   IC(1 � �R) � IB 
  ____  

�F IB � (1 � �F)IC 
   �   

�F 
 _ 

�R 
   �  (12.77)

   EXAMPLE 12.12Objective: Calculate the collector–emitter saturation voltage of a bipolar transistor at 

T � 300 K.

 Assume that �F � 0.99, �R � 0.20, IC � 1 mA, and IB � 50 �A.

■ Solution
Substituting the parameters into Equation (12.77), we have

VCE (sat) � (0.0259) ln  �   (1)(1 � 0.2) � (0.05) 
  _____   

(0.99)(0.05) � (1 � 0.99)(1)
    �   0.99  _ 

0.20
   �  �  � 0.121 V

■ Comment
This VCE (sat) value is typical of collector–emitter saturation voltages. Because of the log 

function, VCE (sat) is not a strong function of IC or IB.
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12.5.2  Gummel–Poon Model

The Gummel–Poon model of the BJT considers more physics of the transistor than 

the Ebers–Moll model. This model can be used if, for example, there is a nonuniform 

doping concentration in the base.

 The electron current density in the base of an npn transistor can be written as

 Jn � e�nn(x)E � eDn   
dn(x)

 _ 
dx

   (12.78)

An electric fi eld will occur in the base if nonuniform doping exists in the base. This 

is discussed in Section 12.4.5. The electric fi eld, from Equation (12.52), can be writ-

ten in the form

 E �   kT _ e   �   1 _ 
p(x)

   �   
dp(x)

 _ 
dx

   (12.79)

where p(x) is the majority carrier hole concentration in the base. Under low injection, 

the hole concentration is just the acceptor impurity concentration. With the doping 

profi le shown in Figure 12.31, the electric fi eld is negative (from the collector to the 

emitter). The direction of this electric fi eld aids the fl ow of electrons across the base.

 Substituting Equation (12.79) into Equation (12.78), we obtain

 Jn � e�nn(x) �   kT _ e   �   1 _ 
p(x)

   �   
dp(x)

 _ 
dx

   � eDn   
dn(x)

 _ 
dx

   (12.80)

Using Einstein’s relation, we can write Equation (12.80) in the form

 Jn �   
eDn  _ 
p(x)

    � n(x)   
dp(x)

 _ 
dx

   � p(x)   
dn(x)

 _ 
dx

   �  �   
eDn  _ 
p(x)

   �   
d(pn)

 _ 
dx

   (12.81)

Equation (12.81) can be written in the form

   
Jn p(x)

 __ 
eDn 

   �   
d(pn)

 _ 
dx

   (12.82)

Integrating Equation (12.82) through the base region while assuming that the elec-

tron current density is essentially a constant and the diffusion coeffi cient is a con-

stant, we fi nd

   
Jn  _ 

eDn 
    
∫

0

 
 
xB

 
  p(x) dx �  

∫
0

 
 
xB

 
    
dp(x)

 _ 
dx

   dx � p(xB)n(xB)�p(0)n(0) (12.83)

Assuming that the B–E junction is forward biased and the B–C junction is reverse 

biased, we have n(0) � nB0 exp (VBE �Vt) and n(xB) � 0. We may note that nB0 p �  n i  
2  

so that Equation (12.83) can be written as

 Jn �   
�eDn  n i  

2  exp (VBE �Vt)
  ____  

 
∫

0

 
 
xB

 
  p(x) dx

   (12.84)

■ EXERCISE PROBLEM
Ex 12.12  Repeat Example 12.12 for transistor parameters of �F � 0.992, �R � 0.05, 

IC � 0.5 mA, and IB � 50 �A. 

(Ans. VCE (sat) � 0.141 V)
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The integral in the denominator is the total majority carrier charge in the base and is 

known as the base Gummel number, defi ned as QB.

 If we perform the same analysis in the emitter, we fi nd that the hole current 

density in the emitter of an npn transistor can be expressed as

 Jp �   
�eDp

 n i  
2  exp (VBE �Vt)

  ____  

 
∫

0

 
 
xE

 
  n(x�) dx�

   (12.85)

The integral in the denominator is the total majority carrier charge in the emitter and 

is known as the emitter Gummel number, defi ned as QE.

 Since the currents in the Gummel–Poon model are functions of the total inte-

grated charges in the base and emitter, these currents can easily be determined for 

nonuniformly doped transistors.

 The Gummel–Poon model can also take into account nonideal effects, such as 

the Early effect and high-level injection. As the B–C voltage changes, the neutral 

base width changes so that the base Gummel number QB changes. The change in QB 

with B–C voltage then makes the electron current density given by Equation (12.84) 

a function of the B–C voltage. This is the base width modulation effect or Early 

 effect as discussed previously in Section 12.4.1.

 If the B–E voltage becomes too large, low injection no longer applies, which 

leads to high-level injection. In this case, the total hole concentration in the base 

increases because of the increased excess hole concentration. This means that the 

base Gummel number will increase. The change in base Gummel number implies, 

from Equation (12.84), that the electron current density will also change. High-level 

injection has also been previously discussed in Section 12.4.2.

 The Gummel–Poon model can then be used to describe the basic operation of 

the transistor as well as to describe nonideal effects.

12.5.3  Hybrid-Pi Model

Bipolar transistors are commonly used in circuits that amplify time-varying or sinusoi-

dal signals. In these linear amplifi er circuits, the transistor is biased in the  forward-active 

region and small sinusoidal voltages and currents are superimposed on dc voltages and 

currents. In these applications, the sinusoidal parameters are of interest, so it is con-

venient to develop a small-signal equivalent circuit of the bipolar transistor using the 

small-signal admittance parameters of the pn junction developed in Chapter 8.

 Figure 12.38a shows an npn bipolar transistor in a common-emitter confi gura-

tion with the small-signal terminal voltages and currents. Figure 12.38b shows the 

cross section of the npn transistor. The C, B, and E terminals are the external con-

nections to the transistor, while the C�, B�, and E� points are the idealized internal 

collector, base, and emitter regions.

 We can begin constructing the equivalent circuit of the transistor by consid-

ering the various terminals individually. Figure 12.39a shows the equivalent cir-

cuit  between the external input base terminal and the external emitter terminal. The 

resis tance rb is the series resistance in the base between the external base terminal 

B and the internal base region B�. The B��E� junction is forward biased, so C
 is 
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Figure 12.38 | (a) Common-emitter npn bipolar transistor with small-signal current and 

voltages. (b) Cross section of an npn bipolar transistor for the hybrid-pi model.
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Figure 12.39 | Components of the hybrid-pi equivalent circuit between (a) the base and 

emitter, (b) the collector and emitter, and (c) the base and collector.

the junction diffusion capacitance and r
 is the junction diffusion resistance. The 

diffusion capacitance C
 is the same as the diffusion capacitance Cd given by Equa-

tion (8.105), and the diffusion resistance r
 is the same as the diffusion resistance rd 

given by Equation (8.68). The values of both parameters are functions of the junction 

nea29583_ch12_491-570.indd   542nea29583_ch12_491-570.indd   542 12/11/10   12:44 PM12/11/10   12:44 PM



 12.5   Equivalent Circuit Models 543

current. These two elements are in parallel with the junction capacitance, which is 

Cje.  Finally, rex is the series resistance between the external emitter terminal and the 

 internal emitter region. This resistance is usually very small and may be on the order 

of 1 to 2 �.

 Figure 12.39b shows the equivalent circuit looking into the collector terminal. The 

rc resistance is the series resistance between the external and internal collector connec-

tions and the capacitance Cs is the junction capacitance of the reverse-biased collector-

substrate junction. The dependent current source, gmVb�e�, is the collector current in the 

transistor, which is controlled by the internal base–emitter voltage. The resistance r0 is 

the inverse of the output conductance g0 and is primarily due to the Early effect.

 Finally, Figure 12.39c shows the equivalent circuit of the reverse-biased B��C� 
junction. The C� parameter is the reverse-biased junction capacitance and r� is the 

reverse-biased diffusion resistance. Normally, r� is on the order of megohms and can 

be neglected. The value of C� is usually much smaller than C
 but, because of the 

feedback effect that leads to the Miller effect and Miller capacitance, C� cannot be 

ignored in most cases. The Miller capacitance is the equivalent capacitance between 

B� and E� due to C� and the feedback effect, which includes the gain of the transis-

tor. The Miller effect also refl ects C� between the C� and E� terminals at the output. 

However, the effect on the output characteristics can usually be ignored.

 Figure 12.40 shows the complete hybrid-pi equivalent circuit. A computer simu-

lation is usually required for this complete model because of the large number of 

 elements. However, some simplifi cations can be made in order to gain an apprecia-

tion for the frequency effects of the bipolar transistor. The capacitances lead to fre-

quency effects in the transistor, which means that the gain, for example, is a function 

of the input signal frequency.

B
B�

rb rc

E

E�

rex

Cje
r�

r�

C�

C�

C

Vb�e�

�

�

C�

gmVb�e� r0

Cs

Figure 12.40 | Hybrid-pi equivalent circuit.

   EXAMPLE 12.13Objective: Determine, to a fi rst approximation, the frequency at which the small-signal 

current gain decreases to 1 � 	
__

 2   of its low-frequency value.

 Consider the simplifi ed hybrid-pi circuit shown in Figure 12.41. We are ignoring C�, Cs, 

r�, Cje, r0, and the series resistances. We must emphasize that this is a fi rst-order calculation 

and that C� normally cannot be neglected.
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r�C� gmVbe
Vbe

E

B C

Ib Ic

�

�

Figure 12.41 | Simplifi ed hybrid-pi 

equivalent circuit.

■ Solution
At very low frequency, we may neglect C
 so that

 Vbe � Ib r
  and  Ic � gmVbe � gm r
 Ib

We can then write

 hfe0 �   
Ic  _ 
Ib 

   � gmr


where hfe0 is the low-frequency, small-signal common-emitter current gain.

 Taking into account C
, we have

 Vbe � Ib  �   r
 
 __ 

1 � j�r
C
 
   � 

 Then

 Ic � gmVbe � Ib  �   hfe0 
 __ 

1 � j�r
C
 
   � 

or the small-signal current gain can be written as

 Ai �   
Ic  _ 
Ib

   �  �   hfe0 
 __ 

1 � j�r
C
 
   � 

 The magnitude of the current gain is then

   Ai    �     Ic  _ 
Ib 

     �   
hfe0 
 ___  

 	
____________

  1 � (�r
 C
)2  
   �   

hfe0 
 ____  

 	
_____________

  1 � (2
 fr
 C
)2  
  

 The magnitude of the current gain drops to 1� 	
__

 2   of its low-frequency value at 

f � 1�2
r
C
.

 If, for example, r
 � 2.6 k� and C
 � 4 pF, then

 f � 15.3 MHz

■ Comment
High-frequency transistors must have small-diffusion capacitances, implying the use of small 

devices.

■ EXERCISE PROBLEM
Ex 12.13  Using the results of Example 12.13, determine the maximum value of C
 such 

that the frequency at which   Ai    � hfe0� 	
__

 2   is f � 35 MHz. 

(Ans. C
 � 1.75 pF)
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12.6 | FREQUENCY LIMITATIONS
The hybrid-pi equivalent circuit, developed in the last section, introduces frequency 

effects through the capacitor–resistor circuits. We now discuss the various physical 

factors in the bipolar transistor affecting the frequency limitations of the device and 

then defi ne the transistor cutoff frequency, which is a fi gure of merit for a transistor.

12.6.1  Time-Delay Factors

The bipolar transistor is a transit-time device. When the voltage across the B–E junc-

tion increases, for example, additional carriers from the emitter are injected into the 

base, diffuse across the base, and are collected in the collector region. As the fre-

quency increases, this transit time can become comparable to the period of the input 

signal. At this point, the output response will no longer be in phase with the input and 

the magnitude of the current gain will decrease.

 The total emitter-to-collector time constant or delay time is composed of four 

separate time constants. We can write

 �ec � �e � �b � �d � �c (12.86)

where

 �ec � emitter-to-collector time delay

   �e � emitter–base junction capacitance charging time

   �b � base transit time

   �d � collector depletion region transit time

   �c � collector capacitance charging time

 The equivalent circuit of the forward-biased B–E junction is given in Fig-

ure 12.39a. The capacitance Cje is the junction capacitance. If we ignore the series 

 resistance, then the emitter–base junction capacitance charging time is

 �e �  r e  �  (Cje � Cp)  (12.87)

where  r e  �  is the emitter junction or diffusion resistance. The capacitance Cp includes 

any parasitic capacitance between the base and emitter. The resistance  r e  �  is found as 

the inverse of the slope of the IE versus VBE curve. We obtain

  r e  �  �   kT  _ e    �   
1 _ 
IE 

   (12.88)

where IE is the dc emitter current.

 The second term, �b, is the base transit time, the time required for the minority 

carriers to diffuse across the neutral base region. The base transit time is related to 

the diffusion capacitance C
 of the B–E junction. For the npn transistor, the electron 

current density in the base can be written as

 Jn � �enB(x)v(x) (12.89)

where v(x) is an average velocity. We can write

 v(x) � dx /dt   or   dt � dx /v(x) (12.90)
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The transit time can then be found by integrating, or

 �b �  
∫

0

 
 
xB
 
  dt �  

∫
0

 
 
xB
 
    dx  _ 
v(x)

   �  
∫

0

 
 
xB
 
    
enB(x) dx 

 __ 
(�Jn)

   (12.91)

The electron concentration in the base is approximately linear (see Equation (12.15b)) 

so we can write

 nB(x) � nB0  � exp  �   eVBE 
 _ 

kT 
   �  �   � 1 �   x  _ xB    �  (12.92)

and the electron current density is given by

 Jn � eDn   
dnB(x) 

 __ 
dx

   (12.93)

The base transit time is then found by combining Equations (12.92) and (12.93) with 

Equation (12.91). We fi nd that

 �b �   
 x B  2

   
 _ 

2Dn

  
  (12.94)

 The third time-delay factor is �d, the collector depletion region transit time. As-

suming that the electrons in the npn device travel across the B–C space charge region 

at their saturation velocity, we have

 �d �   
xdc  _ vs

   (12.95)

where xdc is the B–C space charge width and vs is the electron saturation velocity.

 The fourth time-delay factor, �c, is the collector capacitance charging time. The 

B–C is reverse biased so that the diffusion resistance in parallel with the junction 

 capacitance is very large. The charging time constant is then a function of the collec-

tor series resistance rc. We can write

 �c � rc(C� � Cs)  (12.96)

where C� is the B–C junction capacitance and Cs is the collector-to-substrate capaci-

tance. The series resistance in small epitaxial transistors is usually small; thus, the 

time delay �c may be neglected in some cases.

 Example calculations of the various time-delay factors are given in the next sec-

tion as part of the cutoff frequency discussion.

12.6.2  Transistor Cutoff Frequency

The current gain as a function of frequency is developed in Example 12.13 so that we 

can also write the common-base current gain as

 � �   
�0  __ 

1 � j   
f 
 _ 

f�

  
   (12.97)
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where �0 is the low-frequency common-base current gain and f� is defi ned as the 

alpha cutoff frequency. The frequency f� is related to the emitter-to-collector time 

delay �ec as

 f� �   1  _ 
2
�ec

   (12.98)

When the frequency is equal to the alpha cutoff frequency, the magnitude of the 

common-base current gain is 1� 	
__

 2   of its low-frequency value.

 We can relate the alpha cutoff frequency to the common-emitter current gain by 

considering

 � �   �  __ 
1 � �

   (12.99)

We may replace � in Equation (12.99) with the expression given by Equation (12.97). 

When the frequency f is of the same order of magnitude as f�, then

   �   �     �  __ 
1 � �

     �   
f� 

 _ 
f
   (12.100)

where we have assumed that �0 � 1. When the signal frequency is equal to the 

alpha cutoff frequency, the magnitude of the common-emitter current gain is equal to 

unity. The usual notation is to defi ne this cutoff frequency as fT, so we have

 fT �   1  _ 
2
�ec

   (12.101)

 From the analysis in Example 12.13, we may also write the common-emitter 

current gain as

 � �   
�0 
 __ 

1 � j(  f �f�)
   (12.102)

where f� is called the beta cutoff frequency and is the frequency at which the mag-

nitude of the common-emitter current gain � drops to 1� 	
__

 2   of its low-frequency 

value.

 Combining Equations (12.99) and (12.97), we can write

 � �   
� 
 __ 

1 � �
   �   

  
�0  __ 

1 � j(  f �fT)
   

  ___  
1 �   

�0  __ 
1 � j(  f �fT)

  
   �   

�0  ___  
1 � �0 � j(  f �fT)

   (12.103)

or

 � �   
�0   _____   

(1 � �0)  � 1 � j   
f 
 __ 

(1 � �0)fT 
   �  

  �   
�0 
 __ 

1 � j   
�0 f 

 _ 
fT 

  

   (12.104)

where

 �0 �   
�0  __ 

1 � �0

   �   1  __ 
1 � �0
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Comparing Equations (12.104) and (12.102), the beta cutoff frequency is related to 

the cutoff frequency by

 f� �   
fT 

 _ 
�0

   (12.105)

 Figure 12.42 shows a Bode plot of the common-emitter current gain as a func-

tion of frequency and shows the relative values of the beta and cutoff frequencies. 

Keep in mind that the frequency is plotted on a log scale, so f� and fT usually have 

signifi cantly different values.

Figure 12.42 | Bode plot of common-

emitter current gain versus frequency.

1

�0

�

f f� fT

EXAMPLE 12.14 Objective: Calculate the emitter-to-collector transit time and the cutoff frequency of a 

bipolar transistor, with the following parameters.

 Consider a silicon npn transistor at T � 300 K. Assume the following parameters:

 IE � 1 mA Cje � 1 pF

 xB � 0.5 �m Dn � 25 cm2 /s

 xdc � 2.4 �m rc � 20 �
 C� � 0.1 pF Cs � 0.1 pF

■ Solution
We will initially calculate the various time-delay factors. If we neglect the parasitic capaci-

tance, the emitter–base junction charging time is

 �e �  r e  �  Cje

where

  r e  �  �   kT  _ e   �   1  _ 
IE 

   �   0.0259  __ 
1 � 10�3

   � 25.9 �

Then

 �e � (25.9)(10�12) � 25.9 ps

The base transit time is

 �b �   
 x B  2

   
 _ 

2Dn 
   �   

(0.5 � 10�4)2 
  ___ 

2(25)
   � 50 ps
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The collector depletion region transit time is

 �d �   
xdc  _ vs 

   �   2.4 � 10�4  __ 
107

   � 24 ps

The collector capacitance charging time is

 �c � rc (C� � Cs) � (20)(0.2 � 10�12) � 4 ps

The total emitter-to-collector time delay is then

 �ec � 25.9 � 50 � 24 � 4 � 103.9 ps

so that the cutoff frequency is calculated as

 fT �   1 _ 
2
 �ec

   �   1 ____  
2
 (103.9 � 10�12)

   � 1.53 GHz

If we assume a low-frequency common-emitter current gain of � � 100, then the beta cutoff 

frequency is

 f� �   
fT 

 _ 
�0 

   �   1.53 � 109  __ 
100

   � 15.3 MHz

■ Comment
The design of high-frequency transistors requires small device geometries in order to reduce 

capacitances, and narrow base widths in order to reduce the base transit time.

■ EXERCISE PROBLEM
Ex 12.14  Consider a bipolar transistor with the same parameters as described in Example 12.14 

except that IE � 50 �A, Cje � 0.40 pF, and C� � 0.05 pF. Determine the emitter-

to-collector transit time, the cutoff frequency, and the beta cutoff frequency. 

(Ans. �ec � 282.2 ps,  fT � 564 MHz, f� � 5.64 MHz)

12.7 | LARGE-SIGNAL SWITCHING
Switching a transistor from one state to another is strongly related to the frequency 

characteristics just discussed. However, switching is considered to be a large-signal 

change, whereas the frequency effects assumed only small changes in the magnitude 

of the signal.

12.7.1  Switching Characteristics

Consider an npn transistor in the circuit shown in Figure 12.43a switching from cut-

off to saturation, and then switching back from saturation to cutoff. We describe the 

physical processes taking place in the transistor during the switching cycle.

 Consider, initially, the case of switching from cutoff to saturation. Assume that 

in cutoff VBE � VBB � 0, thus the B–E junction is reverse biased. At t � 0, assume 

that VBB switches to a value of VBB0 as shown in Figure 12.43b. We assume that VBB0 is 

suffi ciently positive to eventually drive the transistor into saturation. For 0 � t � t1, 

the base current supplies charge to bring the B–E junction from reverse bias to a 

slight forward bias. The space charge width of the B–E junction is narrowing, and 

ionized donors and acceptors are being neutralized. A small amount of charge is also 
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550 CHAPTER 12   The Bipolar Transistor

injected into the base during this time. The collector current increases from zero to 

10 percent of its fi nal value during this time period, referred to as the delay time.

 During the next time period, t1 � t � t2, the base current is supplying charge, 

which increases the B–E junction voltage from near cutoff to near saturation.  During 

this time, additional carriers are being injected into the base so that the gradient of 

the minority carrier electron concentration in the base increases, causing the collec-

tor current to increase. We refer to this time period as the rise time, during which the 

collector current increases from 10 to 90 percent of the fi nal value. For t � t2,  the 

base drive continues to supply base current, driving the transistor into saturation and 

establishing the fi nal minority carrier distribution in the device.

 The switching of the transistor from saturation to cutoff involves removing all 

of the excess minority carriers stored in the emitter, base, and collector regions. Fig-

ure 12.44 shows the charge storage in the base and collector when the transistor is in 

saturation. The charge QB is the excess charge stored in a forward-active transistor, 

and QBX and QC are the extra charges stored when the transistor is biased in saturation. 

At t � t3, the base voltage VBB switches to a negative value of (�VR). The base current 

in the transistor reverses direction as was the case in switching a pn junction diode 

from forward to reverse bias. The reverse base current pulls the excess stored carriers 

from the emitter and base regions. Initially, the collector current does not change sig-

nifi cantly, since the gradient of the minority carrier concentration in the base does not 

Figure 12.43 | (a) Circuit used for transistor switching. (b) Input base drive for transistor 

switching. (c) Collector current versus time during transistor switching.
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change instantaneously. Recall that when the transistor is biased in saturation, both 

the B–E and B–C junctions are forward biased. The charge QBX in the base must be 

 removed to reduce the forward-biased B–C voltage to 0 V before the collector current 

can change. This time delay is called the storage time and is denoted by ts. The storage 

time is the time between the point at which VBB switches to the time when the collector 

current is reduced to 90 percent of its maximum saturation value. The storage time is 

usually the most important parameter in the switching speed of the bipolar transistor.

 The fi nal switching delay time is the fall time tf during which the collector cur-

rent decreases from the 90 percent to the 10 percent value. During this time, the B–C 

junction is reverse biased but excess carriers in the base are still being removed, and 

the B–E  junction voltage is decreasing.

 The switching-time response of the transistor can be determined by using the 

Ebers–Moll model. The frequency-dependent gain parameters must be used, and 

normally the Laplace transform technique is used to obtain the time response. The 

details of this analysis are quite tedious and are presented here.

12.7.2  The Schottky-Clamped Transistor

One method frequently employed to reduce the storage time and increase the switch-

ing speed is the use of a Schottky-clamped transistor. This is a normal npn bipolar 

 device with a Schottky diode connected between base and collector, as shown in 

Figure 12.45a. The circuit symbol for the Schottky-clamped transistor is shown in 

Figure 12.45b. When the transistor is biased in the forward-active mode, the B–C 

junction is reverse biased; hence, the Schottky diode is reverse biased and effectively 

out of the circuit. The characteristics of the Schottky-clamped transistor—or simply 

the Schottky transistor—are those of the normal npn bipolar device.

 When the transistor is driven into saturation, the B–C junction becomes forward 

biased; hence, the Schottky diode also becomes forward biased. We may recall from 

our discussion in Chapter 9 that the effective turn-on voltage of the Schottky diode is 

approximately half that of the pn junction. The difference in turn-on voltage means 

that most of the excess base current is shunted through the Schottky diode and away 

Figure 12.44 | Charge storage in the base and collector at 

saturation and in the active mode.
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552 CHAPTER 12   The Bipolar Transistor

from the base so that the amount of excess stored charge in the base and  collector is 

drastically reduced. The excess minority carrier concentration in the base and collec-

tor at the B–C junction is an exponential function of VBC. If VBC is reduced from 0.5 to 

0.3 V, for example, the excess minority carrier concentration is  reduced by over three 

orders of magnitude. The reduced excess stored charge in the base of the Schottky 

transistor greatly reduces the storage time—storage times on the order of 1 ns or less 

are common in Schottky transistors.

*12.8 |  OTHER BIPOLAR TRANSISTOR 
STRUCTURES

This section is intended to briefl y introduce three specialized bipolar transistor struc-

tures. The fi rst structure is the polysilicon emitter bipolar junction transistor (BJT), 

the second is the SiGe-base transistor, and the third is the heterojunction bipolar 

transistor (HBT). The polysilicon emitter BJT is being used in some recent integrated 

circuits, and the SiGe-base transistor and HBT are intended for high-frequency /high-

speed applications.

12.8.1  Polysilicon Emitter BJT

The emitter injection effi ciency is degraded by the carriers injected from the base 

back into the emitter. The emitter width, in general, is thin, which increases speed 

and reduces parasitic resistance. However, a thin emitter increases the gradient in 

the minority carrier concentration, as indicated in Figure 12.19. The increase in the 

gradient increases the B–E junction current, which in turn decreases the emitter in-

jection effi ciency and decreases the common-emitter current gain. This effect is also 

shown in the summary of Table 12.3.

 Figure 12.46 shows the idealized cross section of an npn bipolar transistor with 

a polysilicon emitter. As shown in the fi gure, there is a very thin n� single-crystal 

 silicon region between the p-type base and the n-type polysilicon. As a fi rst approxi-

mation to the analysis, we may treat the polysilicon portion of the emitter as low- 

mobility  silicon, which means that the corresponding diffusion coeffi cient is small.

Figure 12.45 | (a) The Schottky-clamped transistor. (b) Circuit 

symbol of the Schottky-clamped transistor.

(a)

B

E

C

B

E

C

(b)

nea29583_ch12_491-570.indd   552nea29583_ch12_491-570.indd   552 12/11/10   12:44 PM12/11/10   12:44 PM



 12.8   Other Bipolar Transistor Structures 553

 If the neutral widths of both the polysilicon and single-crystal portions of the 

emitter are much smaller than the respective diffusion lengths, then the minority car-

rier distribution functions will be linear in each region. Both the minority carrier con-

centration and diffusion current must be continuous across the polysilicon /silicon 

interface. We can therefore write

 eDE (poly)   
d(�pE (poly)) 

 __ 
dx 

   � e D E(n�)    
d(� p E(n�) ) 

 __ 
dx 

   (12.106a)

or

   
d(� p E(n�) )

 __ 
dx

   �   
DE(poly) 

 __ 
 D E(n�) 

   �   
d(�pE(poly)) 

 __ 
dx 

   (12.106b)

Since DE(poly) �  D E(n�) , then the gradient of the minority carrier concentration at the 

emitter edge of the B–E depletion region in the n� region is reduced as Figure 12.47 

shows. This implies that the current back-injected from the base into the emitter is 

reduced so that the common-emitter current gain is increased.

Figure 12.46 | Simplifi ed cross section of an npn polysilicon 

emitter BJT.

Al
n� polysilicon

p base

SiO2

n collector

n�

Figure 12.47 | Excess minority carrier hole 

 concentrations in n� polysilicon and n� silicon emitter.
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emitter
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emitter
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�pE

nea29583_ch12_491-570.indd   553nea29583_ch12_491-570.indd   553 12/11/10   12:44 PM12/11/10   12:44 PM



554 CHAPTER 12   The Bipolar Transistor

12.8.2  Silicon–Germanium Base Transistor

The bandgap energy of germanium (Ge) (�0.67 eV) is signifi cantly smaller than the 

bandgap energy of silicon (Si) (�1.12 eV). By incorporating Ge into Si, the bandgap 

energy will decrease compared to pure Si. If Ge is incorporated into the base region 

of a Si bipolar transistor, the decrease in bandgap energy will infl uence the device 

characteristics. The desired Ge concentration profi le is to have the largest amount of 

Ge near the base–collector junction and the least amount of Ge near the base–emitter 

junction. Figure 12.48a shows an ideal uniform boron doping concentration in the 

p-type base and a linear Ge concentration profi le.

 The energy bands of a SiGe-base npn transistor compared to a Si-base npn 

transistor, assuming the boron and Ge concentrations given in Figure 12.48a, are 

shown in Figure 12.48b. The emitter–base junctions of the two transistors are es-

sentially identical, since the Ge concentration is very small in this region. However, 

the bandgap energy of the SiGe-base transistor near the base–collector junction is 

smaller than that of the Si-base transistor. The base current is determined by the 

base–emitter junction parameters and hence will be essentially the same in the two 

transistors. This change in bandgap energy will infl uence the collector current.

Figure 12.48 | (a) Assumed boron and germanium concen-

trations in the base of the SiGe-base transistor. (b) Energy-

band diagram of the Si- and SiGe-base transistors.
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(b)
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Collector Current and Current Gain Effects  Figure 12.49 shows the thermal-

equilibrium minority carrier electron concentration through the base region of the 

SiGe and Si transistors. This concentration is given by

 nB0 �   
 n i  

2  
 _ 

NB 
   (12.107)

where NB is assumed to be constant. The intrinsic concentration, however, is a func-

tion of the bandgap energy. We may write

   
 n i  

2 (SiGe) 
 __ 

 n i  
2 (Si)

   � exp  �   Eg 
 _ 

kT 
   �  (12.108)

where ni ( SiGe) is the intrinsic carrier concentration in the SiGe material, ni(Si) is 

the intrinsic carrier concentration in the Si material, and Eg is the change in the 

bandgap energy of the SiGe material compared to that of Si.

 The collector current in a SiGe-base transistor will increase. As a fi rst approxi-

mation, we can see this from the previous analysis. The collector current is found 

from Equation (12.36a), in which the derivative is evaluated at the base–collector 

junction. This means that the value of nB0 in the collector current expression in Equa-

tion (12.37) is the value at the base–collector junction. Since this value is larger for 

the SiGe-base transistor (Figure 12.49), the collector current will be larger compared 

to the Si-base transistor. Since the base currents are the same in the two transistors, 

the increase in collector current then implies that the current gain in the SiGe-base 

transistor is larger. If the bandgap narrowing is 100 meV, then the increase in the 

collector current and current gain will be approximately a factor of 4.

Early Voltage Effects  The Early voltage in a SiGe-base transistor is larger than 

that of the Si-base transistor. The explanation for this effect is less obvious than the 

explanation for the increase in collector current and current gain. For a bandgap nar-

rowing of 100 meV, the Early voltage is increased by approximately a factor of 12. 

Incorporating Ge into the base region can increase the Early voltage by a large  factor.

Electron

concentration

nB0 SiGe base

nB0 Si base

Emitter Collector

Base

Figure 12.49 | Thermal-equilibrium minority carrier electron 

concentration through the base of the Si- and SiGe-base 

transistors.
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556 CHAPTER 12   The Bipolar Transistor

Base Transit Time and Emitter–Base Charging Time Effects  The decrease in 

bandgap energy from the base–emitter junction to the base–collector junction in-

duces an electric fi eld in the base that helps accelerate electrons across the p-type 

base region. For a bandgap narrowing of 100 meV, the induced electric fi eld can be 

on the order of 103 to 104 V /cm. This electric fi eld reduces the base transit time by 

approximately a factor of 2.5.

 The emitter–base junction charging time constant, given by Equation (12.87), 

is directly proportional to the emitter diffusion resistance  r e  � . This parameter is in-

versely proportional to the emitter current, as seen in Equation (12.88). For a given 

base current, the emitter current in the SiGe-base transistor is larger, since the current 

gain is larger. The emitter–base junction charging time is then smaller in a SiGe-base 

transistor than that in a Si-base transistor.

 The reduction in both the base transit time and the emitter–base charging time 

increases the cutoff frequency of the SiGe-base transistor. The cutoff frequency of 

these devices can be substantially higher than that of the Si-base device.

12.8.3  Heterojunction Bipolar Transistors

As mentioned previously, one of the basic limitations of the current gain in the bi-

polar transistor is the emitter injection effi ciency. The emitter injection effi ciency � 

can be increased by reducing the value of the thermal-equilibrium minority  carrier 

 con centration pE0 in the emitter. However, as the emitter doping increases, the 

 bandgap narrowing  effect offsets any improvement in the emitter injection  effi ciency. 

One possible solution is to use a wide-bandgap material for the emitter, which will 

minimize the injection of carriers from the base back into the emitter.

 Figure 12.50a shows a discrete aluminum gallium arsenide (AlGaAs)/gallium 

arsenide (GaAs) heterojunction bipolar transistor, and Figure 12.50b shows the 

 energy-band diagram of the  n-AlGaAs emitter to p-GaAs base junction. The large 

potential barrier Vh limits the number of holes that will be injected back from the base 

into the emitter.

 The intrinsic carrier concentration is a function of bandgap energy as

  n i  
2  � exp  �   �Eg 

 _ 
kT 

   � 
For a given emitter doping, the number of minority carrier holes injected into the 

emitter is reduced by a factor of

 exp  �   Eg 
 _ 

kT 
   � 

in changing from a narrow- to wide-bandgap emitter. If Eg � 0.30 eV, for example,  

n i  
2  would be reduced by approximately 105 at T � 300 K. The drastic reduction in  

n i  
2  for the wide-bandgap emitter means that the requirements of a very high emitter 

 doping can be relaxed and a high emitter injection effi ciency can still be obtained. A 

lower emitter doping reduces the bandgap narrowing effect.

 The heterojunction GaAs bipolar transistor has the potential of being a very 

high-frequency device. A lower emitter doping in the wide-bandgap emitter leads to 
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 12.8   Other Bipolar Transistor Structures 557

a smaller junction capacitance, increasing the speed of the device. Also, for the GaAs 

npn device, the minority carriers in the base are electrons with a high mobility. The 

electron mobility in GaAs is approximately fi ve times that in silicon; thus, the base 

transit time in the GaAs base is very short. Experimental AlGaAs /GaAs heterojunc-

tion transistors with base widths on the order of 0.1 �m have shown cutoff frequen-

cies on the order of 40 GHz.

 One disadvantage of GaAs is the low minority carrier lifetime. The small 

 lifetime is not a factor in the base of a narrow-base device, but results in a larger B–E 

recombination current, which decreases the recombination factor and reduces the 

current gain. A current gain of 150 has been reported.

(a)

n GaAs

n GaAs

n GaAs

p GaAs

n GaAlAs

n GaAlAs

Emitter

Base

Collector

C

B

n� GaAsE
B

p� p�

n GaAlAs p GaAs

n� GaAs

Figure 12.50 | (a) Cross section of AlGaAs/GaAs hetero-

junction bipolar transistor showing a discrete and integrated 

structure. (b) Energy-band diagram of the n-AlGaAs emitter 

and p-GaAs base junction.
(From Tiwari et al. [20].)
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12.9 | SUMMARY
■ There are two complementary bipolar transistors—npn and pnp. Each transistor has 

three separately doped regions and two pn junctions. The center region (base) is very 

narrow, so the two pn junctions are said to be interacting junctions.

■ In the forward-active mode, the B–E junction is forward biased and the B–C junction is 

reverse biased. Majority carriers from the emitter are injected into the base where they 

become minority carriers. These minority carriers diffuse across the base into the B–C 

space charge region where they are swept into the collector.

■ When a transistor is biased in the forward-active mode of operation, the current at 

one terminal of the transistor (collector current) is controlled by the voltage applied 

across the other two terminals of the transistor (base–emitter voltage). This is the basic 

transistor action.

■ The minority carrier concentrations are determined in each region of the transistor. 

The principal currents in the device are determined by the diffusion of these minority 

carriers.

■ The common-base current gain, which leads to the common-emitter current gain, is a 

function of three factors—emitter injection effi ciency, base transport factor, and re-

combination factor. The emitter injection effi ciency takes into account carriers from the 

base that are injected back into the emitter, the base transport factor takes into account 

recombination in the base region, and the recombination factor takes into account carri-

ers that recombine within the forward-biased B–E junction.

■ Several nonideal effects are considered:

1.   Base width modulation, or Early effect—the change in the neutral base width with 

a change in B–C voltage, producing a change in collector current with a change in 

B–C or C–E voltage.

2.   High-injection effects that cause the collector current to increase at a slower rate 

with base–emitter voltage.

3.   Emitter bandgap narrowing that produces a smaller emitter injection effi ciency 

 because of a very large emitter region doping concentration.

4.   Current crowding effects that produce a larger current density at the emitter edge 

than in the center of the emitter.

5.   A nonuniform base doping concentration that induces an electric fi eld in the base 

region, which aids the fl ow of minority carriers across the base.

6.  Two breakdown voltage mechanisms—punch-through and avalanche.

■ Three equivalent circuits or mathematical models of the transistor are considered. The 

Ebers–Moll model and equivalent circuit are applicable in any of the transistor operat-

ing modes. The Gummel–Poon model is convenient to use when nonuniform doping 

exists in the transistor. The small-signal hybrid-pi model applies to transistors operating 

in the forward-active mode in linear amplifi er circuits.

■ The cutoff frequency of a transistor, a fi gure of merit for the transistor, is the frequency 

at which the magnitude of the common-emitter current gain becomes equal to unity. 

The frequency response is a function of the emitter–base junction capacitance charging 

time, the base transit time, the collector depletion region transit time, and the collector 

capacitance charging time.

■ The switching characteristics are closely related to the frequency limitations although 

switching involves large changes in currents and voltages. An important parameter in 

switching is the charge storage time, which applies to a transistor switching from satu-

ration to cutoff.
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GLOSSARY OF IMPORTANT TERMS
alpha cutoff frequency  The frequency at which the magnitude of the common-base current 

is 1� 	
__

 2   of its low-frequency value; also equal to the cutoff frequency.

bandgap narrowing  The reduction in the forbidden energy bandgap with high emitter 

 doping concentration.

base transit time  The time that it takes a minority carrier to cross the neutral base region.

base transport factor  The factor in the common-base current gain that accounts for recom-

bination in the neutral base width.

base width modulation  The change in the neutral base width with C–E or C–B voltage.

beta cutoff frequency  The frequency at which the magnitude of the common-emitter cur-

rent gain is 1� 	
__

 2   of its low-frequency value.

collector capacitance charging time  The time constant that describes the time required for the 

B–C and collector–substrate space charge widths to change with a change in emitter current.

collector depletion region transit time  The time that it takes a carrier to be swept across 

the B–C space charge region.

common-base current gain  The ratio of collector current to emitter current.

common-emitter current gain  The ratio of collector current to base current.

current crowding  The nonuniform current density across the emitter junction area created 

by a lateral voltage drop in the base region due to a fi nite base current and base resistance.

cutoff  The bias condition in which zero- or reverse-biased voltages are applied to both tran-

sistor junctions, resulting in zero transistor currents.

cutoff frequency  The frequency at which the magnitude of the common-emitter current 

gain is unity.

early effect  Another term for base width modulation.

early voltage  The value of voltage (magnitude) at the intercept on the voltage axis obtained 

by extrapolating the IC versus VCE curves to zero current.

emitter–base junction capacitance charging time  The time constant describing the time 

for the B–E space charge width to change with a change in emitter current.

emitter injection effi ciency factor  The factor in the common-base current gain that takes 

into account the injection of carriers from the base into the emitter.

forward active  The bias condition in which the B–E junction is forward biased and the 

B–C junction is reverse biased.

inverse active  The bias condition in which the B–E junction is reverse biased and the 

B–C junction is forward biased.

output conductance  The ratio of a differential change in collector current to the corre-

sponding differential change in C–E voltage.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Describe the basic operation of the transistor.

■ Sketch the energy bands of the transistor in thermal equilibrium and when biased in the 

various operating modes.

■ Calculate, to a good fi rst approximation, the collector current as a function of base–

emitter voltage.
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560 CHAPTER 12   The Bipolar Transistor

■ Sketch the minority carrier concentrations throughout the transistor under the various 

operating modes.

■ Defi ne the various diffusion and other current components in the transistor from the 

minority carrier distribution curves.

■ Explain the physical mechanisms of the current gain limiting factors.

■ Defi ne the current-limiting factors from the current components in the transistor.

■ Describe the physical mechanism of base width modulation and its effect on the 

 current–voltage characteristics of the transistor.

■ Describe the voltage breakdown mechanisms in a bipolar transistor.

■ Sketch the simplifi ed small-signal hybrid-pi equivalent circuit of the transistor biased in 

the forward-active mode.

■ Describe qualitatively the four time-delay or time-constant components in the frequency 

response of the bipolar transistor.

REVIEW QUESTIONS
 1. Describe the charge fl ow in an npn bipolar transistor biased in the forward-active 

mode. Is the current by drift or diffusion?

 2. Defi ne the common-emitter current gain and explain why, to a fi rst approximation, 

the current gain is a constant. What is the relation between the common-emitter and 

common-base current gains?

 3. Explain the conditions of the cutoff, saturation, and inverse-active modes.

 4. Sketch the minority carrier concentrations in a pnp bipolar transistor biased in the 

 forward-active mode.

 5. Defi ne and describe the three limiting factors in the common-base current gain. Why 

does the base doping concentration affect the emitter injection effi ciency?

 6. Describe base width modulation. Sketch an I–V curve that shows the base width 

modulation effect.

 7. What is meant by high injection?

 8. Explain emitter current crowding.

 9. Defi ne ICBO and ICEO, and explain why ICEO � ICBO.

10. Sketch a simplifi ed hybrid-pi model for an npn bipolar transistor and explain when this 

equivalent circuit is used.

11. Describe the time-delay factors in the frequency limitation of the bipolar transistor.

12. What is the cutoff frequency of a bipolar transistor?

13. Describe the response of a bipolar transistor when it is switching between saturation 

and cutoff.

PROBLEMS
(Note: In the following problems, use the transistor geometry shown in Figure 12.13. Assume 

T�300 K unless otherwise stated.)

Section 12.1  The Bipolar Transistor Action

12.1 For a uniformly doped n��p�n bipolar transistor in thermal equilibrium, (a) sketch 

the energy-band diagram, (b) sketch the electric fi eld through the device, and 

(c)  repeat parts (a) and (b) for the transistor biased in the forward-active region.
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12.2 Consider a p��n�p bipolar transistor, uniformly doped in each region. Sketch the 

 energy-band diagram for the case when the transistor is (a) in thermal equilibrium, 

(b) biased in the forward-active mode, (c) biased in the inverse-active region, and 

(d) biased in cutoff with both the B–E and B–C junctions reverse biased.

12.3 The parameters of the base region in a silicon npn bipolar transistor are Dn � 18 cm2/s, 

nB0 � 4 � 103 cm�3, xB � 0.80 �m, and ABE � 5 � 10�5 cm2. (a) Comparing Equa-

tions (12.1) and (12.2), calculate the magnitude of IS. (b) Calculate the collector 

current for (i) vBE � 0.58 V, (ii) vBE � 0.65 V, and (iii) vBE � 0.72 V.

12.4 An npn silicon bipolar transistor has the following base parameters: Dn � 22 cm2/s, 

xB � 0.80 �m, and nB0 � 2 � 104 cm�3. (a) The collector current is to be   iC    � 2 mA 

when biased at vBE � 0.60 V. What is the required cross-sectional area ABE? 

(b) Using the results of part (a), what is the value of vBE such that   iC    � 5 mA?

12.5 Consider the transistor described in Problem 12.3. (a) For a common-base current 

gain of � � 0.9850, determine the common-emitter current gain [note: � � ��(1 � �)]. 

(b) Determine the emitter and base currents corresponding to the collector currents 

determined in Problem 12.3. (c) Repeats parts (a) and (b) for a common-base cur-

rent gain of � � 0.9940.

12.6 A bipolar transistor is biased in the forward-active region. (a) For a base current 

of IB � 4.2 �A and a collector current of IC � 0.625 mA, determine (i) �, (ii) �, 
and (iii) IE. (b) For a collector current of IC � 1.254 mA and an emitter current 

of IE � 1.273 mA, determine (i) �, (ii) �, and (iii) IB. (c) For a base current of 

IB � .065 �A and a common-emitter current gain of � � 150, determine (i) �, 
(ii) IC, and (iii) IE.

12.7 Assume that an npn bipolar transistor has a common-emitter current gain of 

� � 100. (a) Sketch the ideal current–voltage characteristics (iC versus �CE), like 

those in  Figure 12.9, as iB varies from zero to 0.1 mA in 0.01-mA increments. Let 

�CE vary over the range 0 � �CE � 10 V. (b) Assuming VCC � 10 V and RC � 1 k� 

in the  circuit in Figure 12.8, superimpose the load line on the transistor characteris-

tics in part (a). (c) Plot, on the resulting graph, the value of iC and �CE correspond-

ing to iB � 0.05 mA.

12.8 Consider Figure 12.8. Assume VCC � 3 V and VBE � 0.65 V. (a) For RC � 25 k�, 

(i) plot IC versus VCE over the range 0.20 � VCE � 3 V. (ii) At what value of IC does 

VCB � 0? (b) Repeat part (a) for RC � 10 k�.

Section 12.2  Minority Carrier Distribution

12.9 A uniformly doped silicon npn bipolar transistor at T � 300 K is biased in the 

forward-active mode. The doping concentrations are NE � 8 � 1017 cm�3, 

NB � 2 � 1016 cm�3, and NC � 1015 cm�3. (a) Determine the thermal-equilibrium 

values pE0, nB0, and pC0. (b) For VBE � 0.640 V, calculate the values of nB at x � 0 

and pE at x� � 0. (c) Sketch the minority carrier concentrations through the device 

and label each curve.

12.10 A silicon pnp bipolar transistor at T � 300 K is uniformly doped and is biased 

in the forward-active mode. The doping concentrations are NE � 5 � 1017 cm�3, 

NB � 1016 cm�3, and NC � 1015 cm�3. (a) Find the thermal-equilibrium values 

nE0, pB0, and nC0. (b) Determine the values of pB at x � 0 and nE at x� � 0 for 

VEB � 0.615 V. (c) Sketch the minority carrier concentrations through the device 

and label each curve.
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562 CHAPTER 12   The Bipolar Transistor

12.11 Consider a uniformly doped silicon npn bipolar transistor at T � 300 K. The device is 

biased in the forward-active mode with VCB � 2.5 V. The metallurgical base width is 

xB0 � 1.0 �m. The doping concentrations are NE � 8 � 1017 cm�3, NB � 2 � 1016 cm�3, 

and NC � 1015 cm�3. (a) Determine the B–E voltage such that the minority carrier 

electron concentration, nB, at x � 0 is 10 percent of the majority carrier hole concen-

tration. (b) At this bias, determine the minority carrier hole concentration at x� � 0.

12.12 Consider the minority carrier electron concentration in the base of an npn bipolar 

transistor as given by Equation (12.15a). In this problem, we want to compare 

the gradient of the electron concentration evaluated at the B–C junction to that 

 evaluated at the B–E junction. In particular, calculate the ratio of d(�nB)�dx at x � xB 

to d(�nB)�dx at x � 0 for (a) xB�LB � 0.1, (b) xB�LB � 1.0, and (c) xB �LB � 10.

12.13 Derive the expressions for the coeffi cients given by Equations (12.14a) and (12.14b).

*12.14 Derive the expression for the excess minority carrier hole concentration in the base 

region of a uniformly doped pnp bipolar transistor operating in the forward-active 

 region.

12.15 The excess electron concentration in the base of an npn bipolar transistor is given 

by Equation (12.15a). The linear approximation is given by Equation (12.15b). If 

�nB0 (x) is the linear approximation given by Equation (12.15b) and �nB (x) is the 

actual distribution given by Equation (12.15a), determine

  
�nB0(x) � �nB (x) 

  ___ 
�nB0(x)

   � 100%

 at x � xB�2 for (a) xB�LB � 0.1 and (b) xB �LB � 1.0. Assume VBE � kT�e.

12.16 Consider a uniformly doped silicon pnp bipolar transistor biased in the forward-ac-

tive mode at low injection. The excess minority carrier hole concentration at x � 0 

is �pB (0) � 1015 cm�3 and the excess minority carrier hole concentration at x � xB 

is �pB (xB) � �5 � 103 cm�3. (a) What is the majority carrier electron concentra-

tion in the base region and what is the E–B voltage? (b) Assuming xB � 0.80 �m 

and DB � 10 cm2/s, calculate the magnitude of diffusion current density at (i) x � 0 

and (ii) x � xB for the case when xB � LB. (See Equation (12.15b).) (c) Repeat part 

(b) for the case when xB � LB � 12 �m. (See Equation (12.15a).) (d) Determine the 

ratio J(x � xB)/J(x � 0) for parts (b) and (c).

*12.17 (a) A uniformly doped npn bipolar transistor at T � 300 K is biased in saturation. 

Starting with the continuity equation for minority carriers, show that the excess 

 electron concentration in the base region can be expressed as

�nB(x) � nB0  
  � exp  �   eVBE 
 _ 

kT 
   �  �1 �   � 1�   x  _ xB    �  �  � exp  �   eVBC 

 _ 
kT 

   �  �1 �   �   x  _ xB    �  � 
 for xB �LB � 1 where xB is the neutral base width. (b) Show that the minority  carrier 

diffusion current in the base is then given by

Jn � �   
eDBnB0  __ xB     � exp  �   eVBE 

 _ 
kT 

   �  � exp  �   eVBC 
 _ 

kT 
   �  � 

 (c) Show that the total excess minority carrier charge (C /cm2) in the base region is 

given by

�QnB �   
�enB0xB 

 __ 
2
    
  � exp  �   eVBE 

 _ 
kT 

   �  � 1 �  �  � exp  �   eVBC 
 _ 

kT 
   �  � 1 �  � 

*Asterisks next to problems indicate problems that are more diffi cult.
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12.18 Consider a silicon npn bipolar transistor at T � 300 K with uniform doping con-

centrations of NE � 1018 cm�3, NB � 5 � 1016 cm�3, and NC � 1015 cm�3. Let 

DB � 25 cm2/s, xB � 0.70 �m, and assume xB � LB. The transistor is operating in 

saturation with   Jn    � 125 A/cm2 and VBE � 0.70 V. Determine (a) VBC, (b) VCE (sat), 
(c) the #/cm2 of excess minority carrier electrons in the base region, and (d) the 

#/cm2 of excess minority carrier holes in the long collector. Let LC � 35 �m.

12.19 An npn silicon bipolar transistor at T � 300 K has uniform dopings of NE � 

1019 cm�3, NB � 1017 cm�3, and NC � 7 � 1015 cm�3. The transistor is operating 

in the inverse-active mode with VBE � �2 V and VBC � 0.565 V. (a) Sketch the 

minority carrier distribution through the device. (b) Determine the minority carrier 

concentrations at x � xB and x	 � 0. (c) If the metallurgical base width is 1.2 �m, 

determine the neutral base width.

12.20 A uniformly doped silicon pnp bipolar transistor at T � 300 K with dopings of 

NE � 5 � 1017 cm�3, NB � 1016 cm�3, and NC � 5 � 1014 cm�3 is biased in the 

inverse-active mode. What is the maximum B–C voltage so that the low-injection 

condition applies?

Section 12.3   Transistor Currents and Low-Frequency 
Common-Base Current Gain

12.21 (a) The following currents are measured in a uniformly doped npn bipolar 

transistor.

 InE � 0.50 mA IpE � 3.5 �A

 InC � 0.495 mA IR � 5.0 �A

 IG � 0.50 �A Ipc0 � 0.50 �A

 Determine the following current gain parameters: (i) �, (ii) �T, (iii) �, (iv) �, 
and (v) �. (b) If the required value of common-emitter current gain is � � 120, 

 determine new values of InC, IpE, and IR to meet this specifi cation assuming 

� � �T � �.

12.22 A silicon pnp bipolar transistor at T � 300 K has a B–E cross-sectional area of 

ABE � 5 � 10�4 cm2, neutral base width of xB � 0.70 �m, a neutral emitter width 

of xE � 0.50 �m, and uniform doping concentrations of NE � 5 � 1017 cm�3, 

NB � 1016 cm�3, and NC � 1015 cm�3. Other transistor parameters are DB � 10 cm2/s, 

DE � 15 cm2/s, �E0 � �B0 � 5 � 10�7 s, and �C0 � 2 � 10�6 s. The transistor is 

biased in the forward-active mode and the recombination factor is � � 0.995. 

Determine the collector current for (a) VEB � 0.550 V, (b) IB � 0.80 �A, and 

(c) IE � 125 �A.

12.23 Consider a uniformly doped npn bipolar transistor at T � 300 K with the following 

parameters:

 NE � 1018 cm�3   NB � 5 � 1016 cm�3  NC � 1015 cm�3

 DE � 8 cm2 /s   DB � 15 cm2 /s       DC � 12 cm2 /s

 �E0 � 10�8 s     �B0 � 5 � 10�8 s         �C0 � 10�7 s

 xE � 0.8 �m      xB � 0.7 �m         Jr0 � 3 � 10�8 A /cm2

 For VBE � 0.60 V and VCE � 5 V, calculate (a) the currents JnE, JpE, JnC, and JR and 

(b) the current gain factors �, �T, �, �, and �.

 Problems 563
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12.24 Three npn bipolar transistors have identical parameters except for the base doping 

 concentrations and neutral base widths. The base parameters for the three devices 

are as follows:

Device Base doping Base width

A NB � NB0 xB � xB0

B NB � 2NB0 xB � xB0

C NB � NB0 xB � xB0�2

 (The base doping concentration for the B device is twice that of A and C, and the 

 neutral base width for the C device is half that of A and B.)

 (a)  Determine the ratio of the emitter injection effi ciency of (i) device B to device 

A and (ii) device C to device A.

 (b) Repeat part (a) for the base transport factor.

 (c) Repeat part (a) for the recombination factor.

 (d) Which device has the largest common-emitter current gain �?

12.25 Repeat Problem 12.24 for three devices in which the emitter parameters vary. The 

emitter parameters for the three devices are as follows:

Device Emitter doping Emitter width

A NE � NE0 xE � xE0

B NE � 2NE0 xE � xE0

C NE � NE0 xE � xE0�2

12.26 An npn silicon transistor is biased in the inverse-active mode with VBE � �3 V and 

VBC � 0.6 V. The doping concentrations are NE � 1018 cm�3, NB � 1017 cm�3, and 

NC � 1016 cm�3. Other parameters are xB � 1 �m, �E0 � �B0 � �C0 � 2 � 10�7 s, 

DE � 10 cm2/s, DB � 20 cm2/s, DC � 15 cm2/s, and A � 10�3 cm2. (a) Calculate 

and plot the minority carrier distribution in the device. (b) Calculate the collec-

tor and emitter currents. (Neglect geometry factors and assume the recombination 

factor is unity.)

12.27 (a) Calculate the base transport factor, �T, for xB  �LB � 0.01, 0.10, 1.0, and 10. 

 Assuming that � and � are unity, determine � for each case. (b) Calculate the emit-

ter injection effi ciency, �, for NB �NE � 0.01, 0.10, 1.0, and 10. Assuming that �T 

and � are unity, determine � for each case. (c) Considering the results of parts (a) 

and (b), what conclusions can be made concerning when the base transport factor 

or when the emitter injection effi ciency are the limiting factors for the common-

emitter current gain?

12.28 (a) Calculate the recombination factor for VBE � 0.2, 0.4, and 0.6 V. Assume the 

following parameters:

 DB � 25 cm2 /s      DE � 10 cm2 /s

 NE � 5 � 1018 cm�3      NB � 1 � 1017 cm�3

 NC � 5 � 1015 cm�3      xB � 0.7 �m

 �B0 � �E0 � 10�7 s    Jr0 � 2 � 10�9 A /cm2

 ni � 1.5 � 1010 cm�3

 (b) Assuming the base transport and emitter injection effi ciency factors are 

unity, calculate the common-emitter current gain for the conditions in part (a). 
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(c)  Consi dering the results of part (b), what can be said about the recombination 

factor being the limiting factor in the common-emitter current gain.

12.29 Consider a uniformly dope silicon npn bipolar transistor at T � 300 K with the 

following parameters: DB � 23 cm2/s, DE � 8 cm2/s, �B0 � 2 � 10�7 s, �E0 � 8 � 

10�8 s, NB � 2 � 1016 cm�3, and xE � 0.35 �m. The recombination factor has been 

determined to be � � 0.9975. The required common-emitter current gain is � � 150. 

A minimum neutral base width of xB � 0.80 �m can be fabricated. (a) Determine an 

appropriate neutral base width and the minimum emitter doping concentration, NE, 

to meet this specifi cation. (b) Using the results of part (a), what are the values of �T 

and �?

*12.30 (a) The recombination current density, Jr0, in an npn silicon bipolar transistor at 

T � 300 K is Jr0 � 5 � 10�8 A /cm2. The uniform dopings are NE � 1018 cm�3, 

NB � 5 � 1016 cm�3, and NC � 1015 cm�3. Other parameters are DE � 10 cm2 /s, 

DB � 25 cm2 /s, �E0 � 10�8 s, and �B0 � 10�7 s. Determine the neutral base width so 

that the recombination factor is � � 0.995 when VBE � 0.55  V (b)  If Jr0  remains 

constant with temperature, what is the value of � when VBE � 0.55 V for the case 

when the temperature is T � 400 K? Use the value of xB determined in part (a).

12.31 (a) Plot, for a bipolar transistor, the base transport factor, �T, as a function of 

(xB �LB) over the range 0.01 � (xB �LB) � 10. (Use a log scale on the horizontal 

axis.) (b) Assuming that the emitter injection effi ciency and recombination factors 

are unity, plot the common-emitter gain for the conditions in part (a). (c) Consider-

ing the results of part (b), what can be said about the base transport factor being the 

 limiting factor in the common-emitter current gain?

12.32 (a) Plot the emitter injection effi ciency as a function of the doping ratio, NB �NE, 
over the range 0.01 � NB �NE � 10. Assume that DE � DB, LB � LE, and xB � xE. 

(Use a log scale on the horizontal axis.) Neglect bandgap narrowing effects. 

(b) Assuming that the base transport factor and recombination factors are unity, plot 

the common-emitter current gain for the conditions in part (a). (c) Considering the 

results of part (b), what can be said about the emitter injection effi ciency being the 

limiting factor in the common-emitter current gain.

12.33 (a) Plot the recombination factor as a function of the forward-bias B–E voltage for 

0.1 � VBE � 0.6. Assume the following parameters:

 DB � 25 cm2 /s      DE � 10 cm2 /s

 NE � 5 � 1018 cm�3      NB � 1 � 1017 cm�3

 NC � 5 � 1015 cm�3      xB � 0.7 �m

 �B0 � �E0 � 10�7 s    Jr0 � 2 � 10�9 A /cm2

 ni � 1.5 � 1010 cm�3

 (b) Assuming the base transport and emitter injection effi ciency factors are unity, 

plot the common-emitter current gain for the conditions in part (a). (c) Considering 

the results of part (b), what can be said about the recombination factor being the 

limiting factor in the common-emitter current gain.

12.34 The emitter in a BJT is often made very thin to achieve high operating speed. In 

this problem, we investigate the effect of emitter width on current gain. Consider 

the emitter injection effi ciency given by Equation (12.35a). Assume that NE � 100 

NB, DE �DB, and LE � LB. Also let xB � 0.1 LB. Plot the emitter injection effi ciency 

for 0.01LE � xE � 10LE. From these results, discuss the effect of emitter width on 

the current gain.
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Section 12.4  Nonideal Effects

12.35 An npn bipolar transistor is biased in the forward-active mode. (a) The collector 

current is IC � 1.2 mA when biased at VCE � 2 V. The Early voltage is VA � 120 V. 

Determine (i) the output resistance ro, (ii) the output conductance go, and (iii) the 

collector current when biased at VCE � 4 V. (b) Repeat part (a) if the collector cur-

rent is IC � 0.25 mA when biased at VCE � 2 V and the Early voltage is VA � 160 V.

12.36 The output resistance of a pnp bipolar transistor is ro � 180 k�. The Early voltage is 

VA � 80 V. Determine the change in collector current if VEC increases from 2 to 5 V.

12.37 A uniformly doped silicon npn bipolar transistor at T � 300 K has parameters 

NE � 2 � 1018 cm�3, NB � 2 � 1016 cm�3, NC � 2 � 1015 cm�3, xBO � 0.85 �m, 

and DB � 25 cm2/s. Assume xBO � LB and let VBE � 0.650 V. (a) Determine the 

electron diffusion current density in the base for (i) VCB � 4 V, (ii) VCB � 8 V, and 

(iii) VCB � 12 V. (b) Estimate the Early voltage.

*12.38 The base width of a bipolar transistor is normally small to provide a large current 

gain and increased speed. The base width also affects the Early voltage. In a silicon 

npn bipolar transistor at T � 300 K, the doping concentrations are NE � 1018 cm�3, 

NB � 3 � 1016 cm�3, and NC � 5 � 1015 cm�3. Assume DB � 20 cm2 /s and 

�B0 � 5 � 10�7 s, and let VBE � 0.70 V. Using voltages VCB � 5 V and VCB � 10 V 

as two data points, estimate the Early voltage for metallurgical base widths of 

(a) 1.0 �m, (b) 0.80 �m, and (c) 0.60 �m.

12.39 A uniformly doped pnp silicon bipolar transistor has a base doping of 

NB � 1016 cm�3, a collector doping of NC � 1015 cm�3, a metallurgical base width 

of xB0 � 0.70 �m, a base minority carrier diffusion coeffi cient of DB � 10 cm2/s, 

and a B–E cross-sectional area of ABE � 10�4 cm2. The transistor is biased in 

the forward- active mode with VEB � 0.625 V. Neglecting the B–E space charge 

width and assuming xB � LB, (a) determine the change in neutral base width as 

VBC changes from 1 to 5 V, (b) fi nd the corresponding change in collector current, 

(c) estimate the Early voltage, and (d) fi nd the output resistance.

12.40 Consider a uniformly doped silicon npn bipolar transistor in which xE � xB, 

LE � LB, and DE � DB. Assume that �T � � � 0.995 and let NB � 1017 cm�3, Cal-

culate and plot the common-emitter current gain � for NE � 1017, 1018, 1019, and 

1020 cm�3, and for the case (a) when the bandgap narrowing effect is neglected, and 

(b) when the bandgap narrowing effect is taken into account.

12.41 A silicon pnp bipolar transistor at T � 300 K is to be designed so that the emitter 

 injection effi ciency is � � 0.996. Assume that xE � xB, LE � LB, DE � DB,  and 

let NE � 1019 cm�3. (a) Determine the maximum base doping, taking into account 

bandgap narrowing. (b) If bandgap narrowing were neglected, what would be the 

maximum base doping required?

12.42 The current crowding effect, to a fi rst approximation, can be determined by using 

the geometry shown in Figure P12.42. Assume that one-half of the base current 

enters from each side of the emitter strip and fl ows uniformly to the center of the 

emitter. The base is p type with the following parameters: NB � 2 � 1016 cm�3, 

xB � 0.65 �m, �p � 250 cm2/V-s, and L � 25 �m. (a) Assume S � 10 �m. 

(i) Calculate the resistance between x � 0 and x � S�2. (ii) If IB�2 � 5 �A, 

determine the voltage drop between x � 0 and x � S�2. (iii) For VBE � 0.60 V at 

x � S�2, determine the ratio of electrons being injected into the base at x � S�2 

compared to x � 0. (b) Repeat part (a) for S � 3 �m.
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12.43 Consider the geometry shown in Figure P12.42 and the device parameters given in 

Problem 12.42 except for the emitter width S. Determine the maximum value of S 

such that the ratio of electrons being injected into the base at x � S�2 compared to 

x � 0 is no less than 0.90.

*12.44 The base doping in a diffused n�pn bipolar transistor can be approximated by an 

 exponential as

NB � NB(0) exp  �   �ax  _ xB    � 
 where a is a constant and is given by

a � ln  �   NB(0) 
 __ 

NB (xB) 
   �  

 (a) Show that, in thermal equilibrium, the electric fi eld in the neutral base region 

is a constant. (b) Indicate the direction of the electric fi eld. Does this electric fi eld 

aid or retard the fl ow of minority carrier electrons across the base? (c) Derive an 

expression for the steady-state minority carrier electron concentration in the base 

under  forward bias. Assume no recombination occurs in the base. (Express the elec-

tron concentration in terms of the electron current density.)

12.45 Consider a uniformly doped pnp silicon bipolar transistor with doping concen-

trations of NE � 1018 cm�3, NB � 5 � 1016 cm�3, and NC � 2 � 1015 cm�3. The 

common-base current gain is � � 0.9930. Determine (a) BVBC0, (b) BVEC0, and 

(c) the emitter–base breakdown voltage. (Assume N � 3 for the empirical constant.)

12.46 A high-voltage silicon npn bipolar transistor is to be designed such that the uniform 

base doping is NB � 1016 cm�3 and the common-emitter current grain is � � 50. 

The breakdown voltage BVCEO is to be at least 60 V. Determine the maximum 

 collector doping and the minimum collector length to support this voltage. (Assume 

n � 3.)

12.47 A silicon npn bipolar transistor is uniformly doped with NB � 5 � 1016 cm�3 and 

NC � 8 � 1015 cm�3. The metallurgical base width is xB0 � 0.50 �m with VBE � 0 

and VCB � 0. (a) Determine the expected avalanche B–C breakdown voltage. 

(b) Calculate the value of VCB at which punch-through occurs.

12.48 Consider an npn silicon bipolar transistor with doping concentrations of 

NB � 2 � 1016 cm�3 and NC � 5 � 1015 cm�3, and with a metallurgical base width 

of xB0 � 0.65 �m. Let VBE � 0.625 V. (a) Determine VCE at punch-through. (b) Cal-

culate the magnitude of the maximum electric fi eld in the B–C space charge region 

at punch-through.

Figure P12.42 | Figure for Problems 12.42 

and 12.43.

Base

x � S/2x � 0 xB

Collector

Emitter

S

IB/2 IB/2

L
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12.49 A uniformly doped silicon pnp bipolar transistor has doping concentrations of 

NE � 1018 cm�3, NB � 5 � 1016 cm�3, and NC � 3 � 1015 cm�3. Determine the mini-

mum metallurgical base width such that the punch-through voltage is Vpt � 15 V.

Section 12.5  Equivalent Circuit Models

12.50 The VCE(sat) voltage of an npn transistor in saturation continues to decrease 

slowly as the base current increases. In the Ebers–Moll model, assume �F � 0.99, 

�R � 0.20, and IC � 1 mA. For T � 300 K, determine the base current, IB, neces-

sary to give (a) VCE(sat) � 0.30 V, (b) VCE(sat) � 0.20 V, and (c) VCE(sat) � 0.10 V.

12.51 Consider an npn bipolar transistor biased in the active mode. Using the Ebers–Moll 

model, derive the equation for the base current, IB, in terms of �F, �R, IES, ICS, and VBE.

12.52 Consider the Ebers–Moll model and let the base terminal be open so IB � 0. Show 

that, when a collector–emitter voltage is applied, we have

IC � ICEO � ICS   
(1 � �F �R) 

 __ 
(1 � �F)

  

12.53 The parameters in the Ebers-Moll model are �F � 0.9920, IES � 5 � 10�14 A, and 

ICS � 10�13 A. Let T � 300 K. Plot IC versus VCB for �0.5 � VCB � 2 V and for 

(a) VBE � 0.2 V, (b) VBE � 0.4 V, and (c) VBE � 0.6 V. (Note that VCB � �VBC.)

12.54 The collector–emitter saturation voltage, from the Ebers–Moll model, is given by 

Equation (12.77). Consider a power BJT in which �F � 0.975, �R � 0.150, and 

IC � 5 A. Plot VCE (sat) versus IB over the range 0.15 � IB � 1 A.

Section 12.6  Frequency Limitations

12.55 Consider a uniformly doped silicon bipolar transistor at T � 300 K with the follow-

ing parameters:

 IE � 0.25 mA Cje � 0.35 pF

 xB � 0.65 �m Dn � 25 cm2/s

 xdc � 2.2 �m rc � 18 � 

 Cs � C� � 0.020 pF � � 125

 (a) Determine the transit time factors (i) �e, (ii) �b, (iii) �d, and (iv) �c. 

 (b) Find the total transit time �ec. (c) Calculate the cutoff frequency fT.

 (c) Find the beta cutoff frequency f�.

12.56 In a particular bipolar transistor, the base transit time is 20 percent of the total delay 

time. The base width is 0.5 �m and the base diffusion coeffi cient is DB � 20 cm2 /s. 

Determine the cutoff frequency.

12.57 Assume the base transit time of a BJT is 100 ps and carriers cross the 1.2 �m B–C 

space charge region at a speed of 107 cm /s. The emitter–base junction charging 

time is 25 ps and the collector capacitance and resistance are 0.10 pF and 10 �, 

respectively. Determine the cutoff frequency.

Summary and Review

*12.58 (a) A silicon npn bipolar transistor at T � 300 K is to be designed such that the 

common-emitter current gain is at least � � 120 and the Early voltage is at least 

VA � 140 V. (b) Repeat part (a) for a pnp silicon bipolar transistor.
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*12.59 Design a uniformly doped silicon npn bipolar transistor so that � � 100 at T � 

300 K. The maximum CE voltage is to be 15 V and any breakdown voltage is to be 

at least three times this value. Assume the recombination factor is constant at � � 

0.995. The transistor is to be operated in low injection with a maximum collector 

current of IC � 5 mA. Bandgap narrowing effects and base width modulation ef-

fects are to be minimized. Let DE � 6 cm2 /s, DB�25 cm2 /s, �E0 � 10�8 s, and �B0 � 

10�7 s.  Determine doping concentrations, the metallurgical base width, the active 

area, and the maximum  allowable VBE.

*12.60 Design a pair of complementary npn and pnp bipolar transistors. The transistors 

are to have the same metallurgical base and emitter widths of WB � 0.75 �m and 

xE � 0.5 �m. Assume that the following minority carrier parameters apply to each 

device.

Dn � 23 cm2 /s   �n0 � 10�7 s

Dp � 8 cm2 /s    �p0 � 5 � 10�8 s

 The collector doping concentration in each device is 5 � 1015 cm�3 and the recom-

bination factor in each device is constant at � � 0.9950. (a) Design, if possible, the 

devices so that � � 100 in each device. If this is not possible, how close a match 

can be obtained? (b) With equal forward-bias base–emitter voltages applied, the 

collector currents are to be IC � 5 mA with each device operating in low injection. 

Determine the active cross-sectional areas.
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13
The Junction Field-Effect 

Transistor

�
he Junction Field-Effect Transistor (JFET) is a separate class of fi eld-effect 

transistors. The MOSFET has been considered in Chapters 10 and 11. In this 

chapter, we cover the physics and properties of the JFET. Although we have 

discussed the MOS and bipolar transistors in previous chapters, the material in this 

chapter only presumes a knowledge of semiconductor material properties and the 

characteristics of pn and Schottky barrier junctions.

 As with the transistors considered in previous chapters, the JFET, in conjunction 

with other circuit elements, is capable of voltage gain and signal power gain. Again, 

the basic transistor action is the control of current at one terminal by the voltage 

across the other two terminals of the device.

 There are two general categories of JFETs. The fi rst is the pn junction FET, or 

pn JFET, and the second is the MEtal-Semiconductor Field-Effect Transistor, or 

MESFET. The pn JFET is fabricated with a pn junction and the MESFET is fabri-

cated with a Schottky barrier rectifying junction. ■

13.0 | PREVIEW
In this chapter, we will:

■ Present the geometry and discuss the basic operation of the pn JFET and 

MESFET devices.

■ Analyze the modulation of the channel conductance of the JFET by an electric 

fi eld perpendicular to the channel. The modulating electric fi eld is induced 

in the space charge region of a reverse-biased pn junction or reverse-biased 

Schottky barrier junction.

■ Derive the ideal current–voltage characteristics of the JFET in terms of the 

semiconductor material and geometrical properties of the device.

C H A P T E R
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572 CHAPTER 13   The Junction Field-Effect Transistor

■ Consider the transistor gain, or transconductance, of the JFET.

■ Discuss a few nonideal effects in JFETs, including channel-length modulation 

and velocity saturation effects.

■ Develop a small-signal equivalent circuit of the JFET that is used to relate 

small-signal currents and voltages in the device.

■ Examine various physical factors affecting the frequency response and limita-

tions of JFETs, and derive an expression for the cutoff frequency.

■ Present the geometry and characteristics of a specialized JFET called HEMT.

13.1 | JFET CONCEPTS
The concept of the fi eld-effect phenomenon was the basis for the fi rst proposed solid-

state transistor. Patents fi led in the 1920s and 1930s conceived and investigated the 

transistor shown in Figure 13.1. A voltage applied to the metal plate modulated the 

conductance of the semiconductor under the metal and controlled the current be-

tween the ohmic contacts. Good semiconductor materials and processing technology 

were not available at that time, so the device was not seriously considered again until 

the 1950s.

 The phenomenon of modulating the conductance of a semiconductor by an elec-

tric fi eld applied perpendicular to the surface of a semiconductor is called fi eld effect. 

This type of transistor has also been called the unipolar transistor, to emphasize that 

only one type of carrier, the majority carrier, is involved in the operation. We will 

qualitatively discuss the basic operation of the two types of JFETs in this section, and 

 introduce some of the JFET terminology.

13.1.1  Basic pn JFET Operation

The fi rst type of fi eld-effect transistor is the pn junction fi eld-effect transistor, or pn 

JFET. A simplifi ed cross section of a symmetrical device is shown in Figure 13.2. 

The n region between the two p regions is known as the channel and, in this n-channel 

Aluminum

Semiconductor (Cu2S)

C

A B

Metal

contact

Aluminum

Figure 13.1 | Idealization of the 

Lilienfeld transistor. 
(From Pierret [10].)

ID

VDS

�
VGS

�

��

Source

Gate

Draine�

e�

e�

p�

p�

n

Figure 13.2 | Cross section of a 

symmetrical n-channel pn junction FET.
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 13.1   JFET Concepts 573

 device, majority carrier electrons fl ow between the source and drain terminals. The 

source is the terminal from which carriers enter the channel from the external circuit, 

the drain is the terminal where carriers leave, or are drained from, the device, and the 

gate is the control terminal. The two gate terminals shown in Figure 13.2 are tied to-

gether to form a single gate connection. Since majority  carrier electrons are primarily 

involved in the conduction in this n-channel transistor, the JFET is a  majority-carrier 

device.

 A complementary p-channel JFET can also be fabricated in which the p and 

n regions are reversed from those of the n-channel device. Holes will fl ow in the 

p-type channel between source and drain and the source terminal will now be the 

source of the holes. The current direction and voltage polarities in the p-channel 

JFET are the reverse of those in the n-channel device. The p-channel JFET is 

generally a lower frequency device than the n-channel JFET due to the lower hole 

 mobility.

 Figure 13.3a shows an n-channel pn JFET with zero volts applied to the gate. 

If the source is at ground potential, and if a small positive drain voltage is applied, a 

drain current ID is produced between the source and drain terminals. The n channel 

is essentially a resistance so the ID versus VDS characteristic, for small VDS values, is 

approximately linear, as shown in the fi gure.

 When we apply a voltage to the gate of a pn JFET with respect to the source 

and drain, we alter the channel conductance. If a negative voltage is applied to the 

gate of the n-channel pn JFET shown in Figure 13.3, the gate-to-channel pn junction 

becomes reverse biased. The space charge region now widens so the channel region 

 becomes narrower and the resistance of the n channel increases. The slope of the 

ID versus VDS curve, for small VDS , decreases. These effects are shown in Figure 13.3b. 

If a larger negative gate voltage is applied, the condition shown in Figure 13.3c can 

be achieved. The reverse-biased gate-to-channel space charge region has completely 

fi lled the channel region. This condition is known as pinchoff. The drain current at 

pinchoff is essentially zero, since the depletion region isolates the source and drain 

terminals. Figure 13.3c shows the ID versus VDS curve for this case, as well as the 

other two cases.

 The current in the channel is controlled by the gate voltage. The control of the 

current in one part of the device by a voltage in another part of the device is the 

basic transistor action. This device is a normally on or depletion mode device, which 

means that a voltage must be applied to the gate terminal to turn the device off.

 Now consider the situation in which the gate voltage is held at zero volts, VGS � 0, 
and the drain voltage changes. Figure 13.4a is a replica of Figure 13.3a for zero gate 

voltage and a small drain voltage. As the drain voltage increases (positive), the gate-

to-channel pn junction becomes reverse biased near the drain terminal so that the 

space charge region extends further into the channel. The channel is essentially a 

resistor, and the effective channel resistance increases as the space charge region 

widens; therefore, the slope of the ID versus VDS characteristic decreases as shown in 

Figure 13.4b. The effective channel resistance now varies along the channel length 

and, since the channel current must be constant, the voltage drop through the channel 

becomes dependent on position.
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574 CHAPTER 13   The Junction Field-Effect Transistor

 If the drain voltage increases further, the condition shown in Figure 13.4c can 

result. The channel has been pinched off at the drain terminal. Any further increase 

in drain voltage will not cause an increase in drain current. The I–V characteristic for 

this condition is also shown in this fi gure. The drain voltage at pinchoff is referred to 

as VDS(sat). For VDS � VDS(sat), the transistor is said to be in the saturation region and 

the drain current, for this ideal case, is independent of VDS . At fi rst glance, we might 

expect the drain current to go to zero when the channel becomes pinched off at the 

drain terminal, but we will show why this does not happen.

(a)

p�

p�

VGS � 0

VGS � 0

VGS � 0

�VDS

VDS

ID ID

S

(b)

p�

p�

�VDS

VDS

ID ID

S

VGS � �V1

VGS � �V1

VGS � �V1

VGS � 0

(c)

VGS � 0

�VDS

VDS

ID ID

S

p�

p�

VGS � �V2

VGS � �V2

VGS � �V2

VGS � �V1

Figure 13.3 | Gate-to-channel space charge regions and I–V characteristics for small VDS 

values and for (a) zero gate voltage, (b) small reverse-biased gate voltage, and (c) a gate 

voltage to achieve pinchoff.
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 13.1   JFET Concepts 575

 Figure 13.5 shows an expanded view of the pinchoff region in the channel. The 

n channel and drain terminal are now separated by a space charge region which has 

a length � L. The electrons move through the n channel from the source and are 

injected into the space charge region where, subjected to the E-fi eld force, they are 

swept through into the drain contact area. If we assume that � L � L, then the elec-

tric fi eld in the n-channel region remains unchanged from the VDS(sat) case; the drain 

current will remain constant as VDS changes. Once the carriers are in the drain region, 

Figure 13.4 | Gate-to-channel space charge regions and I–V characteristics for zero 

gate voltage and for (a) a small drain voltage, (b) a larger drain voltage, and (c) a drain 

voltage to achieve pinchoff at the drain terminal.
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576 CHAPTER 13   The Junction Field-Effect Transistor

the drain current will be independent of VDS; thus, the device looks like a constant 

current source.

13.1.2  Basic MESFET Operation

The second type of junction fi eld-effect transistor is the MESFET. The gate junction 

in the pn junction FET is replaced by a Schottky barrier rectifying contact. Although 

MESFETs can be fabricated in silicon, they are usually associated with gallium arse-

nide or other compound semiconductor materials. A simplifi ed cross section of a GaAs 

MESFET is shown in Figure 13.6. A thin epitaxial layer of GaAs is used for the active re-

gion; the substrate is a very high resistivity GaAs material referred to as a semi-insulating 

substrate. GaAs is intentionally doped with chromium, which behaves as a single accep-

tor close to the center of the energy bandgap, to make it semi-insulating with a resistivity 

as high as 109 �-cm. The advantages of these devices include higher electron mobility, 

hence smaller transit time and faster response; and decreased parasitic capacitance and a 

simplifi ed fabrication process, resulting from the semi-insulating GaAs substrate.

 In the MESFET shown in Figure 13.6, a reverse-biased gate-to-source voltage 

induces a space charge region under the metal gate that modulates the channel con-

ductance as in the case of the pn JFET. The space charge region will eventually reach 

the substrate if the applied negative gate voltage is suffi ciently large. This condition, 

again, is known as pinchoff. The device shown in this fi gure is also a depletion mode 

device, since a gate voltage must be applied to pinch off the channel.

 If we treat the semi-insulating substrate as an intrinsic material, then the energy-

band diagram of the substrate–channel–metal structure is as shown in Figure 13.7 for 

the case of zero bias applied to the gate. Because there is a potential barrier between 

the channel and substrate and between the channel and metal, the majority carrier 

electrons are confi ned to the channel region.

 Consider, now, another type of MESFET in which the channel is pinched off even 

at VGS � 0. Figure 13.8a shows this condition, in which the channel thickness is smaller 

than the zero-biased space charge width. To open a channel, the  depletion region 

must be reduced: A forward-bias voltage must be applied to the  gate– semiconductor 

p�

p�

e�
n

channel

VGS � 0

VGS � 0

VDS(sat)

ID

S �L

VDS

D

L

VDS � VDS(sat)E-field

Figure 13.5 | Expanded view of the space 

charge region in the channel for VDS � VDS(sat).

GateSource Drain

Substrate

(semi-insulating, � � 0)

Ohmic
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Rectifying

contact

Ohmic

contact

nn� n�

Figure 13.6 | Cross section of an 

n-channel MESFET with a semi-

insulating substrate.
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junction. When a slightly forward-bias voltage is applied, the  depletion region just 

extends through the channel—a condition known as threshold, shown in Figure 13.8b. 

The threshold voltage is the gate-to-source voltage that must be applied to create the 

pinchoff condition. The threshold voltage for this n-channel  MESFET is positive, in 

contrast to the negative voltage for the n-channel depletion mode device. If a larger 

forward bias is applied, the channel  region opens as shown in Figure 13.8c. The 

MetalSemi-insulating

substrate
n channel

EF

e�Bn
eVbi

e�fn

Figure 13.7 | Idealized energy-band 

diagram of the substrate–channel–metal 

in the n-channel MESFET.

(a)

n channel

Semi-insulating

substrate

Gate

VGS � 0

(b)

VGS � VT

(c)

VGS � VT

Figure 13.8 | Channel space charge region of an  enhance ment mode MESFET for 

(a) VGS � 0, (b) VGS � VT , and (c) VGS � VT .
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578 CHAPTER 13   The Junction Field-Effect Transistor

applied forward-bias gate voltage is limited to a few tenths of a volt before there is 

signifi cant gate current. This device is known as an n-channel enhancement mode 

MESFET. Enhancement mode p-channel MESFETs and enhancement mode pn junc-

tion FETs have also been fabricated. The advantage of enhancement mode MESFETs 

is that circuits can be  designed in which the voltage polarity on the gate and drain is 

the same. However, the output voltage swing will be quite small with these devices.

13.2 | THE DEVICE CHARACTERISTICS
To describe the basic electrical characteristics of the JFET, we initially consider a 

uniformly doped depletion mode pn JFET and then later discuss the enhancement 

mode device. The pinchoff voltage and drain-to-source saturation voltage are defi ned 

and expressions for these parameters derived in terms of geometry and electrical 

properties. The ideal current–voltage relationship is developed, and then the trans-

conductance, or transistor gain is determined.

 Figure 13.9a shows a symmetrical, two-sided pn JFET and Figure 13.9b shows 

a MESFET with the semi-insulating substrate. One can derive the ideal DC current–

voltage relationship for both devices by simply considering the two-sided device to 

be two JFETs in parallel. We derive the I–V characteristics in terms of ID1 so that the 

drain current in the two-sided device becomes ID2 � 2ID1. We ignore any depletion 

region at the substrate of the one-sided device in the ideal case.

13.2.1   Internal Pinchoff Voltage, Pinchoff Voltage,  
and Drain-to-Source Saturation Voltage

n-channel pn JFET Figure 13.10a shows a simplifi ed one-sided n-channel pn 

JFET. The metallurgical channel thickness between the p� gate region and the sub-

strate is a, and the induced depletion region width for the one-sided p�n junction is 

h. Assume the drain-to-source voltage is zero. If we assume the abrupt depletion ap-

proximation, then the space charge width is given by

 h �   �   2�s (Vbi � VGS) 
  ___ 

eNd 
   �  1�2

  (13.1)

where VGS is the gate-to-source voltage and Vbi is the built-in potential barrier. For a 

reverse-biased p�n junction, VGS must be a negative voltage.

(a)

S D

n

n

ID2 � 2ID1

ID1

ID1

p�

p�

(b)

S D
n ID1

Metal

Semi-insulating substrate

Figure 13.9 | Drain currents of (a) a symmetrical, two-sided pn JFET, and (b) a one-sided 

MESFET.
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 At pinchoff, h � a and the total potential across the p�n junction is called the 

internal pinchoff voltage, denoted by Vp0. We now have

 a �   �   2�sVp0 
 _ 

eNd 
   �  1�2

  (13.2)

or

 Vp0 �   
ea2 Nd  _ 

2�s 
   (13.3)

Note that the internal pinchoff voltage is defi ned as a positive quantity.

 The internal pinchoff voltage Vp0 is not the gate-to-source voltage to achieve 

pinchoff. The gate-to-source voltage that must be applied to achieve pinchoff is 

described as the pinchoff voltage and is also variously called the turn-off voltage or 

threshold voltage. The pinchoff voltage is denoted by Vp and is defi ned from Equa-

tions (13.1) and (13.2) as

 Vbi � Vp � Vp0   or  Vp � Vbi � Vp0  (13.4)

The gate-to-source voltage to achieve pinchoff in an n-channel depletion mode JFET 

is negative; thus, Vp0 � Vbi.

(a)

VGS

S D

p�

h

a
n channel

(b)

VGS

S D

n�

h

a
p channel

Figure 13.10 | Geometries of simplifi ed (a) n-channel and (b) p-channel pn JFETs.

   EXAMPLE 13.1Objective: Calculate the internal pinchoff voltage and pinchoff voltage of an n-channel 

JFET.

 Assume that the p�n junction of a uniformly doped silicon n-channel JFET at T � 300 K 

has doping concentrations of Na � 1018 cm�3 and Nd � 1016 cm�3. Assume that the metallurgi-

cal channel thickness, a, is 0.75 �m � 0.75 	 10�4 cm.

■ Solution
The internal pinchoff voltage is given by Equation (13.3), so we have

 Vp0 �   ea2 Nd  __ 
2�s 

   �   
(1.6 	 10�19)(0.75 	 10�4)2(1016)

   ______   
2(11.7)(8.85 	 10�14)

   � 4.35 V
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580 CHAPTER 13   The Junction Field-Effect Transistor

 The pinchoff voltage is the gate-to-source voltage that must be applied to turn the 

JFET off and so must be within the voltage range of the circuit design. The magnitude 

of the pinchoff voltage must also be less than the breakdown voltage of the junction.

p-channel pn JFET Figure 13.10b shows a p-channel JFET with the same basic 

geometry as the n-channel JFET we considered. The induced depletion region for the 

one-sided n�p junction is again denoted by h and is given by

 h �   �   2�s (Vbi � VGS)
  ___ 

eNa 
   �  1�2

  (13.5)

For a reverse-biased n�p junction, VGS must be positive. The internal pinchoff voltage 

is again defi ned to be the total pn junction voltage to achieve pinchoff, so that when 

h � a we have

 a �   �   2�sVp0 
 _ 

eNa 
   �  1�2

  (13.6)

or

 Vp0 �   
ea2 Nq 

 _ 
2�s 

   (13.7)

The internal pinchoff voltage for the p-channel device is also defi ned to be a positive 

quantity.

 The pinchoff voltage is again defi ned as the gate-to-source voltage to achieve 

the pinchoff condition. For the p-channel depletion mode device, we have, from 

Equation (13.5), at pinchoff

 Vbi � Vp � Vp0   or  Vp � Vp0 � Vbi  (13.8)

The pinchoff voltage for a p-channel depletion mode JFET is a positive quantity.

The built-in potential barrier is

 Vbi � Vt ln  �   NaNd  _ 
 n i  

2 
   �  � (0.0259) ln  �   (1018)(1016)

 ___ 
(1.5 	 1010)2

   �  � 0.814 V

The pinchoff voltage, from Equation (13.4), is then found as

 Vp � Vbi � Vp0 � 0.814 � 4.35 � �3.54 V

■ Comment
The pinchoff voltage, or gate-to-source voltage to achieve pinchoff, for the n-channel deple-

tion mode device is a negative quantity as we have said.

■ EXERCISE PROBLEM
Ex 13.1  A silicon n-channel JFET at T � 300 K has a gate doping concentration of 

Na � 1018 cm�3 and a channel doping concentration of Nd � 2 	 1016 cm�3. 

Determine the metallurgical channel thickness, a, such that the pinchoff voltage is 

Vp � �2.50 V. 

(Ans. a � 0.464 �m)
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Also, we will see later that if the channel doping concentration were smaller the 

current capability of the device would decrease. There are defi nite tradeoffs to be 

considered in any design problem.

 We have determined the pinchoff voltage for both n-channel and p- channel 

JFETs when the drain-to-source voltage is zero. Now consider the case when 

both gate and drain voltages are applied. The depletion region width will vary with 

 distance through the channel. Figure 13.11 shows the simplifi ed geometry for an 

n-channel device. The depletion width h1 at the source end is a function of Vbi and 

VGS but is not a function of drain voltage. The depletion width at the drain terminal is 

given by

 h2 �   �   2�s(Vbi � VDS � VGS)
  ____ 

eNd 
   �  1�2

  (13.9)

Again, we must keep in mind that VGS is a negative quantity for the n-channel device.

   DESIGN 
EXAMPLE 13.2

Objective: Design the channel doping concentration and metallurgical channel thickness to 

achieve a given pinchoff voltage.

 Consider a silicon p-channel pn JFET at T � 300 K. Assume that the gate doping concen-

tration is Nd � 1018 cm�3. Determine the channel doping concentration and channel thickness 

so that the pinchoff voltage is Vp � 2.25 V.

■ Solution
There is not a unique solution to this design problem. We will pick a channel doping con-

centration of Na � 2 	 1016 cm�3 and determine the channel thickness. The built-in potential 

barrier is

 Vbi � Vt ln  �   Na Nd  _ 
 n i  

2  
   �  � (0.0259) ln  �   (2 	 1016)(1018)

  ___  
(1.5 	 1010)2 

   �  � 0.832 V

From Equation (13.8), the internal pinchoff voltage must be

 Vp0 � Vbi � Vp � 0.832 � 2.25 � 3.08 V

and from Equation (13.6), the channel thickness can be determined as

 a �   �   2�s Vp0 
 __ 

eNa 
   �  1�2

  �   �   2(11.7)(8.85 	 10�14)(3.08)
   _____  

(1.6 	 10�19)(2 	 1016)
   �  1�2

  � 0.446 �m

■ Comment
If the channel doping concentration chosen were larger, the required channel thickness would 

decrease; a very small value of channel thickness would be diffi cult to fabricate within reason-

able tolerance limits.

■ EXERCISE PROBLEM
Ex 13.2  The n�p junction of a uniformly doped silicon p-channel JFET at T � 300 K has 

doping concentrations of Nd � 1018 cm�3 and Na � 1016 cm�3. The metallurgical 

channel thickness is a � 0.40 �m. Determine the internal pinchoff voltage and the 

pinchoff voltage of the JFET. 

(Ans. VpO � 1.236 V, Vp � 0.422 V)
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582 CHAPTER 13   The Junction Field-Effect Transistor

 Pinchoff at the drain terminal occurs when h2 � a. At this point we reach what 

is known as the saturation condition; thus, we can write that VDS � VDS (sat). Then

 a �   �   2�s (Vbi � VDS (sat) � VGS)
  _____  

eNd 
   �  1�2

  (13.10)

This can be rewritten as

 Vbi � VDS (sat) � VGS �   
ea2Nd  _ 

2�s 
   � Vp0 (13.11)

or

 VDS (sat) � Vp0 � (Vbi � VGS)  (13.12)

Equation (13.12) gives the drain-to-source voltage to cause pinchoff at the drain 

 terminal. The drain-to-source saturation voltage decreases with increasing reverse-

biased gate-to-source voltage. We may note that Equation (13.12) has no meaning if  

� VGS  �  �  � Vp  � .
 In a p-channel JFET, the voltage polarities are the reverse of those in the 

 n-channel device. We can show that, in the p-channel JFET at saturation,

 VSD (sat) � Vp0 � (Vbi � VGS)  (13.13)

where now the source is positive with respect to the drain.

13.2.2   Ideal DC Current–Voltage Relationship—Depletion 
Mode JFET

The derivation of the ideal current–voltage relation of the JFET is somewhat tedious, 

and the resulting equations are cumbersome in hand calculations. Before we go through 

this derivation, consider the following expression, which is a good approximation 

Figure 13.11 | Simplifi ed geometry of an 

n-channel pn JFET.

a
p�

VGS

VDSS

h(x) h2

h1

n channel

p�

x

y

z

W

x � 0 x � L

nea29583_ch13_571-617.indd   582nea29583_ch13_571-617.indd   582 12/11/10   12:47 PM12/11/10   12:47 PM
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to the I–V characteristics when the JFET is biased in the saturation region. This equa-

tion is used extensively in JFET applications and is given by

 ID � IDSS   � 1 �   
VGS  _ 
Vp 

   �  2  (13.14)

where IDSS is the saturation current when VGS � 0. At the end of this section, we 

compare the approximation given by Equation (13.14) and the ideal current–voltage 

equation that we have derived.

I–V Derivation  The ideal current–voltage relationship of the JFET is derived by 

starting with Ohm’s law. Consider an n-channel JFET with the geometry shown in 

Figure 13.11. We are considering half of the two-sided symmetrical geometry. The 

differential resistance of the channel at a point x in the channel is

 dR �   
�dx 

 _ 
A(x)

   (13.15)

where � is the resistivity and A(x) is the cross-sectional area. If we neglect the minor-

ity carrier holes in the n channel, the channel resistivity is

 � �   1 __ 
e�n Nd 

   (13.16)

The cross-sectional area is given by

 A(x) � [a � h(x)] W (13.17)

where W is the channel width. Equation (13.15) can now be written as

 dR �   dx  ____  
e�n Nd [a � h(x)] W

   (13.18)

The differential voltage across a differential length dx can be written as

 dV(x) � ID1 dR(x) (13.19) 

where the drain current ID1 is constant through the channel. Substituting Equa-

tion (13.18) into Equation (13.19), we have

 dV(x) �   
ID1 dx 
 ____  

e�n NdW [a � h(x)]
    (13.20a)

or

 ID1 dx � e�n Nd W [a � h(x)] dV(x) (13.20b)

The depletion width h(x) is given by 

 h(x) �   	   2�s[V(x) � Vbi � VGS]
  ____ 

eNd 
   
  1�2

  (13.21)

where V(x) is the potential in the channel due to the drain-to-source voltage. Solving 

for V(x) in Equation (13.21) and taking the differential, we have

 dV(x) �   
eNdh(x) dh(x) 

  ___ �s    (13.22)
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584 CHAPTER 13   The Junction Field-Effect Transistor

Then Equation (13.20b) becomes

 ID1 dx �   
�n (eNd)

2 W
 __ �s    [ah(x) dh(x) � h(x)2 dh(x)] (13.23)

 The drain current ID1 is found by integrating Equation (13.23) along the chan-

nel length. Assuming the current and mobility are constant through the channel, we 

obtain

 ID1 �   
�n(eNd)

2 W 
 __ 

�sL
     �  

∫
h1

 
 
h2
 
  ah dh �  

∫
h1

 
 
h2
 
  h2 dh �  (13.24)

or

 ID1 �   
�n(eNd)

2 W 
 __ 

�sL
    �   a  _ 

2
   ( h 2  

2  �  h 1  
2  ) �   1  _ 

3
  ( h 2  

3  �  h 1  
3 ) �  (13.25)

Noting that

  h 2  
2  �   

2�s (VDS � Vbi � VGS) 
  ____ 

eNd 
   (13.26a)

  h 1  
2  �   

2�s(Vbi � VGS) 
  ___ 

eNd 
   (13.26b)

and

 Vp0 �   
ea2 Nd  _ 

2�s 
   (13.26c)

Equation (13.25) can be written as

 ID1 �   
�n (eNd)

2 Wa3

 ___ 
2�sL

    �   VDS  _ 
Vp0

   �   2 _ 
3
    �    VDS � Vbi � VGS   ___ 

Vp0 
   �  3�2

  �   2 _ 
3
     �   Vbi � VGS  __ 

Vp0 
   �  3�2

  � 
 (13.27)

We may defi ne

 IP1 �   
�n(eNd)

2 Wa3 
 ___ 

6�sL
   (13.28)

where IP1 is called the pinchoff current. Equation (13.27) becomes

 ID1 � IP1  � 3  �   VDS  _ 
Vp0 

   �  � 2   �   VDS � Vbi � VGS   ___ 
Vp0 

   �  3�2

   � 2   �   Vbi � VGS  __ 
Vp0 

   �  3�2

  �  (13.29)

Equation (13.29) is valid for 0 
  � VGS  �  
  � Vp  �  and 0 
 VDS 
 VDS (sat). The pinch off 

current IP1 would be the maximum drain current in the JFET if the zero-biased deple-

tion regions could be ignored or if VGS and Vbi were both zero.

 Equation (13.29) is the current–voltage relationship for the one-sided n-channel 

JFET in the nonsaturation region. For the two-sided symmetrical JFET shown in 

Figure 13.9a, the total drain current would be ID2 � 2ID1.
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 13.2   The Device Characteristics 585

 Equation (13.27) can also be written as

 ID1 � G01  	 VDS �   2  _ 
3
    �

___

   1  _ 
Vp0 

     [(VDS � Vbi � VGS)
3 �2 � (Vbi � VGS)

3 �2] 
    (13.30)

where

 G01 �   
�n(eNd)

2 Wa3 
 ___ 

2�s LVp0 
   �   

e�n Nd Wa 
 __ 

L 
   �   

3IP1 _ 
Vp0 

   (13.31)

 The channel conductance is defi ned as

 gd �       �ID1  _ 
�VDS 

   �  VDS →0
  (13.32)

Taking the derivative of Equation (13.30) with respect to VDS , we obtain

 gd �       �ID1  _ 
�VDS 

   �  VDS→0
  � G01  � 1 �   �   Vbi � VGS  __ 

Vp0 
   �  1�2

  �  (13.33)

We may note from Equation (13.33) that G01 would be the conductance of the channel 

if both Vbi and VGS were zero. This condition would exist if no space charge regions 

existed in the channel. We may also note, from Equation (13.33), that the channel 

conductance is modulated or controlled by the gate voltage. This channel conductance 

modulation is the basis of the fi eld-effect phenomenon.

 We have shown that the drain becomes pinched off, for the n-channel JFET, 

when

 VDS � VDS (sat) � Vp0 � (Vbi � VGS) (13.34)

In the saturation region, the saturation drain current is determined by setting 

VDS � VDS(sat) in Equation (13.29) so that

 ID1 � ID1(sat) � IP1  	 1 � 3  �   Vbi � VGS  __ 
Vp0 

   �   � 1 �   2 _ 
3
    �

________

   
Vbi � VGS  __ 

Vp0 
     �  
   (13.35)

The ideal saturation drain current is independent of the drain-to-source voltage. Fig-

ure 13.12 shows the ideal current–voltage characteristics of a silicon n-channel JFET.

   EXAMPLE 13.3Objective: Calculate the maximum current in an n-channel JFET.

 Consider a silicon n-channel JFET at T � 300 K with the following parameters: Na �
1018 cm�3, Nd � 1016 cm�3, a � 0.75 �m, L � 10 �m, W � 30 �m, and �n � 1000 cm2 /V-s.

■ Solution
The pinchoff current from Equation (13.28) becomes

 IP1 �   
(1000)[(1.6 	 10�19) (1016)]2 (30 	 10�4)(0.75 	 10�4)3 

     _________    
6(11.7) (8.85 	 10�14) (10 	 10�4) 

   � 0.522 mA

We also have from Example 13.1 that Vbi � 0.814 V and Vp0 � 4.35 V. The maximum current 

occurs when VGS � 0, so from Equation (13.35)

 ID1(max) � IP1  	 1 � 3  �   Vbi  _ 
Vp0 

   �   � 1 �   2  _ 
3
    �

___

   
Vbi  _ 
Vp0 

     �  
  (13.36)
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586 CHAPTER 13   The Junction Field-Effect Transistor

 The maximum saturation current calculated in this example is considerably less 

than that shown in Figure 13.12 because of the big difference in the width-to-length 

ratios. Once the pinchoff voltage of JFET has been designed, the channel width W is 

the primary design variable for determining the current capability of a device.

Summary  Equations (13.29) and (13.35) are rather cumbersome to use in any 

hand calculations. We may show that, in the saturation region, the drain current is 

given to a good approximation by Equation (13.14), stated at the beginning of this 

section as

 ID � IDSS   � 1 �   
VGS  _ 
Vp 

   �  2 
The current IDSS is the maximum drain current and is the same as ID1(max ) in Equa-

tion (13.36). The parameter VGS is the gate-to-source voltage and Vp is the pinchoff 

or

 ID1(max) � (0.522)  	 1 � 3  �   0.814 _ 
4.35 

   �   � 1 �   2 _ 
3
    �

_____

   0.814 _ 
4.35

     �  
  � 0.313 mA

■ Comment
The maximum current through the JFET is less than the pinchoff current IP1.

■ EXERCISE PROBLEM
Ex 13.3  Consider an n-channel silicon pn JFET with parameters Na � 1018 cm�3, Nd � 

1016 cm�3, a � 0.40 �m, L � 5 �m, W � 50 �m, and �n � 900 cm2/V-s. Calcu-

late the pinchoff current IP1 and the maximum drain current ID1 (sat) for VGS � 0. 

[Ans. IP1 � 0.237 mA, ID1 (sat) � 22.13 �]
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I D
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Figure 13.12 | Ideal current–voltage 

characteristics of a silicon n-channel 

JFET with a � 1.5 �m, W�L � 170, and 

Nd � 2.5  	 1015 cm�3.
(From Yang [22].)
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 13.2   The Device Characteristics 587

voltage. We may note that, for n-channel depletion mode JFET, both VGS and Vp 

are negative and, for the p-channel depletion mode device, both are positive. Fig-

ure 13.13 shows the comparison between Equations (13.14) and (13.35).

13.2.3  Transconductance

The transconductance is the transistor gain of the JFET; it indicates the amount of 

control the gate voltage has on the drain current. The transconductance is defi ned as

 gm �   
�ID 

 _ 
�VGS

   (13.37)

Using the expressions for the ideal drain current derived in the last section, we can 

write the expressions for the transconductance.

 The drain current for an n-channel depletion mode device in the nonsaturation 

region is given by Equation (13.29). We can then determine the transconductance of 

the transistor in the same region as

 gmL �   
�ID1  _ 
�VGS 

   �   
3IP1  _ 
Vp0

 
  
 
 �

________

   
Vbi � VGS  __ 

Vp0 
      �  �

______________

   �   VDS  __ 
Vbi � VGS 

   �  � 1   � 1 �  (13.38)

Taking the limit as VDS becomes small, the transconductance becomes

 gmL �   
3IP1  _ 
2Vp0

   ·   VDS  ___  
 �

____________

  Vp0(Vbi � VGS)  
   (13.39)

We can also write Equation (13.39) in terms of the conductance parameter G01 as

 gmL �   
G01  _ 
2
   ·   VDS  ___  

 �
____________

  Vp0(Vbi � VGS)  
   (13.40)

�4.0 �3.0 �2.0 �1.0

VGS (V)

0
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0.8

1.0

0.2

0.6
ID1

ID10

Eq. [13.14]

Approximation

Ideal

Eq. [13.35]

Figure 13.13 | Comparison of Equa-

tions (13.14) and (13.35) for the ID versus 

VGS characteristics of a JFET biased in 

the saturation region.
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588 CHAPTER 13   The Junction Field-Effect Transistor

 The ideal drain current in the saturation region for the JFET is given by Equa-

tion (13.35). The transconductance in the saturation region is then found to be

 gms �   
�ID1(sat)

 __ 
�VGS 

   �   
3IP1  _ 
Vp0  

    � 1 �  �
________

   
Vbi � VGS  __ 

Vp0 
     �  � G01  � 1 �  �

________

   
Vbi � VGS  __ 

Vp0  
     � 

 (13.41a)

Using the current–voltage approximation given by Equation (13.14), we can also 

write the transconductance as

 gms �   
�2IDSS  __ 

Vp 
    � 1 �   

VGS  _ 
Vp 

   �  (13.41b)

Since Vp is negative for the n-channel JFET, gms is positive.

EXAMPLE 13.4 Objective: Determine the maximum transconductance of an n-channel depletion mode 

JFET biased in the saturation region.

 Consider the silicon JFET described in Example 13.3. We had calculated IP1 � 0.522 mA, 

Vbi � 0.814 V, and Vp0 � 4.35 V.

■ Solution
The maximum transconductance occurs when VGS � 0. Then Equation (13.41a) can be written 

as

 gms(max) �   
3IP1  _ 
Vp0 

    � 1 �  �
___

   
Vbi  _ 
Vp0 

     �  �   
3(0.522)

 __ 
4.35

    � 1 �  �
_____

   0.814 _ 
4.35 

     �  � 0.204 mA/V

■ Comment
The saturation transconductance is a function of VGS and becomes zero when VGS � VP.

■ EXERCISE PROBLEM
Ex 13.4  Determine the maximum transconductance of the n-channel JFET described in 

Exercise Problem Ex 13.3. 

[Ans. gms (max) � 0.109 mA/V]

 The experimental transconductance may deviate from this ideal expression due 

to a source series resistance. This effect will be considered later in the discussion of 

the small signal model of the JFET.

13.2.4  The MESFET

So far in our discussion, we have explicitly considered the pn JFET. The MESFET 

is the same basic device except that the pn junction is replaced by a Schottky barrier 

rectifying junction. The simplifi ed MESFET geometry is shown in Figure 13.9b. 

MESFETs are usually fabricated in gallium arsenide. We will neglect any depletion 

region that may exist between the n channel and the substrate. We have also limited 

our discussion to depletion mode devices, wherein a gate-to-source voltage is applied 

to turn the transistor off. Enhancement mode GaAs MESFETs can be fabricated—

their basic operation is discussed in Section 13.1.2. We can also consider enhance-

ment mode GaAs pn JFETs.
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 13.2   The Device Characteristics 589

 Since the electron mobility in GaAs is much larger than the hole mobility, we 

will concentrate our discussion on n-channel GaAs MESFETs or JFETs. The defi -

nition of internal pinchoff voltage, given by Equation (13.3), also applies to these 

devices. In considering the enhancement mode JFET, the term threshold voltage is 

commonly used in place of pinchoff voltage. For this reason, we shall use the term 

threshold voltage in our discussion of MESFETs.

 For the n-channel MESFET, the threshold voltage is defi ned from Equa-

tion (13.4) as

 Vbi � VT � Vp0   or  VT � Vbi � Vp0  (13.42)

For an n-channel depletion mode JFET, VT � 0, and for the enhancement mode de-

vice, VT � 0. We can see from Equation (13.42) that Vbi � Vp0 for an enhancement 

mode n-channel JFET.

   DESIGN
EXAMPLE 13.5

Objective: Determine the channel thickness of a GaAs MESFET to achieve a specifi ed 

threshold voltage.

 Consider an n-channel GaAs MESFET at T � 300 K with a gold Schottky barrier contact. 

Assume the barrier height is �Bn � 0.89 V. The n-channel doping is Nd � 2 	 1015 cm�3.  Design 

the channel thickness such that VT � � 0.25 V.

■ Solution
We fi nd that

 �n � Vt ln  �   Nc 
 _ 

Nd 
   �  � (0.0259) ln  �   4.7 	 1017

 __ 
2 	 1015 

   �  � 0.141 V

The built-in potential barrier is then

 Vbi � �Bn � �n � 0.89 � 0.141 � 0.749 V

The threshold voltage, from Equation (13.42), is

 VT � Vbi � Vp0

or

 Vp0 � Vbi � VT � 0.749 � 0.25 � 0.499 V

Now

 Vp0 �   ea2Nd  _ 
2�s 

  

or

 0.499 �   
a2 (1.6 	 10�19) (2 	 1015)

   _____  
2(13.1) (8.85 	 10�14)

  

The channel thickness is then

 a � 0.601 �m
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590 CHAPTER 13   The Junction Field-Effect Transistor

 The design of enhancement mode JFETs implies the use of narrow channel 

thicknesses and low channel doping concentrations to achieve this condition. The 

precise control of the channel thickness and doping concentration necessary to 

achieve internal pinchoff voltages of a few tenths of a volt makes the fabrication of 

enhancement mode MESFETs diffi cult.

■ Comment
For this enhancement mode n-channel MESFET, the internal pinchoff voltage is less than 

the built-in potential barrier. A smaller channel thickness would result in a larger threshold 

voltage.

■ EXERCISE PROBLEM
Ex 13.5  Consider an n-channel GaAs MESFET with a gate barrier height of �Bn � 0.85 V. 

The channel doping concentration is Nd � 5 	 1015 cm�3 and the channel thickness 

is a � 0.40 �m. Calculate the internal pinchoff voltage and the threshold voltage. 

(Ans. VpO � 0.5520 V, VT � 0.180 V)

EXAMPLE 13.6 Objective: Calculate the forward-bias gate voltage required in an n-channel GaAs enhance-

ment mode pn JFET to open up a channel.

 Consider a GaAs n-channel pn JFET at T � 300 K with Na � 1018 cm�3, Nd � 3 	 1015 cm�3, 

and a � 0.70 �m. Determine the forward-bias gate voltage required to open a channel region 

that is 0.10 �m thick with zero drain voltage.

■ Solution
The built-in potential barrier is

 Vbi � Vt ln  �   NaNd  _ 
 n i  

2  
   �  � (0.0259) ln  �   (1018)(3 	 1015) 

  ___  
(1.8 	 106)2 

   �  � 1.25 V

The internal pinchoff voltage is

 Vp0 �   ea2 Nd  __ 
2�s

   �   
(1.6 	 10�19)(0.7 	 10�4)2(3 	 1015)

   ______   
2(13.1)(8.85 	 10�14)

   � 1.01 V

which gives a threshold voltage of

 VT � Vbi � Vp0 � 0.24 V

The channel depletion width is given by Equation (13.1). Setting h � 0.60 �m will yield an 

undepleted channel thickness of 0.1 �m. Solving for VGS, we obtain

 VGS � Vbi �   eh2 Nd  __ 
2�s

   � 1.25 �   
(1.6 	 10�19)(0.6 	 10�4)2 (3 	 1015) 

   ______   
2(13.1)(8.85 	 10�14)

  

�1.25 � 0.745 � 0.50 V

■ Comment
An applied gate voltage of 0.50 V is greater than the threshold voltage, so the induced deple-

tion region will be smaller than the metallurgical channel thickness. An n-channel region is 
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 13.2   The Device Characteristics 591

 Ideally, the I–V characteristics of the enhancement mode device are the same as 

the depletion mode device—the only real difference is the relative values of the internal 

pinchoff voltage. The current in the saturation region is given by Equation (13.35) as

 ID1 � ID1 (sat) � IP1  	 1 � 3  �   Vbi � VGS  __ 
Vp0 

   �   � 1 �   2 _ 
3
    �

________

   
Vbi � VGS  __ 

Vp0 
     �  
 

 The threshold voltage for the n-channel device is defi ned in Equation (13.42) as 

VT � Vbi � Vp0, so we can also write

 Vbi � VT � Vp0 (13.43)

Substituting this expression for Vbi into Equation (13.35), we obtain

 ID1(sat) � IP1  	 1 � 3  � 1 �  �   VGS � VT  __ 
Vp0 

   �  �  � 2   � 1 �  �   VGS � VT  __ 
Vp0 

   �  �  3�2

  
 
 (13.44)

Equation (13.44) is valid for VGS  VT.

 When the transistor fi rst turns on, we have (VGS � VT) � Vp0 . Equation (13.44) 

can then be expanded into a Taylor series and we obtain

 ID1(sat) � IP1   �   3 _ 
4
    �   VGS � VT  __ 

Vp0 
   �  �  2  (13.45)

Substituting the expressions for IP1 and Vp0 , Equation (13.45) becomes

 ID1(sat) �   
�n�sW 

 __ 
2aL

   (VGS � VT)
2 for VGS  VT (13.46)

 We can now write Equation (13.46) as

 ID1(sat) � kn(VGS � VT)
2  (13.47)

where

 kn �   
�n �s W 

 __ 
2aL

   (13.48)

The factor kn is called a conduction parameter. The form of Equation (13.47) is the 

same as for a MOSFET.

then formed between the source and drain contacts. The forward-bias gate voltage must not be 

too large or an undesirable gate current will be present in the device.

■ EXERCISE PROBLEM
Ex 13.6  An n-channel GaAs MESFET has a gate barrier height of �Bn � 0.89 V. The 

 channel doping concentration is Nd � 1016 cm�3. What channel thickness is 

 required to yield a threshold voltage of VT � 0.25 V? 

(Ans. a � 0.280 �m)
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592 CHAPTER 13   The Junction Field-Effect Transistor

 The square root of Equation (13.47), or  �
______

 ID1(sat)   versus VGS, is plotted as 

the ideal dotted curve shown in Figure 13.14. The ideal curve intersects the volt-

age axis at the threshold voltage, VT. The solid line shows an experimental plot. 

Equation (13.46) does not describe the experimental results well near the threshold 

voltage. The ideal current–voltage relationship is derived assuming an abrupt deple-

tion approximation for the pn junction. However, when the depletion region extends 

almost through the channel, a more accurate model of the space charge region must 

be used to more accurately predict the drain current characteristics near threshold. 

We consider the subthreshold conduction in Section 13.3.3.
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VGS (V)

� I D
 (

m
A

)1
/2

0

0.4

0.8

1.0

0.2

0.6

Figure 13.14 | Experimental and theo-

retical  �
__

 ID
   versus VGS charac teristics of 

an enhancement mode JFET.

DESIGN 
EXAMPLE 13.7 

Objective: Design the channel width of an n-channel GaAs enhancement-mode pn JFET to 

produce a specifi ed current for a given bias.

 Consider the GaAs JFET described in Example 13.6. In addition, assume �n � 8000 cm2 /V-s 

and L � 1.2 �m. Design the width such that ID1 � 75 �A with an applied voltage of VGS � 0.5 V.

■ Solution
In the saturation region, the current is given by

 ID1 � kn(VGS � VT)2

or

 75 	 10�6 � kn(0.5 � 0.24)2

The conduction parameter is then

 kn � 1.109 mA /V2

The conduction parameter, from Equation (13.48), is given by

 kn �   
�n�sW 

 __ 
2aL
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 The transconductance of the enhancement mode device operating in the satura-

tion region can also be derived. Using Equation (13.47), we can write

 gms �   
�ID1(sat)

 __ 
�VGS 

   � 2kn(VGS � VT) (13.49)

The transconductance increases as VGS increases for the enhancement mode device as 

it did for the depletion mode device.

or

 1.109 	 10�3 �   
(8000)(13.1)(8.85 	 10�14)(W) 

   ______   
2(0.70 	 10�4)(1.2 	 10�4)

  

The required channel width is then

 W � 20.1 �m

■ Comment
The saturation current will obviously increase if VGS is increased or if the width of the transis-

tor is increased.

■ EXERCISE PROBLEM
Ex 13.7  Consider the GaAs MESFET described in Exercise Problem Ex 13.5. In addition, 

assume �n � 7000 cm2/V-s, L � 0.8 �m, and W � 25 �m. Calculate the conduc-

tion parameter kn and the current ID1 (sat) for VGS � 0.50 V. 

[Ans. kn � 3.17 mA /V
2
, ID1 (sat) � 0.325 mA]

TYU 13.1 Consider a GaAs pn junction n-channel FET. The p� gate doping concentration 

is Na � 5 	 1018 cm�3 and the n-channel doping concentration is Nd � 5 	 1015 cm�3. 

The zero-bias depletion width is to be 1.2a; that is, the channel is completely depleted 

at zero bias. Determine the value of a and the pinchoff voltage. 

(Ans. a � 0.513 �m, VP ��0.397 V)

TYU 13.2 The pinchoff current IP1 given by Equation (13.28) and the pinchoff voltage 

given by Equation (13.26c) also apply to a p-channel JFET in which �n is re-

placed by �p and Nd is replaced by Na. Assume a p-channel silicon JFET has the 

following parameters: Nd � 5 	 1018 cm�3, Na � 2 	 1016 cm�3, a � 0.50 �m, 
L � 5 �m, W � 40 �m, and �p � 400 cm2 /V-s. Calculate the pinchoff current 

IP1 and the maximum drain current ID1(sat) for VGS � 0. 

[Ans. IP1 � 0.659 mA, ID1(sat) � 0.256 mA]

TEST YOUR UNDERSTANDING

*13.3 |  NONIDEAL EFFECTS
As with any semiconductor device, there are nonideal effects that will change the 

ideal device characteristics. In all of the previous discussions, we have considered an 

ideal transistor with a constant channel length and constant mobility; we have also 
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594 CHAPTER 13   The Junction Field-Effect Transistor

neglected gate currents. However, when a JFET is biased in the saturation region, the 

effective electrical channel length is a function of VDS. This nonideal effect is called 

channel length modulation. In addition, when a transistor is biased near or in the 

saturation region, the electric fi eld in the channel can become large enough so that 

the majority carriers reach their saturation velocity. At this point, the mobility is no 

longer a constant. The magnitude of the gate current will affect the input impedance, 

which may need to be taken into account in a circuit design.

13.3.1  Channel Length Modulation

The expression for the drain current is inversely proportional to the channel length 

L as given, for example, by Equation (13.27). In deriving the current equations, we 

have implicitly assumed that the channel length was constant. However, the effec-

tive channel length can change. Figure 13.5 shows the space charge region in the 

channel when the transistor is biased in the saturation region. The neutral n-channel 

length decreases as VDS increases; thus, the drain current will increase. The change in 

the effective channel length and the corresponding change in drain current is called 

channel length modulation.

 The pinchoff current, Equation (13.28), is modifi ed by the channel length modu-

lation and can be written as

  I P1  �   �   
�n(eNd)

2 Wa3 
 ___ 

6�s L� 
   (13.50)

where

 L� � L �   1 _ 
2
   � L (13.51)

If we assume the channel depletion region shown in Figure 13.5 extends equally into 

the channel and drain regions, then as a fi rst approximation, we will include the fac-

tor   1 _ 
2
   in the expression for L�.

 The drain current can be written as

  I D1  �   � ID1 ·    I P1  �   
 _ 

IP1 
   � ID1  �   L  __ 

L �   1 _ 
2
   �L 

   �  (13.52)

where ID1 is the ideal drain current predicted by Equation (13.35). Another form of 

the current–voltage characteristic in the saturation region is given by

  I D1  �   (sat) � ID1 (sat)(1 � �VDS) (13.53)

 The effective channel length L� supports the VDS(sat) voltage, and the space 

charge region length �L in the channel supports the drain voltage beyond the satura-

tion value. Neglecting charges in the space charge region due to current fl ow, the 

depletion length �L is then, to a fi rst approximation, given by

 �L �   �   2�s(VDS � VDS(sat))
  ____ 

eNd 
   �  1�2

  (13.54)
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 13.3   Nonideal Effects 595

Since the effective channel length changes with VDS, the drain current is now a function 

of VDS . The small-signal output impedance at the drain terminal can be defi ned as

 rds �   
�VDS  _ 
� I D1  �  

   �   
�VDS  _ 
� I D1  �  

   (13.55)

   EXAMPLE 13.8Objective: Calculate the small-signal output resistance at the drain terminal due to channel 

length modulation effects.

 Consider an n-channel depletion mode silicon JFET with a channel doping of Nd � 

3 	 1015 cm�3. Calculate rds for the case when VDS changes from VDS (1) � VDS (sat) � 2.0 to 

VDS (2) � VDS (sat) � 2.5. Assume L � 10 �m and ID1 � 4.0 mA.

■ Solution
We have that

  r ds
  �   �VDS  _ 

 �I D1  �  
   �   

VDS(2) � VDS(1)
  ___  

 �I D1  �  (2) �  I D1  �  (1)
  

We can calculate the change in the channel length for the two voltages as

 �L(2) �   �   2�s(VDS(2) � VDS(sat))
  ____ 

eNd 
   �  1�2

  �   �   2(11.7)(8.85 	 10�14)(2.5) 
   _____  

(1.6 	 10�19) (3 	 1015) 
   �  1�2

 � 1.04 �m

and

 �L(1) �   �   2(11.7)(8.85 	 10�14)(2.0) 
   _____  

(1.6 	 10�19) (3 	 1015) 
   �  1�2

  � 0.929 �m

The drain currents are then

  I D1  �  (2) � ID1  �   L  ___ 

L �   1 _ 
2
   �L(2) 

   �  � 4.0 �   10 _ 
9.48

   � 
and

  I D1  �  (1) � ID1  �   L  ___ 

L �   1 _ 
2
   �L(1) 

   �  � 4.0 �   10  _ 
9.54 

   � 

The output resistance can be calculated as

 rds �   2.5 � 2.0  ____  

4  �   10  _ 
9.48

   �  � 4  �   10  _ 
9.54

   � 
   � 18.9 k�

■ Comment
This value of output resistance is signifi cantly less than the ideal value of infi nity.

■ EXERCISE PROBLEM
Ex 13.8  Repeat Example 13.8 if the channel doping concentration increases to 

Nd � 1016 cm�3. All other parameters remain the same.

(Ans. rds � 39.46k�)
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596 CHAPTER 13   The Junction Field-Effect Transistor

 For high-frequency MESFETs, typical channel lengths are on the order of 1 �m. 

Channel length modulation and other effects become very important in short-channel 

devices.

13.3.2  Velocity Saturation Effects

We have seen that the drift velocity of a carrier in silicon saturates with increasing 

electric fi eld. This velocity saturation effect implies that the mobility is not a con-

stant. For very short channels, the carriers can easily reach their saturation velocity, 

which changes the I–V characteristics of the JFET.

 Figure 13.15 shows the channel region with an applied drain voltage. As the 

channel narrows at the drain terminal, the velocity of the carriers increases since the 

current through the channel is constant. The carriers fi rst saturate at the drain end of 

the channel. The depletion region will reach a saturation thickness, so we can write

 ID1(sat) � eNdvsat(a � hsat)W (13.56)

where vsat is the saturation velocity and hsat is the saturation depletion width. This 

saturation effect occurs at a drain voltage smaller than the VDS (sat) value determined 

previously. Both IDS (sat) and VDS (sat) will be smaller than previously  calculated.

 Figure 13.16 shows normalized plots of ID versus VDS. Figure 13.16a is for the 

case of a constant mobility and Figure 13.16b is for the case of velocity saturation. 

Since the I–V characteristics change when velocity saturation occurs, the transcon-

ductance will also change—the transconductance will become smaller; hence, the 

effective gain of the transistor decreases when velocity saturation occurs.

13.3.3  Subthreshold and Gate Current Effects

The subthreshold current is the drain current in the JFET that exists when the gate 

voltage is below the pinchoff or threshold value. The subthreshold conduction is 

shown in Figure 13.14. When the JFET is biased in the saturation region, the drain 

current varies quadratically with gate-to-source voltage. When VGS is below the 

threshold value, the drain current varies exponentially with gate-to-source voltage. 

Near threshold, the abrupt depletion approximation does not accurately model the 

channel region: A more detailed potential profi le in the space charge region must be 

used. However, these calculations are beyond the scope of this chapter.

 When the gate voltage is approximately 0.5 to 1.0 V below threshold in an

n-channel MESFET, the drain current reaches a minimum value and then slowly in-

creases as the gate voltage decreases. The drain current in this region is the gate leak-

age current. Figure 13.17 is a plot of the drain current versus VGS for the three  regions 

e�
e�

e� vsat

n
channel

p� gate

DS
hsat

Figure 13.15 | Cross section of JFET 

showing carrier velocity and space 

charge width saturation effects.
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Figure 13.16 | Normalized ID versus VDS plots for a constant 

mobility and fi eld-dependent mobility. 
(From Sze [19].)

Figure 13.17 | Measured drain current versus VGS for a GaAs 

MESFET showing the normal drain current, subthreshold 

current, and gate leakage current. 
(From Daring [2].)
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598 CHAPTER 13   The Junction Field-Effect Transistor

of gate voltage. The curve illustrates that the drain current becomes small below 

threshold, but is not zero. The minimum drain current may need to be accounted for 

in low-power circuit applications.

*13.4 |  EQUIVALENT CIRCUIT AND FREQUENCY 
LIMITATIONS

In order to analyze a transistor circuit, one needs a mathematical model or equivalent 

circuit of the transistor. One of the most useful models is the small-signal equiva-

lent circuit, which applies to transistors used in linear amplifi er circuits. This equiva-

lent  circuit will introduce frequency effects in the transistor through the equivalent 

 capacitor–resistor  circuits. The various physical factors in the JFET affecting the 

 frequency limitations are considered here and a transistor cutoff frequency, which is 

a fi gure of merit, is then defi ned.

13.4.1  Small-Signal Equivalent Circuit

The cross section of an n-channel pn JFET is shown in Figure 13.18, including source 

and drain series resistances. The substrate may be semi-insulating gallium arsenide 

or it may be a p� type substrate.

 Figure 13.19 shows a small-signal equivalent circuit for the JFET. The voltage 

Vg�s� is the internal gate-to-source voltage that controls the drain current. The rgs and 

Cgs parameters are the gate-to-source diffusion resistance and junction capacitance, 

respectively. The gate-to-source junction is reverse biased for depletion mode de-

vices and has only a small forward-bias voltage for enhancement mode devices, so 

that normally rgs is large. The parameters rgd and Cgd are the gate-to-drain resistance 

and capacitance, respectively. The resistance rds is the fi nite drain resistance, which 

is a function of the channel length modulation effect. The Cds capacitance is mainly 

a drain-to-source parasitic capacitance and Cs is the drain-to-substrate  capacitance.

 The ideal small-signal equivalent circuit is shown in Figure 13.20a. All diffu-

sion resistances are infi nite, the series resistances are zero, and at low frequency the 

Active

n channel

Substrate

rs rd
p�

S DG

Figure 13.18 | Cross section of JFET 

with source and drain series resistance.

Vg�s�

Cgd

Cds

Cs

rds

rgd rd

rgs

rs

Cgs gmVg�s�

G D

S

�

�

Figure 13.19 | Small-signal equivalent circuit of JFET.
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 13.4   Equivalent Circuit and Frequency Limitations 599

capacitances become open circuits. The small-signal drain current is now

 Ids � gm Vgs (13.57)

which is a function only of the transconductance and the input-signal voltage.

 The effect of the source series resistance can be determined using Figure 13.20b. 

We have

 Ids � gm Vg�s� (13.58)

The relation between Vgs and Vg�s� can be found from

 Vgs � Vg�s� � (gm Vg�s�) rs � (1 � gm rs)Vg�s� (13.59)

Equation (13.58) can then be written as

 Ids �  �   gm 
 __ 

1 � gm rs 
   �  Vgs �  g m  �   Vgs (13.60)

The effect of the source resistance is to reduce the effective transconductance or 

transistor gain.

 Recall that gm is a function of the dc gate-to-source voltage, so  g m  �   will also be 

a function of VGS. Equation (13.41b) is the relation between gm and VGS when the 

Figure 13.20 | (a) Ideal low-frequency 

small-signal equivalent circuit. (b) Ideal 

equivalent circuit including rs.
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Vgs
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�

�
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S
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600 CHAPTER 13   The Junction Field-Effect Transistor

transistor is biased in the saturation region. Figure 13.21 shows a comparison be-

tween the theoretical and experimental transconductance values using the parameters 

from Example 13.4 and letting rs � 2000 �. (A value of rs � 2000 � may seem 

excessive, but keep in mind that the active thickness of the semiconductor may be on 

the order of 1 �m or less; thus, a large series resistance may result if special care is 

not taken.)

13.4.2  Frequency Limitation Factors and Cutoff Frequency

There are two frequency limitation factors in a JFET. The fi rst is the channel transit 

time. If we assume a channel length of 1 �m and assume carriers are traveling at their 

saturation velocity, then the transit time is on the order of

 �t �   L _ vs    �   1 	 10�4

 __ 
1 	 10�7 

   � 10 ps (13.61)

The channel transit time is normally not the limiting factor except in very high fre-

quency devices.

 The second frequency limitation factor is the capacitance charging time. Fig-

ure 13.22 is a simplifi ed equivalent circuit that includes the primary capacitances and 

ignores the diffusion resistances. The output current will be the short-circuit current. 

As the frequency of the input-signal voltage Vgs increases, the impedance of Cgd and Cgs 

decreases so the current through Cgd will increase. For a constant gmVgs , the Ids current 

will then decrease. The output current then becomes a function of frequency.

 If the capacitance charging time is the limiting factor, then the cutoff frequency 

fT is defi ned as the frequency at which the magnitude of the input current Ii is equal 

to the magnitude of the ideal output current gmVgs of the intrinsic transistor. We have, 

�4 �3 �2 �1
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Figure 13.21 | JFET transconductance 

versus VGS (a) without and (b) with a 

source series resistance.
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Figure 13.22 | A small-signal 

equivalent circuit with capacitance.
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 13.4   Equivalent Circuit and Frequency Limitations 601

when the output is short-circuited,

 Ii � j� (Cgs � Cgd)Vgs (13.62)

If we let CG � Cgs � Cgd, then at the cutoff frequency

  |Ii| � 2� fT CGVgs � gmVgs (13.63)

or

 fT �   
gm 
 __ 

2� Cg 
   (13.64)

 From Equation (13.41b), the maximum possible transconductance is

 gms (max) � G01 �   
e�n Nd Wa 

 __ 
L

   (13.65)

and the minimum gate capacitance is

 CG (min) �   
�sWL 

 _ a   (13.66)

where a is the maximum space charge width. The maximum cutoff frequency can 

be written as

 fT �   
e�n Nd a2 

 __ 
2��s L2 

   (13.67)

   EXAMPLE 13.9Objective: Calculate the cutoff frequency of a silicon JFET. 

 Consider a silicon JFET with the following parameters:

 �n � 1000 cm2/V-s   a � 0.60 �m

 Nd � 1016 cm�3              L� 5 �m

■ Solution
Substituting the parameters into Equation (13.67), we have

 fT �   e�n Nda2  __ 
2��s L2 

   �   
(1.6 	 10�19)(1000)(1016) (0.6 	 10�4)2 

    _______   
2�(11.7)(8.85 	 10�14)(5 	 10�4)2 

   � 3.54 GHz

■ Comment
This example shows that even silicon JFETs can have relatively large cutoff frequencies.

■ EXERCISE PROBLEM
Ex 13.9  The parameters of an n-channel silicon JFET are �n � 1000 cm2/V-s, Nd � 5 	 

1015 cm�3, a � 0.50 �m, and L � 2 �m. Determine the cutoff frequency. 

(Ans. fT � 7.69 GHz)

 For gallium arsenide JFETs or MESFETs with very small geometries, the cutoff 

frequency is even larger. The channel transit time may also become a factor in very 

high frequency devices, in which case the expression for cutoff frequency would 

need to be modifi ed.
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602 CHAPTER 13   The Junction Field-Effect Transistor

 One application of GaAs FETs is in ultrafast digital integrated circuits. Con-

ventional GaAs MESFET logic gates can achieve propagation delay times in the sub 

nanosecond range. These delay times are at least comparable to, if not shorter than, 

fast ECL, but the power dissipation is three orders of magnitude smaller than in the 

ECL circuits. Enhancement mode GaAs JFETs have been used as drivers in logic 

circuits, and depletion mode devices may be used as loads. Propagation delay times 

of as low as 45 ps have been observed. Special JFET structures may be used to fur-

ther increase the speed. These structures include the modulation-doped fi eld-effect 

transistor, which is discussed in the following section.

  TEST YOUR UNDERSTANDING

TYU 13.3 Consider a p-channel silicon JFET that has parameters a � 0.50 �m, �p � 

400 cm2/V-s, Na � 2 	 1016 cm�3, and L � 4 �m. Calculate the cutoff frequency. 

(Ans. fT � 3.07 GHz)

TYU 13.4 An n-channel GaAs pn JFET has parameters a � 0.50 �m, L � 1 �m, 

Nd � 3 	 1015 cm�3, and �n � 6500 cm2/V-s. Determine the cutoff frequency.

(Ans. fT � 107 GHz)

*13.5 |  HIGH ELECTRON MOBILITY TRANSISTOR
As frequency needs, power capacity, and low noise performance requirements in-

crease, the gallium arsenide MESFET is pushed to its limit of design and performance. 

These requirements imply a very small FET with a short channel length, large satura-

tion current, and large transconductance. These requirements are generally achieved by 

increasing the channel doping under the gate. In all of the devices we have considered, 

the channel region is in a doped layer of bulk semiconductor with the majority carri-

ers and doping impurities in the same region. The majority carriers experience ionized 

impurity scattering, which reduces carrier mobility and degrades device performance.

 The degradation in mobility and peak velocity in GaAs due to increased doping 

can be minimized by separating the majority carriers from the ionized impurities. 

This separation can be achieved in a heterostructure that has an abrupt discontinuity 

in conduction and valence bands. We considered the basic heterojunction properties 

in Chapter 9. Figure 13.23 shows the conduction-band energy relative to the Fermi 

energy of an N-AlGaAs-intrinsic GaAs heterojunction in thermal equilibrium. Ther-

mal equilibrium is achieved when electrons from the wide-bandgap AlGaAs fl ow 

into the GaAs and are confi ned to the potential well. However, the electrons are free 

to move parallel to the heterojunction interface. In this structure, the majority carrier 

Ec1
Ec2

EFAlGaAs GaAs

Figure 13.23 | Conduction-band edges 

for N-AlGaAs–intrinsic GaAs abrupt 

heterojunction.
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 13.5   High Electron Mobility Transistor 603

electrons in the potential well are now separated from the impurity dopant atoms in 

the AlGaAs; thus, impurity scattering tends to be minimized.

 The FETs fabricated from these heterojunctions are known by several names. 

The term used here is the high electron mobility transistor (HEMT). Other names 

include modulation-doped field-effect transistor (MODFET), selectively doped het-

ero junction fi eld-effect transistor (SDHT), and two-dimensional electron gas field- 

effect transistor (TEGFET).

13.5.1  Quantum Well Structures

Figure 13.23 shows the conduction-band energy of an N-AlGaAs–intrinsic GaAs 

heterojunction. A two-dimensional surface channel layer of electrons is formed 

in the thin potential well (~80Å) in the undoped GaAs. Electron sheet carrier 

densities on the order of 1012 cm�2 have been obtained. An improvement in the 

low-fi eld  mobility of the carriers moving parallel to the heterojunction is observed 

since the impurity- scattering effects are reduced. At 300 K, mobilities have been 

reported in the range of 8500–9000 cm2 /V-s, whereas GaAs MESFETs doped to 

Nd � 1017 cm�3 have low-fi eld mobilities of less than 5000 cm2 /V-s. The electron 

mobility in the heterojunction now tends to be dominated by lattice or phonon 

scattering, so that as the temperature is  reduced, the mobility increases rapidly.

 Impurity-scattering effects can be further reduced by increasing the separation 

of the electrons and ionized donor impurities. The electrons in the potential well of 

the abrupt heterojunction shown in Figure 13.23 are separated from the donor atoms, 

but are still close enough to be subjected to a coulomb attraction. A thin spacer layer 

of undoped AlGaAs can be placed between the doped AlGaAs and the undoped 

GaAs. Figure 13.24 shows the energy-band diagram for this structure. Increasing the 
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Figure 13.24 | Conduction-band edges for N-AlGaAs–undoped AlGaAs –undoped 

GaAs heterojunction.
(From Shur [13].)
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604 CHAPTER 13   The Junction Field-Effect Transistor

separation between the carriers and ionized donors increases further the electron mo-

bility, since there is even less coulomb interaction. One disadvantage of this graded 

heterojunction is that the electron density in the potential well tends to be smaller 

than in the abrupt junction.

 The molecular beam epitaxial process allows the growth of very thin layers of 

specifi c semiconductor materials with specifi c dopings. In particular, a multilayer 

modulation–doped heterostructure can be formed, as shown in Figure 13.25. Several 

surface channel layers of electrons are formed in parallel. This structure would be 

equivalent to increasing the channel electron density, which would increase the cur-

rent capability of the FET.

13.5.2  Transistor Performance

A typical HEMT structure is shown in Figure 13.26. The N-AlGaAs is separated 

from the undoped GaAs by an undoped AlGaAs spacer. A Schottky contact to the 

N-AlGaAs forms the gate of the transistor. This structure is a “normal” MODFET. 

An “inverted” structure is shown in Figure 13.27. In this case the Schottky contact is 

made to the undoped GaAs layer. The inverted MODFET has been investigated less 

than the normal structure because the normal structure has yielded superior results.

 The density of electrons in the two-dimensional electron gas layer in the po-

tential well can be controlled by the gate voltage. The electric fi eld of the Schottky 

gate depletes the two-dimensional electron gas layer in the potential well when a 

Figure 13.25 | Multilayer modulation–doped 

heterostructure.
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 13.5   High Electron Mobility Transistor 605

suffi ciently large negative voltage is applied to the gate. Figure 13.28 shows the 

energy-band diagrams of the metal–AlGaAs–GaAs structure under zero bias and 

with a reverse bias applied to the gate. With zero bias, the conduction-band edge in 

the GaAs is below the Fermi level, implying a large density of the two- dimensional 

electron gas. With a negative voltage applied to the gate, the conduction-band 

edge in the GaAs is above the Fermi level, implying that the density of the two- 

dimensional electron gas is very small and the current in an FET would be essen-

tially zero.

 The Schottky barrier depletes the AlGaAs layer from the surface, and the hetero-

junction depletes the AlGaAs layer from the heterojunction interface. Ideally the 

device should be designed so that the two depletion regions just overlap to prevent 

electron conduction through the AlGaAs layer. For depletion mode devices, the 

depletion layer from the Schottky gate should extend only to the heterojunction de-

pletion layer. For enhancement mode devices, the thickness of the doped AlGaAs 

layer is smaller and the Schottky gate built-in potential barrier will completely 

Figure 13.27 | An “inverted” 

GaAs–AlGaAs HEMT. 
(From Shur [13].)
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606 CHAPTER 13   The Junction Field-Effect Transistor

deplete the  AlGaAs layer and the two-dimensional electron gas channel. A posi-

tive voltage applied to the gate of the enhancement mode device will turn on the 

 device.

 The density of the two-dimensional electron gas in a normal structure can be 

 described using a charge control model. We may write

 ns �   
�N 
 __ 

q (d � �d)
   (Vg � Voff) (13.68)

where �N is the permittivity of the N-AlGaAs, d � dd � di is the thickness of the 

doped-plus-undoped AlGaAs layer, and �d is a correction factor given by

 �d �   
�N a 

 _ q   � 80 Å (13.69)

The threshold voltage Voff is given by

 Voff � �B �   
�Ec  _ q   � Vp2 (13.70)

where �B is the Schottky barrier height and Vp2 is

 Vp2 �   
qNd  d d  

2  
 __ 

2�N 
   (13.71)

A negative gate bias will reduce the two-dimensional electron gas concentration. 

If a positive gate voltage is applied, the density of the two-dimensional electron 

gas will increase. Increasing the gate voltage will increase the two-dimensional 

electron gas density until the conduction band of the AlGaAs crosses the Fermi 

level of the electron gas. Figure 13.29 shows this effect. At this point the gate loses 

control over the electron gas since a parallel conduction path in the AlGaAs has 

been formed.
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Figure 13.29 | Energy-band diagram of an enhancement mode HEMT 

(a) with a slight forward gate voltage, and (b) with a larger forward 

gate voltage that creates a conduction channel in the  AlGaAs. 
(From Fritzsche [5].)

nea29583_ch13_571-617.indd   606nea29583_ch13_571-617.indd   606 12/11/10   12:47 PM12/11/10   12:47 PM



 13.5   High Electron Mobility Transistor 607

 The current–voltage characteristics of the MODFET can be found using the 

charge control model and the gradual channel approximation. The channel carrier 

concentration can be written as

 ns(x) �   
�N 
 __ 

q(d � �d)
   [Vg � Voff � V(x)] (13.72)

where V(x) is the potential along the channel due to the drain-to-source voltage. The 

drain current is

 ID � qns v(E)W (13.73)

where v(E) is the carrier drift velocity and W is the channel width. This analysis is 

very similar to that for the pn JFET in Section 13.2.2.

 If we assume a constant mobility, then for low VDS values, we have

 ID �   
�N�W 
 __ 

2L(d � �d )
    � 2(Vg � Voff) VDS �  V DS  

 2
   �  (13.74)

The form of this equation is the same as that for the pn JFET or MESFET operating 

in the nonsaturation region. If VDS increases so that the carriers reach the saturation 

 velocity, then

 ID(sat) �   
�N W 
 __ 

(d � �d)
   (Vg � Voff � V0)vsat (13.75)

where vsat is the saturation velocity and V0 � EsL with Es being the electric fi eld in the 

channel that produces the saturation velocity.

   EXAMPLE 13.10Objective: Determine the two-dimensional electron concentration for an N–AlGaAs– 

intrinsic GaAs heterojunction.

 Consider an N-Al0.3Ga0.7As layer doped to 1018 cm�3 and having a thickness of 500 Å. 
Assume an undoped spacer layer of 20 Å. Let �B � 0.85 V and �Ec /q � 0.22 V. The relative 

dielectric constant of Al0.3Ga0.7As is �N � 12.2.

■ Solution
The parameter Vp2 is found as

 Vp2 �   
qNd  d d  

2  
 __ 

2�N 
   �   

(1.6 	 10�19)(1018)(500 	 10�8)2 
   ______   

2(12.2)(8.85 	 10�14)
   � 1.85 V

Then the threshold voltage is

 Voff � �B �   �Ec  _ q   � Vp2 � 0.85 � 0.22 � 1.85 � �1.22 V

The channel electron concentration for Vg � 0 is found from Equation (13.68) to be

 ns �   
(12.2)(8.85 	 10�14) 

   _______   
(1.6 	 10�19)(500 � 20 � 80) 	 10�8 

   [�(�1.22)] � 1.37 	 1012 cm�2

■ Comment
The threshold voltage Voff is negative, making this device a depletion mode MODFET; ap-

plying a negative gate voltage will turn off the device. A value of ns � 1012 cm�2 is a typical 

channel concentration.
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608 CHAPTER 13   The Junction Field-Effect Transistor

 Various velocity versus electric fi eld models can be used to derive different I–V 

expressions. However, Equations (13.74) and (13.75) yield satisfactory results for 

most situations. Figure 13.30 shows a comparison between experimental and calcu-

lated I–V characteristics. As observed in the fi gure, the current in these heterojunc-

tion devices can be quite large. The transconductance of the MODFET is defi ned as 

it was for the pn JFET and MESFET. Typical measured values at T � 300 K are in 

the range of 250 mS /mm. Higher values have been reported. These transconductance 

values are signifi cantly larger than for either the pn JFET or the MESFET.

 HEMTs may also be fabricated with multiple heterojunction layers. This device 

type is shown in Figure 13.31. A single heterojunction for an AlGaAs–GaAs interface 

has a maximum two-dimensional electron sheet density on the order of 1 	 1012 cm�2. 
This concentration can be increased by fabricating two or more  AlGaAs–GaAs 

 interfaces in the same epitaxial layer. The device current capacity is increased, and 

power performance is improved. The multichannel HEMT behaves as multiple 

single-channel HEMTs connected in parallel and modulated by the same gate but with 

slightly different threshold voltages. The maximum transconductance will not scale 

directly with the number of channels because of the change in threshold voltage with 

each channel. In addition, the effective channel length increases as the distance be-

tween the gate and channel increases.

 HEMTs can be used in high-speed logic circuits. They have been used in fl ip-

fl op circuits operating at clock frequencies of 5.5 GHz at T � 300 K; the clock 

frequency can be increased at lower temperatures. Small-signal, high-frequency 

amplifi ers have also been investigated. HEMTs showing low noise and reasonable 

gains have been operated at 35 GHz. The maximum frequency increases as the 

channel length decreases. Cutoff frequencies on the order of 100 GHz have been 

measured with channel lengths of 0.25 �m.
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Figure 13.31 | A multilayer HEMT.
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   Glossary of Important Terms 609

 It seems clear that HEMTs are inherently superior to other FET technologies in 

terms of achieving higher speeds of operation, lower power dissipation, and lower 

noise. These advantages derive directly from the superior transport properties obtained 

by using undoped GaAs as the channel layer for the FET. One way to achieve an 

adequate carrier concentration in an undoped channel is to accumulate the carriers at 

a semiconductor heterojunction interface, as we have seen. The disadvantage of the 

HEMT is that the fabrication processes for the heterojunction are more complicated.

13.6 | SUMMARY
■ The physics, characteristics, and operation of the junction fi eld-effect transistor are con-

sidered in this chapter.

■ The current in a JFET is controlled by an electric fi eld applied perpendicular to the 

direction of current. The current is in the channel region between the source and drain 

contacts. In a pn JFET, the channel forms one side of a pn junction that is used to 

modulate the channel conductance.

■ Two primary parameters of the JFET are the internal pinchoff voltage Vp0 and the 

pinch off voltage Vp. The internal pinchoff voltage is defi ned as a positive quantity and 

is the total gate-to-channel potential that causes the junction space charge layer to com-

pletely fi ll the channel region. The pinchoff voltage is defi ned as the gate voltage that 

must be applied to achieve the pinchoff condition.

■ The ideal current–voltage relationship is derived. The transconductance, or transistor 

gain, is the rate of change of drain current with respect to the corresponding change in 

gate-to-source voltage.

■ Three nonideal effects are considered; channel-length modulation, velocity satura-

tion, and subthreshold current. Each of these effects changes the ideal current–voltage 

relationship.

■ A small-signal equivalent circuit of the JFET is developed. The equivalent circuit in-

cludes capacitances that introduce frequency effects in the transistor. Two physical fac-

tors affect the frequency limitation; channel transit time and capacitance charging time. 

The capacitance charging time constant is normally the limiting factor in short channel 

devices.

■ The high-electron mobility transistor (HEMT) structure utilizes a heterojunction. A 

two-dimensional electron gas is confi ned to a potential well at the heterojunction inter-

face. However, the electrons are free to move parallel to the interface. These electrons 

are separated from the ionized donors so that ionized impurity scattering effects are 

minimized, resulting in a high mobility.

GLOSSARY OF IMPORTANT TERMS
capacitance charging time  The time associated with charging or discharging the input gate 

capacitance with a change in the input gate signal.

channel conductance  The ratio of a differential change in drain current to the correspond-

ing differential change in drain-to-source voltage in the limit as the drain-to-source voltage 

approaches zero.

channel conductance modulation  The process whereby the channel conductance changes 

with gate voltage; this is the basic fi eld-effect transistor action.
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610 CHAPTER 13   The Junction Field-Effect Transistor

channel length modulation  The change in effective channel length with drain-to-source 

voltage with the JFET biased in the saturation region.

conduction parameter  The multiplying factor kn in the expression for drain current versus 

gate-to-source voltage for the enhancement mode MESFET.

cutoff frequency  A fi gure of merit for the transistor defi ned to be the frequency at which the 

ratio of the small-signal input gate current to small-signal drain current is equal to unity.

depletion mode JFET  A JFET in which a gate-to-source voltage must be applied to create 

pinchoff and turn the device off.

enhancement mode JFET  A JFET in which pinchoff exists at zero gate voltage and a gate-

to-source voltage must be applied to induce a channel, turning the device on.

internal pinchoff voltage  The total potential drop across the gate junction at pinchoff.

output resistance  The ratio of a differential change in drain-to-source voltage to the cor-

responding differential change in drain current at a constant gate-to-source voltage.

pinchoff  The condition whereby the gate junction space charge region extends completely 

through the channel so that the channel is completely depleted of free carriers.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Describe the basic operation of the pn JFET and MESFET.

■ Discuss how current is contained in the channel region of a GaAs MESFET with a 

semi-insulating substrate.

■ Sketch the I–V characteristics of a depletion mode JFET.

■ Discuss how the internal pinchoff voltage is defi ned and how the pinchoff voltage is 

defi ned.

■ Defi ne transconductance for a JFET.

■ Discuss the concept of an enhancement mode MESFET.

■ Discuss three nonideal effects in a JFET including channel-length modulation, velocity 

saturation effects, and subthreshold effects.

■ Sketch the small-signal equivalent circuit of a JFET.

■ Discuss the frequency limitation factors and defi ne the cutoff frequency.

■ Sketch the cross section of a simple HEMT.

■ Describe the advantages of a HEMT compared to a MESFET.

REVIEW QUESTIONS
 1. Sketch the cross section of a p-channel pn JFET and indicate voltage polarities for 

 device operation.

 2. Sketch cross sections of a p-channel pn JFET showing the depletion regions when 

 biased in the nonsaturation region and in the saturation region.

 3. What is the mechanism of current saturation in a pn JFET?

 4. Sketch the cross section of an n-channel GaAs MESFET.

 5. What is the mechanism of current saturation in a MESFET?

 6. Defi ne internal pinchoff voltage and pinchoff voltage for a pn JFET.
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   Problems 611

 7. Defi ne threshold voltage for a MESFET.

 8. Sketch the small-signal equivalent circuit of a JFET.

 9. Defi ne two frequency limitation factors for a JFET. Defi ne the condition for cutoff 

 frequency.

10. Sketch the cross section of an AlGaAs–GaAs HEMT. Sketch the conduction energy 

band across the heterojunction.

11. What is the principal advantage of a HEMT compared to a MESFET?

PROBLEMS
(Note: Assume T � 300 K for the following problems unless otherwise stated.)

Section 13.1  JFET Concepts

13.1 (a) Draw the structure of a p-channel JFET similar to the structure shown in 

Figure 13.2. (b) Qualitatively discuss the I–V characteristics, including current 

 directions and voltage polarities, similar to those shown in Figures 13.3 and 13.4.

13.2 Consider the n-channel JFET in Figure P13.2. The p-type substrate is connected to 

the n-type source terminal. Sketch the space charge regions for various VGS values 

when VDS � 0 and for various VDS values when VGS � 0.

Section 13.2  The Device Characteristics

13.3 An n-channel GaAs pn JFET at T � 300 K has parameters Nd � 3 	 1016 cm�3, 

Na � 2 	 1018 cm�3, and a � 0.40 �m. (a) Calculate the (i) internal pinchoff 

voltage VpO and (ii) pinchoff voltage Vp. (b) Determine the minimum undepleted 

channel thickness, a � h, for VGS � �0.5 V and for (i) VDS � 0, (ii) VDS � 0.5 V, 

and (iii) VDS � 2.5 V. (c) Find VDS (sat) for (i) VGS � 0 and (ii) VGS � �1.0 V.

13.4 Repeat Problem 13.3 for an n-channel silicon pn JFET with the same geometrical 

and electrical parameters.

13.5 Consider a p-channel GaAs pn JFET at T � 300 K. The parameters are 

Nd � 1018 cm�3 and a � 0.65 �m. (a) Determine the channel doping concentration 

such that the internal pinchoff voltage is VpO � 2.75 V. (b) Using the results of part 

(a), what is the pinchoff voltage Vp? (c) For VSD � 0, determine the value of VGS 

such that the minimum undepleted channel thickness is 0.15 �m. (d) For VGS � 0, 

fi nd the value of VSD such that the channel is just pinched off at the drain terminal.

Figure P13.2 | Figure for Problem 13.2.
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612 CHAPTER 13   The Junction Field-Effect Transistor

13.6 Repeat Problem 13.5 for a p-channel silicon pn JFET with the same geometrical 

and electrical parameters.

13.7 The parameters of a p-channel silicon pn JFET are Nd � 3 	 1018 cm�3 and 

Na � 2 	 1016 cm�3. (a) Determine the metallurgical channel thickness, a, such 

that the pinchoff voltage is Vp � �3.0 V. (b) Using the results of part (a), deter-

mine the internal pinchoff voltage VpO. (c) Determine VSD (sat) for (i) VGS � 0 and 

(ii) VGS � 1.5 V.

13.8 A p-channel GaAs pn JFET has the same parameters as given in Problem 13.7. Re-

peat the calculations for parts (a), (b), and (c).

13.9 The doping concentrations in a silicon n-channel pn JFET are Na � 4 	 1018 cm�3 

and Nd � 4 	 1016 cm�3. (a) Design the channel metallurgical thickness, a, such 

that VDS (sat) � 5.0 V for VGS � 0. (b) Using the results of part (a), fi nd the (i) inter-

nal pinchoff voltage VpO and (ii) pinchoff voltage Vp.

13.10 Consider a p-channel GaAs pn JFET. The doping concentrations are Nd � 1018 cm�3 

and Na � 5 	 1015 cm�3. (a) Design the channel metallurgical thickness, a, such 

that VSD (sat) � 3.5 V for VGS � �1.0 V. (b) Using the results of part (a), determine 

the (i) internal pinchoff voltage VpO and (ii) pinchoff voltage Vp.

13.11 An n-channel silicon JFET at T � 300 K has the following parameters:

  Na � 1019 cm�3    Nd � 1016 cm�3

   a � 0.50 �m       L � 20 �m

   W � 400 �m       �n � 1000 cm2 /V-s

 Ignoring velocity saturation effects, calculate (a) IP1; (b) VDS(sat) for (i) VGS � 0, 

(ii) VGS � Vp �4, (iii) VGS � Vp �2, and (iv) VGS � 3Vp �4; and (c) ID1(sat) for the 

same VGS values in part (b). (d) Using the results from parts (b) and (c), plot the 

I–V characteristics.

13.12 Consider the JFET described in Problem 13.11. Compute and plot the channel 

 conductance, gd, as a function of VGS for 0 �  � VGS  �  �  � Vp  � .
13.13 Consider an n-channel GaAs JFET at T � 300 K with the following parameters:

  Na � 5 	 1018 cm�3    Nd � 2 	 1016 cm�3

   a � 0.35 �m         L � 10 �m

   W � 30 �m           �n � 8000 cm2 /V-s

 Ignoring velocity saturation effects, calculate (a) G01; (b) VDS(sat) for VGS � 0 

and VGS � Vp �2; and (c) ID1(sat) for VGS � 0 and VGS � Vp �2. (d) Sketch the 

I–V characteristics using the results from parts (b) and (c).

13.14 Using the parameters from Problem 13.11, calculate the maximum transconduc-

tance in the saturation region. Normalize this transconductance to millisiemens per 

unit width, or mS /mm.

13.15 (a) Calculate the maximum transconductance for the transistor described in Prob-

lem 13.13 (b) Determine the maximum transconductance if the channel length is 

reduced to 2 �m.

13.16 The Schottky barrier height, �Bn, of a metal–n-GaAs MESFET is 0.90 V. The 

channel doping is Nd � 1.5 	 1016 cm�3, and the channel thickness is a � 0.5 �m. 

T � 300 K. (a) Calculate the internal pinchoff voltage Vp0 and the threshold voltage 

VT. (b) Determine whether the MESFET is depletion type or enhancement type.
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13.17 Consider an n-channel GaAs MESFET at T � 300 K with a gold Schottky barrier 

contact. Assume �Bn � 0.89 V. The channel thickness is a � 0.35 �m. (a) De-

termine the uniform channel doping so that the threshold voltage is VT � 0.10 V. 

(b) Using the results of part (a), determine the threshold voltage at T � 400 K.

13.18 The barrier height of the metal contact in an n-channel GaAs MESFET is 

�Bn � 0.87 V. The channel doping concentration is Nd � 2 	 1016 cm�3. (a) Deter-

mine the channel thickness, a, such that the internal pinchoff voltage is VpO � 1.5 V. 

(b) Using the results of part (a), fi nd the threshold voltage VT. (c) Calculate the min-

imum undepleted channel width for VGS � �0.4 V when (i) VDS � 0, (ii) VDS � 1 V, 

and (iii) VDS � 4 V.

13.19 Two n-channel GaAs MESFETs have barrier heights of �Bn � 0.87 V. (a) The chan-

nel doping concentration in device 1 is Nd � 5 	 1015 cm�3 and the channel metal-

lurgical thickness is a � 0.50 �m. Determine the threshold voltage. (b) The channel 

doping concentration in device 2 is Nd � 3 	 1016 cm�3. Find the metallurgical 

channel thickness, a, such that the threshold voltage is the same as that of device 1.

13.20 Consider an n-channel GaAs MESFET at T � 300 K with �Bn � 0.85 V and 

a � 0.25 �m. Determine the channel doping concentration such that VT � 0.5 V.

13.21 An n-channel silicon MESFET is fabricated using a gold contact. The n-channel 

 doping is Nd � 1016 cm�3 and the temperature is T � 300 K. When a gate volt-

age of VGS � 0.35 V is applied with VDS � 0, the undepleted channel thickness is 

0.075 �m. (a) Determine the channel thickness dimension a and the threshold volt-

age VT. (b) Determine the value of VDS (sat) for VGS � 0.35 V.

13.22 The barrier height of an n-channel GaAs MESFET is �Bn � 0.90 V. The metal-

lurgical channel thickness is a � 0.65 �m and the channel doping concentration is 

Nd � 2 	 1016 cm�3. (a) Determine (i) Vbi, (ii) VpO, and (iii) VT. (b) Find VDS (sat) for 

(i) VGS � �1.0 V, (ii) VGS � �2.0 V, and (iii) VGS � �3.0 V.

13.23 The parameters of an n-channel GaAs MESFET are VT � 0.15 V, a � 0.25 �m, 

L � 1.5 �m, W � 12 �m, and �n � 6500 cm2/V-s. (a) Determine the conduction 

parameter kn. (b) Find ID1 (sat) for (i) VGS � 0.25 V and (ii) VGS � 0.45 V. (c) Find 

VDS (sat) for (i) VGS � 0.25 V and (ii) VGS � 0.45 V.

13.24 An n-channel GaAs MESFET has the same parameters as described in Problem 13.23 

except for the channel width. (a) The maximum transconductance is to be gms � 

1.25 mA/V at VGS � 0.45 V. Determine the required channel width W. (b) Using the 

results of part (a), fi nd ID1 (sat) for (i) VGS � 0.25 V and (ii) VGS � 0.45 V.

13.25 Use Equation (13.27) to plot ID1 versus VDS for a given value of VGS. If VDS is 

 allowed to become larger than VDS (sat), then ID1 decreases from a peak value that 

occurs at VDS (sat). From these plots, determine VDS (sat) at several values of VGS. 
Compare these values with those determined from Equation (13.12).

13.26 This problem is to compare the JFET drain current as given by Equation (13.14) 

with that given by Equation (13.35). Choose device parameters such that the drain 

currents at VGS � 0 are the same from the two equations.

Section 13.3  Nonideal Effects

13.27 A uniformly doped n-channel silicon pn JFET has the following parameters: Na � 

1018 cm�3, Nd � 3 	 1016 cm�3, a � 0.50 �m, and �n � 850 cm2/V-s. The maxi-

mum drain-to-source voltage is VDS � 10 V. (a) For VGS � 0, the effective channel 
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614 CHAPTER 13   The Junction Field-Effect Transistor

length L� is to be no less than 90 percent of the original channel length. Determine 

the minimum value of L. (b) Repeat part (a) for VGS � �3 V.

*13.28 If the change in the channel length, �L, is assumed small, derive an approximate 

expression in terms of channel parameters for � given in Equation (13.53). (Note: 

The parameter � may not be a constant. However, justify using Equation (13.53) by 

plotting the expression for � over the range 1.5 VDS (sat)  
 VDS 
 3.0 VDS (sat). Use 

typical parameter values.)

*13.29 As a fi rst approximation, assume that the electric fi eld in the channel of an n- channel 

silicon JFET is uniform through the channel. Also, assume that the drift velocity 

versus electric fi eld for the electrons is given by the piecewise linear approximation 

given in Figure P13.29. Let:

  Na � 5 	 1018 cm�3     Nd � 4 	 1016 cm�3

   L � 2 �m             W � 30 �m

   a � 0.50 �m

 (a) Determine VDS at which velocity saturation occurs. Let VGS � 0. (b) For 

VGS � 0, determine hsat. (c) Calculate ID1(sat) if velocity saturation occurs. (d) If the 

electron mobility is a constant and equal to �n � 1000 cm2 /V-s, calculate ID1(sat) if 

velocity saturation did not occur.

*13.30 (a) Repeat Problem 13.29 if L � 1 �m and all other parameters remain the same. 

(b) If velocity saturation occurs, does the relation ID1(sat) � L�1 still apply? Explain.

13.31 The channel length of an n-channel GaAs MESFET is L � 2 �m. Assume that 

the average horizontal electric fi eld in the channel is E � 5 kV /cm. Calculate the 

transit time of an electron through the channel assuming (a) a constant mobility of 

�n� 8000 cm2 /V-s applies and (b) velocity saturation applies.

13.32 The channel length of an n-channel silicon MESFET is L�2 �m. Assume that 

the average horizontal electric fi eld in the channel is E �10 kV /cm. Calculate the 

transit time of an electron through the channel assuming (a) a constant mobility of 

�n� 1000 cm2 /V-s applies and (b) velocity saturation applies.

13.33 Consider a one-sided silicon n-channel JFET at T � 300 K, pinched off as shown in 

Figure P13.33. The source-to-gate and drain-to-gate reverse-biased currents are split 
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 geometrically as shown. Assume that the reverse-biased currents are dominated by 

the generation current. Assume the following parameters:

  Na � 5 	 1018 cm�3    Nd � 3 	 1016 cm�3

   �0 � 5 	 10�8 s          a � 0.30 �m

     W � 30 �m             L � 2.4 �m

 Calculate IDG for (a) VDS � 0, (b) VDS � 1 V, and (c) VDS � 5 V. [Use  Equation (8.42) 

and consider the volume of the depletion region.]

Section 13.4  Equivalent Circuit and Frequency Limitations

13.34 The source series resistance of a MESFET will reduce the value of transcon-

ductance, gms . Assume the doping in the source region of a GaAs MESFET 

is Nd � 7 	 1016 cm�3 and the dimensions are a � 0.3 �m, L � 1.5 �m, and 

W � 5.0 �m. Let �n � 4500 cm2 /V-s and �Bn � 0.89 V. (a) Determine the ideal 

value of gms for VGS � 0. (b) Determine the value of rs for which the value of  g ms  �   is 

80 percent of the ideal value. (c) Determine the maximum effective distance from 

the edge of the channel to the source terminal so that rs is no larger than the value 

determined in part (b).

13.35 Estimate the cutoff frequency of the MESFET in Problem 13.34.

13.36 An n-channel GaAs MESFET at T � 300 K has the following parameters: 

�Bn � 0.90 V, Nd � 4 	 1016 cm�3, �n � 7500 cm2/V-s, a � 0.30 �m, W � 5 �m, 

and L � 1.2 �m. Calculate the cutoff frequency using (a) the constant mobility 

model and (b) the saturation velocity model.

13.37 Consider a silicon n-channel pn JFET. The parameters are a � 0.40 �m, 

�n � 1000 cm2/V-s, and Nd � 2 	 1016 cm�3. Determine the cutoff frequency for 

(a) L � 3 �m and (b) L � 1.5 �m.

13.38 A silicon p-channel pn JFET has parameters �p � 420 cm2/V-s, a � 0.40 �m, and 

Na � 2 	 1016 cm�3. Determine the maximum channel length such that the cutoff 

frequency is (a) fT � 5 GHz and (b) fT � 12 GHz.

Section 13.5  High Electron Mobility Transistor

13.39 Consider an N-Al0.3Ga0.7As–intrinsic GaAs abrupt heterojunction. Assume that 

the  AlGaAs is doped to Nd � 3 	 1018 cm�3 and has a thickness of 350 Å. Let 

�Bn � 0.89 V, and assume that �Ec � 0.24 eV. (a) Calculate Voff and (b) calculate 

ns for Vg � 0.

13.40 If the electrons in the channel of the JFET in Problem 13.39 are traveling at a 

saturation velocity of 2 	 107 cm /s, determine (a) the transconductance per unit 

width at Vg � 0 and (b) the saturation current per unit width at Vg � 0. (Assume 

V0 � 1 V.)

13.41 Consider an abrupt N-Al0.3Ga0.7As–intrinsic GaAs heterojunction. The N-AlGaAs 

is doped to Nd � 2 	 1018 cm�3. The Schottky barrier height is 0.85 V and the 

 heterojunction conduction-band edge discontinuity is �Ec � 0.22 eV. Determine 

the thickness of the AlGaAs layer so that Voff � �0.3 V.
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Summary and Review

*13.42 Design a one-sided silicon p-channel pn JFET such that Vp � 3.2 V, ID1 (sat) � 

1.2 mA at VGS � 0, and fT � 10 GHz. Determine the required values of L, W, and Na.

*13.43 Design a one-sided GaAs n-channel MESFET with a barrier height of �Bn � 0.89 V 

such that VT � �0.12 V, IDSS � 2.0 �A at VGS � 0.45 V, and fT � 50 GHz. Assume 

�n � 7500 cm2/V-s.

*13.44 Design a pair of complementary n-channel and p-channel silicon JFETs so that 

IDSS � 1 mA and �Vp � � 3.2 V for each device at T � 300 K. If the devices are to 

operate for 0 
 VDS 
 5 V, comment on velocity saturation and channel length 

 modulation effects in your design.
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14
Optical Devices

�
n previous chapters, we have considered the basic physics of transistors that are 

used to amplify or switch electrical signals. Semiconductor devices can be de-

signed to convert optical energy into electrical energy, and to convert electrical 

signals into optical signals. These devices are used in broadband communications 

and data transmission over optical fi bers. The general classifi cation of these devices 

is called optoelectronics.

 In this chapter, we discuss the basic principles of solar cells, several photodetec-

tors, light emitting diodes, and laser diodes. Solar cells and photodetectors convert 

optical energy into electrical energy; light emitting diodes and laser diodes convert 

electrical signals into optical signals. ■

14.0 | PREVIEW
In this chapter, we will:

■ Discuss and analyze photon absorption in a semiconductor and present 

absorption coeffi cient data for several semiconductor materials.

■ Consider the basic principles of solar cells, analyze their I–V characteristics, 

and discuss the conversion effi ciency.

■ Present various types of solar cells, including homojunction, heterojunction, 

and amorphous silicon solar cells.

■ Discuss the basic principles of photodetectors, including photoconductors, 

photodiodes, and phototransistors.

■ Derive the output current characteristics of the various photodectors.

■ Present and analyze the basic operation of the Light Emitting Diode (LED).

■ Discuss the basic principles and operation of the laser diode.

C H A P T E R
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 14.1   Optical Absorption 619

14.1 | OPTICAL ABSORPTION
In Chapter 2, we discussed the wave–particle duality principle and indicated that light 

waves could be treated as particles, which are referred to as photons. The energy of 

a photon is E � h� where h is Plank’s constant and � is the frequency. We can also 

relate the wavelength and energy by

 � �   c _ �   �   hc _ 
E

   �   1.24 _ 
E

   �m (14.1)

where E is the photon energy in eV and c is the speed of light.

 There are several possible photon–semiconductor interaction mechanisms. For 

example, photons can interact with the semiconductor lattice whereby the photon 

 energy is converted into heat. Photons can also interact with impurity atoms, either 

donors or acceptors, or they can interact with defects within the semiconductor. How-

ever, the basic photon interaction process of greatest interest is the interaction with 

valence electrons. When a photon collides with a valence electron, enough  energy 

may be imparted to elevate the electron into the conduction band. Such a process 

generates electron–hole pairs and creates excess carrier concentrations. The behavior 

of excess carriers in a semiconductor was considered in Chapter 6.

14.1.1  Photon Absorption Coeffi cient

When a semiconductor is illuminated with light, the photons may be absorbed or 

they may propagate through the semiconductor, depending on the photon energy and 

on the bandgap energy Eg. If the photon energy is less than Eg, the photons are not 

readily absorbed. In this case, the light is transmitted through the material and the 

semiconductor appears to be transparent.

 If E � h� � Eg, the photon can interact with a valence electron and elevate the 

electron into the conduction band. The valence band contains many electrons and the 

conduction band contains many empty states, so the probability of this interaction is 

high when h� � Eg. This interaction creates an electron in the conduction band and 

a hole in the valence band—an electron–hole pair. The basic absorption processes 

for different values of h� are shown in Figure 14.1. When h� � Eg, an electron–hole 

h�

h� � Eg h� � Eg h� � Eg

�

�
(�)

(�)

Ec

Ev

Figure 14.1 | Optically generated 

electron–hole pair formation in a 

semiconductor.
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620 CHAPTER 14   Optical Devices

pair is created and the excess energy may give the electron or hole additional kinetic 

energy, which will be dissipated as heat in the semiconductor.

 The intensity of the photon fl ux is denoted by I�(x) and is expressed in terms of 

energy/cm2-s. Figure 14.2 shows an incident photon intensity at a position x and the 

photon fl ux emerging at a distance x � dx. The energy absorbed per unit time in the 

distance dx is given by

 �I� (x) dx (14.2)

where � is the absorption coeffi cient. The absorption coeffi cient is the relative num-

ber of photons absorbed per unit distance, given in units of cm�1.

 From Figure 14.2, we can write

 I� (x � dx)�I� (x) �   
dI� (x)

 _ 
dx

   � dx � ��I� (x) dx (14.3)

or

   
dI� (x)

 _ 
dx

   � ��I� (x) (14.4)

If the initial condition is given as I� (0) � I�0, then the solution to the differential 

equation, Equation (14.4), is

 I� (x) � I�0e��x (14.5)

The intensity of the photon fl ux decreases exponentially with distance through the 

semiconductor material. The photon intensity as a function of x for two general val-

ues of absorption coeffi cient is shown in Figure 14.3. If the absorption coeffi cient is 

large, the photons are absorbed over a relatively short distance.

 The absorption coeffi cient in the semiconductor is a very strong function of pho-

ton energy and bandgap energy. Figure 14.4 shows the absorption coeffi cient � plot-

ted as a function of wavelength for several semiconductor materials. The absorption 

coeffi cient increases very rapidly for h� � Eg, or for � � 1.24�Eg. The absorption 

Figure 14.2 | Optical 

absorption in a differential 

length.

dx

I�(x) I�(x � dx)

Small �

Large �

I�

I�0

x

Figure 14.3 | Photon intensity versus 

distance for two absorption coeffi cients.
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 14.1   Optical Absorption 621

coeffi cients are very small for h� � Eg, so the semiconductor appears transparent to 

photons in this energy range.

   EXAMPLE 14.1Objective: Calculate the thickness of a semiconductor that will absorb 90 percent of the 

incident photon energy.

 Consider silicon and assume that in the fi rst case the incident wavelength is � � 1.0 �m 

and in the second case, the incident wavelength is � � 0.5 �m.

■ Solution
From Figure 14.4, the absorption coeffi cient is � � 102 cm�1 for � � 1.0 �m. If 90 percent 

of the incident fl ux is to be absorbed in a distance d, then the fl ux emerging at x � d will be 

10 percent of the incident fl ux. We can write

  
I� (d )

 _ 
I�0 

   � 0.1 � e��d

Solving for the distance d, we have

d �   1 _ �   ln  �   1 _ 
0.1

   �  �   1 _ 
102 

   ln (10) � 0.0230 cm

10
0.2 0.6 1

3 2 1.5 1 0.7

1.4 1.8
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t 
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m

�
1
)

Ge

GaP

Ga0.3In0.7As0.64P0.36

InGaAs

Si

Amorphous

Si

InP

GaAs

Figure 14.4 | Absorption coeffi cient as a function of 

wavelength for several semiconductors.
(From Shur [13].)
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622 CHAPTER 14   Optical Devices

 The relation between the bandgap energies of some of the common semicon-

ductor materials and the light spectrum is shown in Figure 14.5. We may note that 

 silicon and gallium arsenide will absorb all of the visible spectrum, whereas gallium 

phosphide, for example, will be transparent to the red spectrum.

14.1.2  Electron–Hole Pair Generation Rate

We have shown that photons with energy greater than Eg can be absorbed in a semi-

conductor, thereby creating electron–hole pairs. The intensity I�(x) is in units of 

In the second case, the absorption coeffi cient is � � 104 cm�1 for � � 0.5 �m. The distance d, 

then, in which 90 percent of the incident fl ux is absorbed, is

 d �   1 _ 
104 

   ln  �   1 _ 
0.1 

   �  � 2.30 	 10�4 cm � 2.30 �m

■ Comment
As the incident photon energy increases, the absorption coeffi cient increases rapidly, so 

that the photon energy can be totally absorbed in a very narrow region at the surface of the 

semiconductor.

■ EXERCISE PROBLEM
Ex 14.1  Consider a slab of silicon 5 �m thick. Determine the percentage of photon energy 

that will pass through the slab if the photon wavelength is (a) � � 0.8 �m and 

(b) � � 0.6 �m.

[Ans. (a) 60.7%; (b) 10.5%]

Figure 14.5 | Light spectrum versus wavelength and 

energy. Figure includes relative response of the human eye.
(From Sze [18].)

Eg (eV)

Relative

eye response

Infrared Red Green

Orange Yellow Blue

Violet Ultraviolet

Si GaAs CdSe GaPCdS SiC GaN ZnS

1.0 0.9 0.8 0.7 0.6 0.5 0.45 0.4 0.35

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

� (�m)

�m � 0.555 �m

GaAs1�yPy
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 14.1   Optical Absorption 623

 energy/cm2-s and �I� (x) is the rate at which energy is absorbed per unit volume. If 

we assume that one absorbed photon at an energy h� creates one electron–hole pair, 

then the generation rate of electron–hole pairs is

 g
 �   
�I�(x)

 _ 
h�

   (14.6)

which is in units of #/cm3-s. We may note that the ratio I� (x)�h� is the photon fl ux. If, 

on the average, one absorbed photon produces less than one electron–hole pair, then 

Equation (14.6) must be multiplied by an effi ciency factor.

   EXAMPLE 14.2Objective: Calculate the generation rate of electron–hole pairs given an incident intensity 

of photons.

 Consider gallium arsenide at T � 300 K. Assume the photon intensity at a particular point 

is I� (x) � 0.05 W/cm2 at a wavelength of � � 0.75 �m. This intensity is typical of  sunlight, 

for example.

■ Solution
The absorption coeffi cient for gallium arsenide at this wavelength is � � 0.9 	 104 cm�1. The 

photon energy, using Equation (14.1), is

E � h� �   1.24 _ 
0.75

   � 1.65 eV

Then, from Equation (14.6) and including the conversion factor between joules and eV, we 

have, for a unity effi ciency factor,

g
 �   
�I� (x)

 __ 
h�

   �   
(0.9 	 104)(0.05)

  ____  
(1.6 	 10�19)(1.65)

   � 1.70 	 1021 cm�3-s�1

If the incident photon intensity is a steady-state intensity, then, from Chapter 6, the steady-

state excess carrier concentration is �n � g
�, where � is the excess minority carrier lifetime. 

If � � 10�7 s, for example, then

 �n � (1.70 	 1021)(10�7) � 1.70 	1014 cm�3

■ Comment
This example gives an indication of the magnitude of the electron–hole generation rate and the 

magnitude of the excess carrier concentration. Obviously, as the photon intensity decreases 

with distance in the semiconductor, the generation rate also decreases.

■ EXERCISE PROBLEM
Ex 14.2  A photon fl ux with an intensity of I�0 � 0.10W/cm2 and at a wavelength of 

� � 1 �m is incident on the surface of silicon. Neglecting any refl ection from 

the  surface, determine the generation rate of electron–hole pairs at a depth of 

(a) x � 5 �m and (b) x � 20 �m from the surface. 

[Ans. (a) 4.79 	 10
19

 cm
�3

 s
�1

; (b) 4.13 	 10
19

 cm
�3

 s
�1

]
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624 CHAPTER 14   Optical Devices

14.2 | SOLAR CELLS
A solar cell is a pn junction device with no voltage directly applied across the junc-

tion. The solar cell converts photon power into electrical power and delivers this 

power to a load. These devices have long been used for the power supply of satellites 

and space vehicles, and also as the power supply to some calculators. We will fi rst 

consider the simple pn junction solar cell with uniform generation of excess carriers. 

We will also discuss briefl y the heterojunction and amorphous silicon solar cells.

14.2.1  The pn Junction Solar Cell

Consider the pn junction shown in Figure 14.6 with a resistive load. Even with zero 

bias applied to the junction, an electric fi eld exists in the space charge region as 

shown in the fi gure. Incident photon illumination can create electron–hole pairs in 

the space charge region that will be swept out producing the photocurrent IL in the 

 reverse-biased direction as shown.

 The photocurrent IL produces a voltage drop across the resistive load which  forward 

biases the pn junction. The forward-bias voltage produces a forward-bias current IF as 

indicated in the fi gure. The net pn junction current, in the reverse-biased direction, is

 I � IL � IF � IL � IS  � exp  �   eV _ 
kT 

   �  � 1 �  (14.7)

  TEST YOUR UNDERSTANDING

TYU 14.1 (a) A photon fl ux with an intensity of I�0 � 0.10 W/cm2 is incident on the sur-

face of silicon. The wavelength of the incident photon signal is � � 1 �m. Ne-

glecting any  refl ection from the surface, determine the photon fl ux intensity at a 

depth of (i) x � 5 �m and (ii) x � 20 �m from the surface. (b) Repeat part (a) 

for a wavelength of � � 0.60 �m. 

 (ii) 3.35 	 10
�5

 W/cm
2
]

[Ans. (a) (i) 0.0951 W/cm
2
, (ii) 0.0819 W/cm

2
; (b) (i) 0.0135 W/cm

2
,

p n
E-field

IL

V

R

I

IF

� �

h�

Figure 14.6 | A pn junction solar cell with resistive load.
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 14.2   Solar Cells 625

where the ideal diode equation has been used. As the diode becomes forward biased, 

the magnitude of the electric fi eld in the space charge region decreases, but does 

not go to zero or change direction. The photocurrent is always in the reverse-biased 

direction and the net solar cell current is also always in the reverse-biased direction.

 There are two limiting cases of interest. The short-circuit condition occurs when 

R � 0 so that V � 0. The current in this case is referred to as the short-circuit cur-
rent, or

 I � Isc � IL (14.8)

The second limiting case is the open-circuit condition and occurs when R → �. The 

net current is zero and the voltage produced is the open-circuit voltage. The photo-

current is just balanced by the forward-biased junction current, so we have

 I � 0 � IL�IS  � exp  �   eVoc _ 
kT 

   �  � 1 �  (14.9)

We can fi nd the open circuit voltage Voc as

 Voc � Vt ln  � 1 �   
IL  _ 
IS 

   �  (14.10)

 A plot of the diode current I as a function of the diode voltage V from Equa-

tion (14.7) is shown in Figure 14.7. We may note the short-circuit current and open-

circuit voltage points on the fi gure.

0
V

Voc

Isc

I

Figure 14.7 | I–V characteristics of a 

pn junction solar cell.

   EXAMPLE 14.3Objective: Calculate the open-circuit voltage of a silicon pn junction solar cell.

 Consider a silicon pn junction at T � 300 K with the following parameters:

 Na � 5 	 1018 cm�3  Nd � 1016 cm�3

 Dn � 25 cm2/s         Dp � 10 cm2/s

 �n0 � 5 	 10�7 s      �p0 � 10�7 s

Let the photocurrent density be JL � IL�A � 15 mA/cm2.
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626 CHAPTER 14   Optical Devices

 The power delivered to the load is

 P � I � V � IL � V � IS   � exp  �   eV _ 
kT

   �  �1 �  � V (14.11)

We may fi nd the current and voltage which will deliver the maximum power to the load 

by setting the derivative equal to zero, or dP�dV � 0. Using Equation (14.11), we fi nd

   dP _ 
dV

   � 0 � IL�IS  � exp  �   eVm 
 _ 

kT
   �  �1 �  � ISVm  �   e _ 

kT
   �  exp  �   eVm 

 _ 
kT

   �  (14.12)

where Vm is the voltage that produces the maximum power. We may rewrite Equa-

tion (14.12) in the form

  � 1 �   
Vm 

 _ 
Vt 

   �  exp  �   eVm 
 _ 

kT
   �  � 1 �   

IL  _ 
IS 

   (14.13)

The value of Vm may be determined by trial and error. Figure 14.8 shows the maxi-

mum power rectangle where Im is the current when V � Vm.

■ Solution
We have that

 JS �   
IS  _ 
A

   �  �   eDnnp0 __ 
Ln 

   �   
eDppn0 __ 

Lp 
   �  � e n i  

2   �   Dn  _ 
LnNa 

   �   
Dp 

 _ 
LpNd 

   � 
We may calculate

 Ln �  �
_____

 Dn�n0
   �  �

_____________

  (25)(5 	 10�7)   � 35.4 �m

and

 Lp �  �
_____

 Dp�p0
   �  �

_________

 (10)(10�7)   � 10.0 �m

Then

JS � (1.6 	 10�19)(1.5 	 1010)2 	  �   25  ____  
(35.4 	 10�4)(5 	 1018)

   �   10 ___  
(10 	 10�4)(1016)

   � 
 � 3.6 	 10�11 A/cm2

Then from Equation (14.10), we can fi nd

 Voc � Vt ln  � 1 �   
IL  _ 
IS 

   �  � Vt  ln  � 1 �   
JL  _ 
JS 

   �  � (0.0259) ln  � 1 �   15 	 10�3

 __ 
3.6 	 10�11

   �  � 0.514 V

■ Comment
We may determine the built-in potential barrier of this junction to be Vbi � 0.8556 V. Taking 

the ratio of the open-circuit voltage to the built-in potential barrier, we fi nd that Voc�Vbi � 0.60. 

The open-circuit voltage will always be less than the built-in potential barrier.

■ EXERCISE PROBLEM
Ex 14.3  Consider a GaAs pn junction solar cell with the following parameters: 

Na � 1017 cm�3, Nd � 2 	 1016 cm�3, Dn � 190 cm2 /s, Dp � 10 cm2 /s, �n0 � 10�7 s, 

and �p0 � 10�8 s. Assume a photocurrent density of JL � 20 mA /cm2 is generated 

in the solar cell. (a) Calculate the open-circuit voltage and (b) determine the ratio 

of open-circuit voltage to built-in potential barrier.

[Ans. (a) Voc � 0.971 V; (b) Voc 	Vbi � 0.783]
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14.2.2  Conversion Effi ciency and Solar Concentration

The conversion effi ciency of a solar cell is defi ned as the ratio of output electrical 

power to incident optical power. For the maximum power output, we can write

 � �   
Pm 

 _ 
Pin

   	 100% �   
ImVm 

 _ 
Pin

   	 100% (14.14)

The maximum possible current and the maximum possible voltage in the solar cell 

are Isc and Voc, respectively. The ratio ImVm�IscVoc is called the fi ll factor and is a mea-

sure of the realizable power from a solar cell. Typically, the fi ll factor is between 0.7 

and 0.8.

 The conventional pn junction solar cell has a single semiconductor bandgap 

energy. When the cell is exposed to the solar spectrum, a photon with energy less 

than Eg will have no effect on the electrical output power of the solar cell. A photon 

with energy greater than Eg will contribute to the solar cell output power, but the 

fraction of photon energy that is greater than Eg will eventually only be dissipated 

as heat. Figure 14.9 shows the solar spectral irradiance (power per unit area per unit 

wavelength) where air mass zero represents the solar spectrum outside the earth’s 

atmosphere and air mass one is the solar spectrum at the earth’s surface at noon. 

The maximum effi ciency of a silicon pn junction solar cell is approximately 28 per-

cent. Nonideal  factors, such as series resistance and refl ection from the semicon-

ductor surface, will lower the conversion effi ciency typically to the range of 10 to 

15 percent.

 A large optical lens can be used to concentrate sunlight onto a solar cell so that 

the light intensity can be increased up to several hundred times. The short-circuit 

current increases linearly with light concentration while the open-circuit voltage in-

creases only slightly with concentration. Figure 14.10 shows the ideal solar cell effi -

ciency at 300 K for two values of solar concentration. We can see that the conversion 

effi ciency increases only slightly with optical concentration. The primary advantage 

of using concentration techniques is to reduce the overall system cost since an optical 

lens is less expensive than an equivalent area of solar cells.

0
V

VocVm

Isc

Im

I

Figure 14.8 | Maximum power rectangle 

of the solar cell I–V characteristics.
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628 CHAPTER 14   Optical Devices

14.2.3  Nonuniform Absorption Effects

We have seen from the previous section that the photon absorption coeffi cient in a 

semiconductor is a very strong function of the incident photon energy or wavelength. 

Figure 14.4 shows the absorption coeffi cient as a function of wavelength for several 

semiconductor materials. As the absorption coeffi cient increases, more photon en-

ergy will be absorbed near the surface than deeper into the semiconductor. In this 

case, then, we will not have uniform excess carrier generation in a solar cell.

 The number of photons absorbed per cm3 per second as a function of distance x 

from the surface can be written as

 �	0e��x (14.15)

where 	0 is the incident photon fl ux (cm�2 s�1) on the surface of the semicon ductor. 

We can also take into account the refl ection of photons from the surface. Let R(�) 

be the fraction of photons that are refl ected. (For bare silicon, R � 35 percent.) If we 

assume that each photon absorbed creates one electron–hole pair, then the generation 

rate of electron–hole pairs as a function of distance x from the surface is

 GL � �(�)	0(�)[1�R(�)]e��(�)x (14.16)

where each parameter may be a function of the incident wavelength. Figure 14.11 

shows the excess minority carrier concentrations in this pn solar cell for two values 

of wavelength and for the case when s � 0 at the surface.

Figure 14.9 | Solar spectral irradiance.
(From Sze [18].)
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 14.2   Solar Cells 629

14.2.4  The Heterojunction Solar Cell

As we have mentioned in previous chapters, a heterojunction is formed between 

two semiconductors with different bandgap energies. A typical pN heterojunction 

energy-band diagram in thermal equilibrium is shown in Figure 14.12. Assume that 

photons are incident on the wide-bandgap material. Photons with energy less than 

EgN will pass through the wide-bandgap material, which acts as an optical window, 

and photons with energies greater than Egp will be absorbed in the narrow bandgap 

material. On the average, excess carriers created in the depletion region and within a 

diffusion length of the junction will be collected and will contribute to the photocur-

rent. Photons with an energy greater than EgN will be absorbed in the wide-bandgap 
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Figure 14.11 | Steady-state, photon-induced normalized 

minority carrier concentration in the pn junction solar cell 

for two values of incident photon wavelength (xj � 2 �m, 

W � 1 �m, Lp � Ln � 40 �m).
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Figure 14.12 | The energy-band diagram of a pN 

heterojunction in thermal equilibrium.
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630 CHAPTER 14   Optical Devices

material, and excess carriers generated within one diffusion length of the junction 

will be collected. If EgN is large enough, then the high-energy photons will be ab-

sorbed in the space charge region of the narrow-bandgap material. This heterojunc-

tion solar cell should have better characteristics than a homojunction cell, especially 

at the shorter wavelengths.

 A variation of the heterojunction is shown in Figure 14.13. A pn homojunc-

tion is formed and then a wide-bandgap material is grown on top. Again, the wide-

bandgap material acts as an optical window for photon energies h� � Eg1. Photons 

with  energies Eg2 � h� � Eg1 will create excess carriers in the homojunction and pho-

tons with energies h� � Eg1 will create excess carriers in the window type material. 

If the absorption coeffi cient in the narrow bandgap material is high, then  essentially 

all of the excess carriers will be generated within a diffusion length of the junction, 

so the collection effi ciency will be very high. Figure 14.13 also shows the normalized 

spectral response for various mole fractions x in the AlxGa1�x As.

14.2.5  Amorphous Silicon Solar Cells

Single-crystal silicon solar cells tend to be expensive and are limited to approxi-

mately 6 inches in diameter. A system powered by solar cells requires, in general, 
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(From Sze [17].)
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a very large area solar cell array to generate the required power. Amorphous silicon 

solar cells provide the possibility of fabricating large area and relatively inexpensive 

solar cell systems.

 When silicon is deposited by CVD techniques at temperatures below 600C, an 

amorphous fi lm is formed regardless of the type of substrate. In amorphous silicon, 

there is only very short range order, and no crystalline regions are observed. Hy-

drogen may be incorporated in the silicon to reduce the number of dangling bonds, 

creating a material called hydrogenated amorphous silicon.

 The density of states versus energy for amorphous silicon is shown in Fig-

ure 14.14. Amorphous silicon contains large numbers of electronic energy states 

within the normal bandgap of single-crystal silicon. However, because of the short-

range order, the effective mobility is quite small, typically in the range between 10�6 

and 10�3 cm2/V-s. The mobilities in the states above Ec and below E� are  between 

1 and 10 cm2/V-s. Consequently, conduction through the energy states between 

Ec and E� is negligible because of the low mobility. Because of the difference in 

 mobility  values, Ec and E� are referred to as the mobility edges and the energy be-

tween Ec and E� is referred to as the mobility gap. The mobility gap can be modifi ed 

by adding specifi c types of impurities. Typically, the mobility gap is on the order of 

1.7 eV.

 Amorphous silicon has a very high optical absorption coeffi cient, so most sun-

light is absorbed within approximately 1 �m of the surface. Consequently, only a 

Figure 14.14 | Density of states versus 

energy of amorphous silicon.
(From Yang [22].)
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632 CHAPTER 14   Optical Devices

very thin layer of amorphous silicon is required for a solar cell. A typical amorphous 

silicon solar cell is a PIN device shown in Figure 14.15. The amorphous silicon 

is  deposited on an optically transparent indium tin oxide–coated glass substrate. If 

aluminum is used as the back contact, it will refl ect any transmitted photons back 

through the PIN device. The n� and p� regions can be quite thin while the intrinsic 

region may be in the range of 0.5 to 1.0 �m thick. The energy-band diagram for the 

thermal equilibrium case is shown in the fi gure. Excess carriers generated in the 

intrinsic region are separated by the electric fi eld and produce the photocurrent, as 

we have discussed. Conversion effi ciencies are smaller than in single-crystal silicon, 

but the reduced cost makes this technology attractive. Amorphous silicon solar cells 

approximately 40 cm wide and many meters long have been fabricated.

Figure 14.15 | The (a) cross section, (b) energy-band diagram at thermal equilibrium, and 

(c) energy-band diagram under photon illumination of an amorphous silicon PIN solar cell.
(From Yang [22].)
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  TEST YOUR UNDERSTANDING

TYU 14.2 Consider a silicon pn junction solar cell with the parameters given in Example 14.3. 

Determine the required photocurrent density to produce an open-circuit voltage of 

Voc � 0.60 V.

(Ans. JL � 0.414 A/cm
2
)

TYU 14.3 Consider the silicon pn junction solar cell described in Example 14.3. Let the 

solar intensity increase by a factor of 10. Calculate the open-circuit voltage. 

(Ans. Voc � 0.574 V)

TYU 14.4 The silicon pn junction solar cell described in TYU 14.2 has a cross-sectional 

area of 1 cm2. Determine the maximum power that can be delivered to a load. 

(Ans. 0.205 W)
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14.3 | PHOTODETECTORS
There are several semiconductor devices that can be used to detect the presence of 

photons. These devices are known as photodetectors; they convert optical signals 

into electrical signals. When excess electrons and holes are generated in a semi-

conductor, there is an increase in the conductivity of the material. This change 

in conductivity is the basis of the photoconductor, perhaps the simplest type of 

photodetector. If electrons and holes are generated within the space charge region 

of a pn junction, then they will be separated by the electric fi eld and a current will 

be produced. The pn junction is the basis of several photodetector devices includ-

ing the photodiode and the phototransistor.

14.3.1  Photoconductor

Figure 14.16 shows a bar of semiconductor material with ohmic contacts at each 

end and a voltage applied between the terminals. The initial thermal-equilibrium 

conductivity is

 �0 � e(�n n0 � �p p0) (14.17)

If excess carriers are generated in the semiconductor, the conductivity becomes

 � � e[�n(n0 � �n) � �p(p0 � �p)] (14.18)

where �n and �p are the excess electron and hole concentrations, respectively. If we 

consider an n-type semiconductor, then, from charge neutrality, we can assume that 

I

L

�V

h�

Area � A

Figure 14.16 | A photoconductor.
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�n � �p 
 �p. We will use �p as the concentration of excess carriers. In steady state, 

the excess carrier concentration is given by �p � GL�p, where GL is the generation 

rate of excess carriers (cm�3-s�1) and �p is the excess minority carrier lifetime.

 The conductivity from Equation (14.18) can be rewritten as

 
 � e(�n n0 � �p p0) � e(�p)(�n � �p) (14.19)

The change in conductivity due to the optical excitation, known as the photoconduc-
tivity, is then

 �
 � e(�p)(�n � �p) (14.20)

 An electric fi eld is induced in the semiconductor by the applied voltage, which 

produces a current. The current density can be written as

 J � (J0 � JL) � (
0 � �
)E (14.21)

where J0 is the current density in the semiconductor prior to optical excitation and JL 

is the photocurrent density. The photocurrent density is JL � �
 � E. If the excess 

electrons and holes are generated uniformly throughout the semiconductor, then the 

photocurrent is given by

 IL � JL � A � �
 � AE � eGL�p(�n � �p)AE (14.22)

where A is the cross-sectional area of the device. The photocurrent is directly pro-

portional to the excess carrier generation rate, which in turn is proportional to the 

 incident photon fl ux.

 If excess electrons and holes are not generated uniformly throughout the semi-

conductor material, then the total photocurrent is found by integrating the photocon-

ductivity over the cross-sectional area.

 Since �n E is the electron drift velocity, the electron transit time, that is, the time 

required for an electron to fl ow through the photoconductor, is

 tn �   L _ 
�n E

   (14.23)

The photocurrent, from Equation (14.22), can be rewritten as

 IL � eGL  �   �p 
 _ tn 
   �   � 1 �   

�p 
 _ �n 
   �  AL (14.24)

 We may defi ne a photoconductor gain, �ph, as the ratio of the rate at which 

charge is collected by the contacts to the rate at which charge is generated within the 

photoconductor. We can write the gain as

 �ph �   
IL  __ 

eGL AL
   (14.25)

which, using Equation (14.24), can be written

 �ph �   
�p 

 _ tn 
    � 1 �   

�p 
 _ �n    �  (14.26)
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 14.3   Photodetectors 635

 Let’s consider physically what happens to a photon-generated electron, for ex-

ample. After the excess electron is generated, it drifts very quickly out of the photo-

conductor at the anode terminal. In order to maintain charge neutrality throughout 

the photoconductor, another electron immediately enters the photoconductor at the 

cathode and drifts toward the anode. This process will continue during a time period 

equal to the mean carrier lifetime. At the end of this period, on the average, the 

photo electron will recombine with a hole.

 The electron transit time, using the parameters from Example 14.4, is tn � 
7.41 	 10�9 s. In a simplistic sense, the photoelectron will circulate around the photo-

conductor circuit 135 times during the 10�6 s time duration, which is the mean car-

rier lifetime. If we take into account the photon-generated hole, the total number of 

charges collected at the photoconductor contacts for every electron generated is 183.

 When the optical signal ends, the photocurrent will decay exponentially with a 

time constant equal to the minority carrier lifetime. From the photoconductor gain 

expression, we would like a large minority carrier lifetime, but the switching speed is 

enhanced by a small minority carrier lifetime. There is obviously a trade-off between 

gain and speed. In general, the performance of a photodiode, which we will discuss 

next, is superior to that of a photoconductor.

14.3.2  Photodiode

A photodiode is a pn junction diode operated with an applied reverse-biased volt-

age. We will initially consider a long diode in which excess carriers are generated 

   EXAMPLE 14.4Objective: Calculate the photoconductor gain of a silicon photoconductor.

 Consider an n-type silicon photoconductor with a length L � 100 �m, cross-sectional area 

A � 10�7 cm2, and minority carrier lifetime �p � 10�6 s. Let the applied voltage be V � 10 volts.

■ Solution
The electron transit time is determined as

 tn �   L _ 
�n E

   �   L2

 _ 
�nV

   �   
(100 	 10�4)2

  ___ 
(1350)(10)

   � 7.41 	 10�9 s

The photoconductor gain is then

 �ph �   
�p 

 _ tn 
    � 1 �   

�p 
 _ �n    �  �   10�6

 __ 
7.41 	 10�9

    � 1 �   480 _ 
1350

   �  � 1.83 	 102

■ Comment
The fact that a photoconductor—a bar of semiconductor material—has a gain may be 

 surprising.

■ EXERCISE PROBLEM
Ex 14.4  Consider the photoconductor described in Example 14.4. Determine the photocur-

rent if GL � 1021 cm�3 s�1 and E � 10 V /cm. Also assume that �n � 1000 cm2 /V-s 

and �p � 400 cm2 /V-s. 

(Ans. IL � 0.224 �A)
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636 CHAPTER 14   Optical Devices

uniformly throughout the semiconductor device. Figure 14.17a shows the reverse-

biased diode and Figure 14.17b shows the minority carrier distribution in the reverse-

biased junction prior to photon illumination.

 Let GL be the generation rate of excess carriers. The excess carriers generated 

within the space charge region are swept out of the depletion region very quickly 

by the electric fi eld; the electrons are swept into the n region and the holes into 

the p region. The photon-generated current density from the space charge region is 

given by

 JL1 � e 
∫

 

 
 
  

  GL dx (14.27)

where the integral is over the space charge region width. If GL is constant throughout 

the space charge volume, then

 JL1 � eGLW (14.28)

where W is the space charge width. We may note that JL1 is in the reverse-biased 

direction through the pn junction. This component of photocurrent responds very 

quickly to the photon illumination and is known as the prompt photocurrent.

 We may note, by comparing Equations (14.28) and (14.25), that the photodiode 

gain is unity. The speed of the photodiode is limited by the carrier transport through 

Figure 14.17 | (a) A reverse-biased pn junction. (b) Minority 

carrier concentration in the reverse-biased pn junction.
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 14.3   Photodetectors 637

the space charge region. If we assume that the saturation drift velocity is 107 cm/s 

and the depletion width is 2 �m, the transit time is �t � 20 ps. The ideal modulat-

ing frequency has a period of 2�t, so the frequency is f � 25 GHz. This frequency 

 response is substantially higher than that of photoconductors.

 Excess carriers are also generated within the neutral n and p regions of the diode. 

The excess minority carrier electron distribution in the p region is found from the 

ambipolar transport equation, which is

 Dn   
�2(�np)

 __ 
�x2

   � GL �   
�np 

 _ �n0

   �   
�(�np)

 __ 
�t   (14.29)

We will assume that the E-fi eld is zero in the neutral regions. In steady state, 

�(�np)��t � 0, so that Equation (14.29) can be written as

   
d 2(�np)

 __ 
dx2

   �   
�np 

 _ 
 L n  

2 
   � �   

GL  _ 
Dn 

   (14.30)

where  L n  
2  � Dn�n0.

 The solution to Equation (14.30) can be found as the sum of the homogeneous 

and particular solutions. The homogeneous solution is found from the equation

   
d 2(�nph)

 __ 
dx2

   �   
�nph 

 _ 
 L n  

2 
   � 0 (14.31)

where �nph is the homogeneous solution and is given by

 �nph � Ae�x�Ln � Be�x�Ln  (x � 0) (14.32)

One boundary condition is that �nph must remain fi nite, which implies that B 
 0 for 

the “long” diode.

 The particular solution is found from

 �   
�npp 

 _ 
 L n  

2 
   � �   

 GL  _ 
Dn 

   (14.33)

which yields

 �npp �   
GL

 L n  
2 
 _ 

Dn 
   �   

GL(Dn�n0)
 __ 

Dn 
   � GL�n0 (14.34)

 The total steady-state solution for the excess minority carrier electron concentra-

tion in the p region is then

 �np � Ae�x�Ln � GL�n0 (14.35)

The total electron concentration is zero at x � 0 for the reverse-biased junction. The 

excess electron concentration x � 0 is then

 �np(x � 0) � �np0 (14.36)

Using the boundary condition from Equation (14.36), the electron concentration 

given by Equation (14.35) becomes

 �np � GL�n0 � (GL�n0 � np0)e�x�Ln (14.37)

nea29583_ch14_618-669.indd   637nea29583_ch14_618-669.indd   637 12/11/10   12:51 PM12/11/10   12:51 PM



638 CHAPTER 14   Optical Devices

We can fi nd the excess minority carrier hole concentration in the n region using the 

same type of analysis. Using the x
 notation shown in Figure 14.17, we can write

 �pn � GL�p0 � (GL�p0 � pn0) e �x
�Lp  (14.38)

Equations (14.37) and (14.38) are plotted in Figure 14.18. We may note that the steady-

state values far from the space charge region are the same as were given  previously.

 The gradient in the minority carrier concentrations will produce diffusion cur-

rents in the pn junction. The diffusion current density at x � 0 due to minority carrier 

electrons is

 Jn1 � eDn      d(�np)
 __ 

dx
   �  

x � 0
      � eDn   

d _ 
dx

   [GL�n0 � (GL�n0 � np0)e�x�Ln] �  x � 0
 

 �   
eDn  _ 
Ln 

   (GL�n0 � np0) 
(14.39)

Equation (14.39) can be written as

 Jn1 � eGL Ln �   
eDn np0 

 __ 
Ln 

   (14.40)

The fi rst term in Equation (14.40) is the steady-state photocurrent density while the 

second term is the ideal reverse saturation current density due to the minority carrier 

electrons.

 The diffusion current density (in the x direction) at x
 � 0 due to the minority 

carrier holes is

 Jp1 � eGL Lp �   
eDp

 pn0 
 __ 

Lp 
   (14.41)
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�

Figure 14.18 | Steady-state, photoinduced minority carrier 

concentrations and photocurrents in a “long” reverse-biased 

pn junction.
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Similarly, the fi rst term is the steady-state photocurrent density and the second term 

is the ideal reverse saturation current density.

 The total steady-state diode photocurrent density for the long diode is now

 JL � eGLW � eGL Ln � eGL Lp � e(W � Ln � Lp)GL (14.42)

Again note that the photocurrent is in the reverse-biased direction through the diode. 

The photocurrent given by Equation (14.42) is the result of assuming uniform gen-

eration of excess carriers throughout the structure, a long diode, and steady state.

 The time response of the diffusion components of the photocurrent is relatively 

slow, since these currents are the results of the diffusion of minority carriers toward 

the depletion region. The diffusion components of photocurrent are referred to as the 

delayed photocurrent.

   EXAMPLE 14.5Objective: Calculate the steady-state photocurrent density in a reverse-biased, long pn diode.

 Consider a silicon pn diode at T � 300 K with the following parameters:

 Na � 1016 cm�3   Nd � 1016 cm�3

 Dn � 25 cm2/s        Dp � 10 cm2/s

 �n0 � 5 	 10�7 s       �p0 � 10�7 s

Assume that a reverse-biased voltage of VR � 5 volts is applied and let GL � 1021 cm�3-s�1.

■ Solution
We may calculate various parameters as follows:

 Ln �  �
_____

 Dn�n0
   �  �

_____________

  (25)(5 	 10�7)   � 35.4 �m

 Lp �  �
_____

 Dp�p0
   �  �

_________

 (10)(10�7)   � 10.0 �m

 Vbi � Vt ln  �   Na Nd  _ 
 n i  

2 
   �  � (0.0259) ln  �   (1016)(1016)

 ___ 
(1.5 	 1010)2

   �  � 0.695 V

 W �   �   2�s  _ e    �   Na � Nd  __ 
NaNd 

   �  (Vbi � VR)   1�2

 

   �   �   2(11.7)(8.85 	 10�14)
  ____  

1.6 	 10�19
   �   (2 	 1016)

 __ 
(1016)(1016)

   � (0.695 � 5)   1�2

  � 1.21 �m

Finally, the steady-state photocurrent density is

 JL � e(W � Ln � Lp)GL

   � (1.6 	 10�19)(1.21 � 35.4 � 10.0) 	 10�4(1021) � 0.75 A/cm2

■ Comment
Again, keep in mind that this photocurrent is in the reverse-biased direction through the diode 

and is many orders of magnitude larger than the reverse-biased saturation current density in 

the pn junction diode.
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640 CHAPTER 14   Optical Devices

 In this example calculation, Ln � 
W and Lp � 

W. In many pn junction structures, 

the assumption of a long diode will not be valid, so the photocurrent expression will 

have to be modifi ed. In addition, the photon energy absorption may not be uniform 

throughout the pn structure. The effect of nonuniform absorption will be considered 

in the next section.

14.3.3  PIN Photodiode

In many photodetector applications, the speed of response is important; therefore, the 

prompt photocurrent generated in the space charge region is the only photocurrent of 

interest. To increase the photodetector sensitivity, the depletion region width should 

be made as large as possible. This can be achieved in a PIN photodiode.

 The PIN diode consists of a p region and an n region separated by an intrinsic 

region. A sketch of a PIN diode is shown in Figure 14.19a. The intrinsic region width 

W is much larger than the space charge width of a normal pn junction. If a reverse 

bias is applied to the PIN diode, the space charge region extends completely through 

the intrinsic region.

■ EXERCISE PROBLEM
Ex 14.5  The doping concentrations of the photodiode described in Example 14.5 are 

changed to Na � Nd � 1015 cm�3. (a) Determine the steady-state photocurrent den-

sity. (b) Calculate the ratio of prompt photocurrent to steady-state photocurrent. 

[Ans. (a) JL � 0.787 A /cm
2
; (b) JL1�JL � 0.0773]

� �

VR

Wp Wn

n�p� i

n�p� i

W

(b)

(a)

x � Wx � 0

�0 �(x)

Figure 14.19 | (a) A reverse-biased PIN 

photodiode. (b) Geometry showing 

nonuniform photon absorption.
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 Assume that a photon fl ux 	0 is incident on the p� region. If we assume that the 

p� region width Wp is very thin, then the photon fl ux, as a function of distance, in the 

intrinsic region is 	(x) � 	0e��x, where � is the photon absorption coeffi cient. This 

nonlinear photon absorption is shown in Figure 14.19b. The photocurrent density 

generated in the intrinsic region can be found as

 JL � e 
∫

0

 
 
W 

  GL dx � e 
∫

0

 
 
W 

  	0�e��x dx � e	0(1�e��W ) (14.43)

This equation assumes that there is no electron–hole recombination within the space 

charge region and also that each photon absorbed creates one electron–hole pair.

   EXAMPLE 14.6Objective: Calculate the photocurrent density in a PIN photodiode.

 Consider a silicon PIN diode with an intrinsic region width of W � 20 �m. Assume that 

the photon fl ux is 1017 cm�2-s�1 and the absorption coeffi cient is � � 103 cm�1.

■ Solution
The generation rate of electron–hole pairs at the front edge of the intrinsic region is

 GL1 � �	0 � (103)(1017) � 1020 cm�3-s�1

and the generation rate at the back edge of the intrinsic region is

 GL2 � �	0e��W � (103)(1017)exp [�(103)(20 	 10�4)]

 � 0.135 	 1020 cm�3-s�1

The generation rate is obviously not uniform throughout the intrinsic region. The photocurrent 

density is then

 JL � e	0(1�e��W )

    � (1.6 	 10�19)(1017){1�exp [�(103)(20 	 10�4)]}

  � 13.8 mA/cm2

■ Comment
The prompt photocurrent density of a PIN photodiode will be larger than that of a regular 

photodiode since the space charge region is larger in a PIN photodiode.

■ EXERCISE PROBLEM
Ex 14.6  Repeat Example 14.6 for photon absorption coeffi cients of (a) � � 102 cm�1 and 

(b) � � 104 cm�1.

[Ans. (a) JL � 2.90 mA /cm
2
; (b) JL � 16.0 mA /cm

2
]

 In most situations, we will not have a long diode; thus, the steady-state photo-

current described by Equation (14.42) will not apply for most photodiodes.

14.3.4  Avalanche Photodiode

The avalanche photodiode is similar to the pn or PIN photodiode except that the bias 

applied to the avalanche photodiode is suffi ciently large to cause impact ionization. 
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642 CHAPTER 14   Optical Devices

Electron–hole pairs are generated in the space charge region by photon absorption, 

as we have discussed previously. The photon-generated electrons and holes now 

 generate additional electron–hole pairs through impact ionization. The avalanche 

photodiode now has a current gain introduced by the avalanche multiplication factor.

 The electron–hole pairs generated by photon absorption and by impact ioniza-

tion are swept out of the space charge region very quickly. If the saturation velocity 

is 107 cm/s in a depletion region that is 10 �m wide, then the transit time is

 �t �   107

 __ 
10 	 10�4

   � 100 ps

The period of a modulation signal would be 2�t, so that the frequency would be

 f �   1 _ 
2�t 

   �   1 __ 
200 	 10�12

   � 5 GHz

If the avalanche photodiode current gain is 20, then the gain-bandwidth product is 

100 GHz. The avalanche photodiode could respond to light waves modulated at 

 micro wave frequencies.

14.3.5  Phototransistor

A bipolar transistor can also be used as a photodetector. The phototransistor can have 

high gain through the transistor action. An npn bipolar phototransistor is shown in 

Figure 14.20a. This device has a large base–collector junction area and is usually 

operated with the base open circuited. Figure 14.20b shows the block diagram of the 

phototransistor. Electrons and holes generated in the reverse-biased B–C junction are 

swept out of the space charge region, producing a photocurrent IL. Holes are swept 

n

E

B

IE

�IE

IL

�VCE

n
C

np

pn

(a)

Collector

(b)

Base Emitter

h�

Figure 14.20 | (a) A bipolar phototransistor. (b) Block 

diagram of the open-base phototransistor.
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into the p-type base, making the base positive with respect to the emitter. Since the 

B–E becomes forward-biased, electrons will be injected from the emitter back into 

the base, leading to the normal transistor action.

 From Figure 14.20b, we see that

 IE � �IE � IL (14.44)

where IL is the photon-generated current and � is the common base current gain. Since 

the base is an open circuit, we have IC � IE, so Equation (14.44) can be written as

 IC � �IC � IL (14.45)

Solving for IC, we fi nd

 IC �   
IL  __ 

1 � �
   (14.46)

Relating � to �, the dc common emitter current gain, Equation (14.46) becomes

 IC � (1 � �)IL (14.47)

Equation (14.47) shows that the basic B–C photocurrent is multiplied by the factor 

(1 � �). The phototransistor, then, amplifi es the basic photocurrent.

 With the relatively large B–C junction area, the frequency response of the photo-

transistor is limited by the B–C junction capacitance. Since the base is essentially the 

input to the device, the large B–C capacitance is multiplied by the Miller effect, so 

the frequency response of the phototransistor is further reduced. The phototransistor, 

however, is a lower-noise device than the avalanche photodiode.

 Phototransistors can also be fabricated in heterostructures. The injection 

 effi ciency is increased as a result of the bandgap differences, as we discussed in 

Chapter 12. With the bandgap difference, the lightly doped base restriction no longer 

applies. A fairly heavily doped, narrow-base device can be fabricated with a high 

blocking voltage and a high gain.

TYU 14.5 Consider a long silicon pn junction photodiode with the parameters given in 

Exam ple 14.5. The cross-sectional area is A � 10�3 cm2. Assume the photodiode 

is reverse biased by a 5-volt battery in series with a 5 k� load resistor. An opti-

cal signal at a wavelength of � � 1 �m is incident on the photodiode producing 

a uniform generation rate of excess carriers throughout the entire device. Deter-

mine the incident intensity such that the voltage across the load resistor is 0.5 V. 

(Ans. Iv � 0.266 W/cm
2
)

TEST YOUR UNDERSTANDING

14.4 |  PHOTOLUMINESCENCE AND 
ELECTROLUMINESCENCE

In the fi rst section of this chapter, we have discussed the creation of excess electron–

hole pairs by photon absorption. Eventually, excess electrons and holes recombine, 

and in direct bandgap materials the recombination process may result in the emission 

of a photon. The general property of light emission is referred to as luminescence. 
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When excess electrons and holes are created by photon absorption, photon emission 

from the recombination process is called photoluminescence.

 Electroluminescence is the process of generating photon emission when the 

excitation of excess carriers is a result of an electric current caused by an applied 

electric fi eld. We are mainly concerned here with injection electroluminescence, the 

result of injecting carriers across a pn junction. The light emitting diode and the pn 

junction laser diode are examples of this phenomenon. In these devices, electric en-

ergy, in the form of a current, is converted directly into photon energy.

14.4.1  Basic Transitions

Once electron–hole pairs are formed, there are several possible processes by which 

the electrons and holes can recombine. Some recombination processes may result in 

photon emission from direct bandgap materials, whereas other recombination pro-

cesses in the same material may not.

 Figure 14.21a shows the basic interband transitions. Curve (i) corresponds 

to an intrinsic emission very close to the bandgap energy of the material. Curves 

(ii) and (iii) correspond to energetic electrons or holes. If either of these recombina-

tions result in the emission of a photon, the energy of the emitted photon will be 

slightly larger than the bandgap energy. There will then be an emission spectrum and 

a bandwidth associated with the emission.

 The possible recombination processes involving impurity or defect states are 

shown in Figure 14.21b. Curve (i) is the conduction band to acceptor transition, 

curve (ii) is the donor to valence-band transition, curve (iii) is the donor to accep-

tor transition, and curve (iv) is the recombination due to a deep trap. Curve (iv) 

is a  non radiative process corresponding to the Shockley–Read–Hall recombination 

process discussed in Chapter 6. The other recombination processes may or may not 

result in the emission of a photon.

 Figure 14.21c shows the Auger recombination process, which can become im-

portant in direct bandgap materials with high doping concentrations. The Auger 

 recombination process is a nonradiative process. The Auger recombination, in one case, 

shown in curve (i), is a recombination between an electron and hole, accompanied by 

the transfer of energy to another free hole. Similarly, in the second case, the recombina-

tion between an electron and hole can result in the transfer of energy to a free electron 

as shown in curve (ii). The third particle involved in this process will eventually lose its 

energy to the lattice in the form of heat. The process involving two holes and an electron 

would occur predominantly in heavily doped p-type materials, and the process involving 

two electrons and a hole would occur primarily in a heavily doped n-type material.

 The recombination processes shown in Figure 14.21a indicate that the emission 

of a photon is not necessarily at a single, discrete energy, but can occur over a range 

of energies. The spontaneous emission rate generally has the form

 I(�) � �2 (h� � Eg)
1�2 exp  �   �(h� � Eg)

 __ 
kT

   �  (14.48)

where Eg is the bandgap energy. Figure 14.22 shows the emission spectra from gal-

lium arsenide. The peak photon energy decreases with temperature because the 
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bandgap energy decreases with temperature. We will show that the bandwidth of the 

emission spectra can be greatly reduced in a laser diode by using an optical resonator.

14.4.2  Luminescent Effi ciency

We have shown that not all recombination processes are radiative. An effi cient lu-

minescent material is one in which radiative transitions predominate. The quantum 

 effi ciency is defi ned as the ratio of the radiative recombination rate to the total re-

combination rate for all processes. We can write

 �q �   
Rr  _ 
R

   (14.49)

where �q is the quantum effi ciency, Rr is the radiative recombination rate, and R is 

the total recombination rate of the excess carriers. Since the recombination rate is 

Figure 14.21 | Basic transitions in a semiconductor.
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Figure 14.22 | GaAs diode emission 

spectra at T � 300 K and T � 77 K.
(From Sze and Ng [17].)
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inversely proportional to lifetime, we can write the quantum effi ciency in terms of 

lifetimes as

 �q �   
�nr  __ 

�nr � �r

   (14.50)

where �nr is the nonradiative lifetime and �r is the radiative lifetime. For a 

high luminescent effi ciency, the nonradiative lifetimes must be large; thus, the 

probability of a nonradiative recombination is small compared to the radiative 

recombination.

 The interband recombination rate of electrons and holes will be directly propor-

tional to the number of electrons available and directly proportional to the number of 

available empty states (holes). We can write

 Rr � Bnp (14.51)

where Rr is the band-to-band radiative recombination rate and B is the constant of 

proportionality. The values of B for direct-bandgap materials are on the order of 

106 larger than for indirect bandgap materials. The probability of a direct band-

to-band radiative recombination transition in an indirect bandgap material is very 

unlikely.

 One problem encountered with the emission of photons from a direct bandgap 

material is the reabsorption of the emitted photons. In general, the emitted photons 

will have energies h� � Eg, which means that the absorption coeffi cient is not zero for 

this energy. In order to generate a light output from a light emitting device, the process 

must take place near the surface. One possible solution to the reabsorption problem is 

to use heterojunction devices. These are discussed in later sections.

14.4.3  Materials

An important direct bandgap semiconductor material for optical devices is gallium 

arsenide. Another compound material that is of great interest is AlxGa1�x As. This 

material is a compound semiconductor in which the ratio of aluminum atoms to 

gallium atoms can be varied to achieve specifi c characteristics. Figure 14.23 shows 

the bandgap energy as a function of the mole fraction between aluminum and gal-

lium. We can note from the fi gure that for 0 � x � 0.45, the alloy material is a 

direct bandgap material. For x � 0.45, the material becomes an indirect bandgap 

material, not suitable for optical devices. For 0 � x � 0.35, the bandgap energy can 

be  ex pressed as

 Eg � 1.424 � 1.247x eV (14.52)

 Another compound semiconductor used for optical devices is the GaAs1�xPx 

system. Figure 14.24a shows the bandgap energy as a function of the mole frac-

tion x. For 0 � x � 0.45, this material is also a direct bandgap material, and for 

x � 0.45, the bandgap becomes indirect. Figure 14.24b is the E versus k diagram, 

showing how the bandgap changes from direct to indirect as the mole fraction 

changes.
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14.5 | LIGHT EMITTING DIODES
Photodetectors and solar cells convert optical energy into electrical energy—the 

photons generate excess electrons and holes, which produce an electric current. We 

might also apply a voltage across a pn junction resulting in a diode current, which in 

turn can produce photons and a light output. This inverse mechanism is called injec-

tion electroluminescence. This device is known as a Light Emitting Diode (LED). 

The spectral output of an LED may have a relatively wide wavelength bandwidth of 

between 30 and 40 nm. However, this emission spectrum is narrow enough so that a 

particular color is observed, provided the output is in the visible range.

14.5.1  Generation of Light

As we have discussed previously, photons may be emitted if an electron and hole 

recombine by a direct band-to-band recombination process in a direct bandgap mate-

rial. The emission wavelength, from Equation (14.1), is

 � �   hc _ 
Eg 

   �   1.24 _ 
Eg 

   �m (14.53)

where Eg is the bandgap energy measured in electron-volts.

EXAMPLE 14.7 Objective: Determine the output wavelength of a GaAs1�xPx material for two different mole 

fractions.

 Consider fi rst GaAs and then GaAs1�x Px.

■ Solution
GaAs has a bandgap energy of Eg � 1.42 eV. This material would produce a photon output at 

a wavelength of

 � �   1.24 _ 
E

   �   1.24 _ 
1.42

   � 0.873 �m

This wavelength is in the infrared range and not in the visible range. If we desire a visible 

output with a wavelength of � � 0.653 �m, for example, the bandgap energy would have to be

 E �   1.24 _ 
�

   �   1.24 _ 
0.653

   � 1.90 eV

This bandgap energy would correspond to a mole fraction of approximately x � 0.4.

■ Comment
By changing the mole fraction in the GaAs1�xPx system, the output can change from the infra-

red to the red spectrum.

■ EXERCISE PROBLEM
Ex 14.7  Determine the output wavelength of a GaAs1�xPx material for mole fractions of 

(a) x � 0.15 and (b) x � 0.30.
[Ans. (a) � � 0.775 �m; (b) � � 0.705 �m]
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 When a voltage is applied across a pn junction, electrons and holes are injected 

across the space charge region where they become excess minority carriers. These 

excess minority carriers diffuse into the neutral semiconductor regions where they 

recombine with majority carriers. If this recombination process is a direct band-to-

band process, photons are emitted. The diode diffusion current is directly proportional 

to the recombination rate, so the output photon intensity will also be proportional to 

the ideal diode diffusion current. In gallium arsenide, electroluminescence originates 

primarily on the p side of the junction because the effi ciency for electron injection is 

higher than that for hole injection.

14.5.2  Internal Quantum Effi ciency

The internal quantum effi ciency of an LED is the fraction of diode current that 

 produces luminescence. The internal quantum effi ciency is a function of the injec-

tion effi ciency and a function of the percentage of radiative recombination events 

compared with the total number of recombination events.

 The three current components in a forward-biased diode are the minority car-

rier electron diffusion current, the minority carrier hole diffusion current, and the 

space charge recombination current. These current densities can be written, respec-

tively, as

 Jn �   
eDnnp0 

 __ 
Ln 

    � exp  �   eV _ 
kT

   �  � 1 �  (14.54a)

 Jp �   
eDppn0 

 __ 
Lp 

    � exp  �   eV _ 
kT

   �  � 1 �  (14.54b)

and

 JR �   
eniW _ 
2�0 

    � exp  �   eV _ 
2kT

   �  � 1 �  (14.54c)

 The recombination of electrons and holes within the space charge region is, in 

general, through traps near midgap and is a nonradiative process. Since lumines-

cence is due primarily to the recombination of minority carrier electrons in GaAs, we 

can defi ne an injection effi ciency as the fraction of electron current to total current. 

Then

  �   
Jn  ___ 

Jn � Jp � JR 
   (14.55)

where  is the injection effi ciency. We can make  approach unity by using an n�p 

diode so that Jp is a small fraction of the diode current and by forward biasing the 

diode suffi ciently so that JR is a small fraction of the total diode current.

 Once the electrons are injected into the p region, not all electrons will recombine 

radiatively. We can defi ne the radiative and nonradiative recombination rates as

 Rr �   �n _ �r 
   (14.56a)
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and

 Rnr �   �n _ �nr
   (14.56b)

where �r and �nr are the radiative and nonradiative recombination lifetimes, respec-

tively, and �n is the excess carrier concentration. The total recombination rate is

 R � Rr � Rnr �   �n _ �   �   �n _ �r 
   �   �n _ �nr 

   (14.57)

where � is the net excess carrier lifetime.

 The radiative effi ciency is defi ned as the fraction of recombinations that are 

radiative. We can write

 � �   
Rr  __ 

Rr � Rnr 
   �   

  1 _ �r 
  
 __ 

  1 _ �r 
   �   1 _ �nr 

  
   �   � _ �r 

   (14.58)

where � is the radiative effi ciency. The nonradiative recombination rate is propor-

tional to Nt , which is the density of nonradiative trapping sites within the forbidden 

bandgap. Obviously, the radiative effi ciency increases as Nt is reduced.

 The internal quantum effi ciency is now written as

 �i � � (14.59)

The radiative recombination rate is proportional to the p-type doping. As the p-type 

doping increases, the radiative recombination rate increases. However, the injection 

effi ciency decreases as the p-type doping increases; therefore, there is an optimum 

doping that maximizes the internal quantum effi ciency.

14.5.3  External Quantum Effi ciency

One very important parameter of the LED is the external quantum effi ciency: the frac-

tion of generated photons that are actually emitted from the semiconductor. The exter-

nal quantum effi ciency is normally a much smaller number than the internal quantum 

effi ciency. Once a photon has been produced in the semiconductor, there are three loss 

mechanisms the photon may encounter: photon absorption within the semiconductor, 

Fresnel loss, and critical angle loss.

 Figure 14.25 shows a pn junction LED. Photons can be emitted in any direc-

tion. Since the emitted photon energy must be h� � Eg, these emitted photons can be 

 reabsorbed within the semiconductor material. The majority of photons will actually 

be emitted away from the surface and reabsorbed in the semiconductor.

 Photons must be emitted from the semiconductor into air; thus, the photons 

must be transmitted across a dielectric interface. Figure 14.26 shows the incident, 

refl ected, and transmitted waves. The parameter  
_

 n 2 is the index of refraction for the 

semiconductor and  
_

 n 1 is the index of refraction for air. The refl ection coeffi cient is

 � �   �    
_
 n 2 �  

_
 n 1  __  

_
 n 2 �  

_
 n 1 
   �  2  (14.60)

This effect is called Fresnel loss. The refl ection coeffi cient � is the fraction of inci-

dent photons that are refl ected back into the semiconductor.
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p

Emitted photon

Reflective coating

n

Figure 14.25 | Schematic of photon 

emission at the pn junction of an LED.

n2 n1

Incident wave

Reflected wave

Transmitted wave

Figure 14.26 | Schematic of 

incident, refl ected, and transmitted 

photons at a dielectric interface.

   EXAMPLE 14.8Objective: Calculate the refl ection coeffi cient at a semiconductor–air interface.

 Consider the interface between a GaAs semiconductor and air.

■ Solution
The index of refraction for GaAs is  

_
 n 2 � 3.8 at a wavelength of � � 0.70 �m and the index of 

refraction for air is  
_
 n 1 � 1.0. The refl ection coeffi cient is

� �   �    
_
 n 2 �  

_
 n 1  __ 

 
_
 n 2 �  

_
 n 1 
   �  2  �   �   3.8 � 1.0  __ 

3.8 � 1.0
   �  2  � 0.34

■ Comment
A refl ection coeffi cient of � � 0.34 means that 34 percent of the photons incident from 

the gallium arsenide onto the semiconductor–air interface are refl ected back into the 

semiconductor.

■ EXERCISE PROBLEM
Ex 14.8  At a wavelength of � � 0.70 �m, the index of refraction for GaAs is  

_
 n 2 � 3.8 

and that for GaP is  
_
 n 2 � 3.2. Consider a GaAs1�xPx material with a mole fraction 

x � 0.40. Assuming the index of refraction is a linear function of the mole frac-

tion, determine the refl ection coeffi cient, �, at the GaAs0.6P0.4–air interface.

(Ans. � � 0.315)

 Photons incident on the semiconductor–air interface at an angle are refracted as 

shown in Figure 14.27. If the photons are incident on the interface at an angle greater 

than the critical angle �c, the photons experience total internal refl ection. The critical 

angle is determined from Snell’s law and is given by

 �c � sin�1  �    
_
 n 1  _ 

 
_
 n 2 
   �  (14.61)
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�c

n1

n2 � n1

Figure 14.27 | Schematic showing 

refraction and total internal refl ection 

at the critical angle at a dielectric 

interface.

EXAMPLE 14.9 Objective: Calculate the critical angle at a semiconductor–air interface.

 Consider the interface between GaAs and air.

■ Solution
For GaAs,  

_
 n 2 � 3.8 at a wavelength of � � 0.70 �m and for air,  

_
 n 1 � 1.0. The critical angle is

 �c � sin�1  �    
_
 n 1  _ 

 
_
 n 2 
   �  � sin�1  �   1.0  _ 

3.8
   �  � 15.3°

■ Comment
Any photon that is incident at an angle greater than 15.3° will be refl ected back into the 

semiconductor.

■ EXERCISE PROBLEM
Ex 14.9  Repeat Example 14.9 for GaAs 0.6 P0.4. See Exercise Problem Ex 14.8 for a discus-

sion of the dielectric constant.

(Ans. �c � 16.3°)

 Figure 14.28a shows the external quantum effi ciency plotted as a function of the 

p-type doping concentration and Figure 14.28b is a plot of the external effi ciency as 

a function of junction depth below the surface. Both fi gures show that the external 

quantum effi ciency is in the range of 1 to 3 percent.

14.5.4  LED Devices

The wavelength of the output signal of an LED is determined by the bandgap energy 

of the semiconductor. Gallium arsenide, a direct bandgap material, has a bandgap 

 energy of Eg � 1.42 eV, which yields a wavelength of � � 0.873 �m. Comparing 

this wavelength to the visible spectrum, which is shown in Figure 14.5, the output 
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of a GaAs LED is not in the visible range. For a visible output, the wavelength of 

the signal should be in the range of 0.4 to 0.72 �m. This range of wavelengths cor-

responds to bandgap energies between approximately 1.7 and 3.1 eV.

 GaAs1�xPx is a direct bandgap material for 0 � x � 0.45, as shown in Fig-

ure 14.24. At x � 0.40, the bandgap energy is approximately Eg � 1.9 eV, which 

would produce an optical output in the red range. Figure 14.29 shows the bright-

ness of GaAs1�xPx diodes for different values of x. The peak also occurs in the red 

range. By using planar technology, GaAs0.6P0.4 monolithic arrays have been fabri-

cated for numeric and alphanumeric displays. When the mole fraction x is greater 

than 0.45, the material changes to an indirect bandgap semiconductor so that the 

quantum effi ciency is greatly reduced.

 GaAlxAs1�x can be used in a heterojunction structure to form an LED. A device 

structure is shown in Figure 14.30. Electrons are injected from the wide-bandgap 

N-GaAl0.7As0.3 into the narrow-bandgap p-GaAl0.6As0.4. The minority carrier electrons 
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Figure 14.28 | (a) External quantum 

effi ciency of a GaP LED versus acceptor 

doping. (b) External quantum effi ciency of 

a GaAs LED versus junction depth.
(From Yang [22].)
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654 CHAPTER 14   Optical Devices

in the p material can recombine radiatively. Since Egp � EgN, the photons are emit-

ted through the wide-bandgap N material with essentially no absorption. The wide 

bandgap N material acts as an optical window and the external quantum effi ciency 

increases.

14.6 | LASER DIODES
The photon output of the LED is due to an electron giving up energy as it makes 

a transition from the conduction band to the valence band. The LED photon emis-

sion is spontaneous in that each band-to-band transition is an independent event. 

The spontaneous emission process yields a spectral output of the LED with a fairly 

wide bandwidth. If the structure and operating condition of the LED are modifi ed, 

the  device can operate in a new mode, producing a coherent spectral output with 

a bandwidth of wavelengths less than 0.1 nm. This new device is a laser diode, 

where laser stands for Light Amplifi cation by Stimulated Emission of Radiation. 

Although there are many different types of lasers, we are here concerned only with 

the pn junction laser diode.

N GaAl0.7As0.3

N-GaAl0.7As0.3

P GaAl0.6As0.4

P-GaAl0.6As0.4 p-GaAs

Contact

Contact

1.42 eV2.0 eV

2.1 eV

EF

(a)

(b)

p GaAs

Figure 14.30 | The (a) cross section and 

(b) thermal equilibrium energy-band 

diagram of a GaAlAs heterojunction LED.
(From Yang [22].)
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14.6.1  Stimulated Emission and Population Inversion

Figure 14.31a shows the case when an incident photon is absorbed and an electron 

is elevated from an energy state E1 to an energy state E2. This process is known as 

 induced absorption. If the electron spontaneously makes the transition back to the 

lower energy level with a photon being emitted, we have a spontaneous emission 

process as indicated in Figure 14.31b. On the other hand, if there is an incident pho-

ton at a time when an electron is in the higher energy state as shown in Figure 14.31c, 

the incident photon can interact with the electron, causing the electron to make a 

tran sition downward. The downward transition produces a photon. Since this process 

was initiated by the incident photon, the process is called stimulated or induced emis-
sion. Note that this stimulated emission process has produced two photons; thus, we 

can have optical gain or amplifi cation. The two emitted photons are in phase so that 

the spectral output will be coherent.

 In thermal equilibrium, the electron distribution in a semiconductor is deter-

mined by the Fermi–Dirac statistics. If the Boltzmann approximation applies, then 

we can write

   
N2 _ 
N1 

   � exp  �   �(E2 � E1)
 __ 

kT
   �  (14.62)

where N1 and N2 are the electron concentrations in the energy levels E1 and E2, 

respectively, and where E2 � E1. In thermal equilibrium, N2 � N1. The probability of 

an induced absorption event is exactly the same as that of an induced emission event. 

The number of photons absorbed is proportional to N1 and the number of additional 

photons emitted is proportional to N2. In order to achieve optical amplifi cation or for 

lasing action to occur, we must have N2 � N1; this is called population inversion. We 

cannot achieve lasing action at thermal equilibrium.

E2

(a)

Induced

absorption
h�

E1

E2

(b)

Spontaneous

emission
h�

E1

E2

(c)

Stimulated

or induced

emission

h� h�
h�

E1

Figure 14.31 | Schematic diagram showing (a) induced 

absorption, (b) spontaneous emission, and (c) stimulated 

emission processes.
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656 CHAPTER 14   Optical Devices

 Figure 14.32 shows the two energy levels with a light wave at an intensity I� 

propagating in the z direction. The change in intensity as a function of z can be 

written as

  
dI�  _ 
dz

   �   
# photons emitted

  ___ 
cm3 

   �   
# photons absorbed

  ____ 
cm3 

  

or

   
dI�  _ 
dz

   � N2Wi � h� � N1Wi � h� (14.63)

where Wi is the induced transition probability. Equation (14.63) assumes no loss 

mechanisms and neglects the spontaneous transitions.

 Equation (14.63) can be written as

   
dI�  _ 
dz

   � (�)I� (14.64)

where (�) � (N2 � N1) and is the amplifi cation factor. From Equation (14.64), the 

intensity is

 I� � I�(0)e(�)z (14.65)

Amplifi cation occurs when (�) � 0 and absorption occurs when (�) � 0.

 We can achieve population inversion and lasing in a forward-biased pn homo-

junction diode, if both sides of the junction are degenerately doped. Figure 14.33a 

shows the energy-band diagram of a degenerately doped pn junction in thermal equi-

librium. The Fermi level is in the conduction band in the n-region and the Fermi level 

is in the valence band in the p region. Figure 14.33b shows the energy bands of the pn 

junction when a forward bias is applied. The gain factor in a pn homojunction diode 

is given by

 (�) �  � 1 � exp  �   h� � (EFn � EFp)
  ___ 

kT
   �    (14.66)

In order for (�) � 1, we must have h� � (EFn � EFp), which implies that the junc tion 

must be degenerately doped since we also have the requirement that h� � Eg. In the 

vicinity of the junction, there is a region in which population inversion occurs. There 

are large numbers of electrons in the conduction band directly above a large number 

of empty states. If band-to-band recombination occurs, photons will be emitted with 

energies in the range Eg � h� � (EFn � EFp).

I�

N2

N1
z

E2

E1

Figure 14.32 | Light propagating in 

z direction through a material with 

two energy levels.
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14.6.2  Optical Cavity

Population inversion is one requirement for lasing action to occur. Coherent emission 

output is achieved by using an optical cavity. The cavity will cause a buildup of the 

optical intensity from positive feedback. A resonant cavity consisting of two parallel 

mirrors is known as a Fabry–Perot resonator. The resonant cavity can be fabricated, for 

example, by cleaving a gallium arsenide crystal along the (110) planes as shown in Fig-

ure 14.34. The optical wave propagates through the junction in the z direction, bounc-

ing back and forth between the end mirrors. The mirrors are actually only partially 

refl ecting so that a portion of the optical wave will be transmitted out of the junction.

 For resonance, the length of the cavity L must be an integral number of half 

wavelengths, or

 N  �   � _ 
2

   �  � L (14.67)

where N is an integer. Since � is small and L is relatively large, there can be many 

resonant modes in the cavity. Figure 14.35a shows the resonant modes as a function 

of wavelength.

EFn
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EFp
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t

(a)

(b)

Ev

EF
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p n

Figure 14.33 | (a) Degenerately doped 

pn junction at zero bias. (b) Degenerately 

doped pn junction under forward bias 

with photon emission.
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Active
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Figure 14.34 | A pn junction laser diode with cleaved (110) 

planes forming the Fabry-Perot cavity.
(After Yang [22].)
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658 CHAPTER 14   Optical Devices

 When a forward-bias current is applied to the pn junction, spontaneous emission 

will initially occur. The spontaneous emission spectrum is relatively broadband and 

is superimposed on the possible lasing modes as shown in Figure 14.35b. In order for 

lasing to be initiated, the spontaneous emission gain must be larger than the optical 

losses. By positive feedback in the cavity, lasing can occur at several specifi c wave-

lengths as indicated in Figure 14.35c.

14.6.3  Threshold Current

The optical intensity in the device can be written from Equation (14.65) as 

I� � e(�)z, where (�) is the amplifi cation factor. We have two basic loss mecha-

nisms. The fi rst is the photon absorption in the semiconductor material. We can 

write

 I� � e��(�)z (14.68)

where �(�) is the absorption coeffi cient. The second loss mechanism is due to the 

partial transmission of the optical signal through the ends, or through the partially 

refl ecting mirrors.

Longitudinal modes

(a)

(b)

(c)

Wavelength

Spontaneous

emission or

optical gain

spectrum

Lasing modes

Optical

loss

�2

2L

�

�

Figure 14.35 | Schematic diagram 

showing (a) resonant modes of a cavity 

with length L, (b) spontaneous emission 

curve, and (c) actual emission modes of 

a laser diode.
(After Yang [22].)
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 At the onset of lasing, which is known as threshold, the optical loss of one round 

trip through the cavity is just offset by the optical gain. The threshold condition is 

then expressed as

 �1�2 exp [(2t (�) � 2�(�))L] � 1 (14.69)

where �1 and �2 are the refl ectivity coeffi cients of the two end mirrors. For the case 

when the optical mirrors are cleaved (110) surfaces of gallium arsenide, the refl ectiv-

ity coeffi cients are given approximately by

 �1 � �2 �   �    
_
 n 2 �  

_
 n 1  __  

_
 n 2 �  

_
 n 1 
   �  2  (14.70)

where  
_
 n 2 and  

_
 n 1 are the index of refraction parameters for the semiconductor and air, 

respectively. The parameter t (�) is the optical gain at threshold.

 The optical gain at threshold, t (�), may be determined from Equation (14.69) as

 t(�) � � �   1 _ 
2L

   ln  �   1 _ 
�1�2 

   �  (14.71)

Since the optical gain is a function of the pn junction current, we can defi ne a thresh-

old current density as

 Jth �   1 _ 
�

    � � �   1 _ 
2L

   ln  �   1 _ 
�1�2 

   �  �  (14.72)

where � can be determined theoretically or experimentally. Figure 14.36 shows the 

threshold current density as a function of the mirror losses. We may note the rela-

tively high threshold current density for a pn junction laser diode.
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Figure 14.36 | Threshold current density of a laser diode as a 
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(After Yang [22].)
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14.6.4  Device Structures and Characteristics

We have seen that in a homojunction LED, the photons may be emitted in any direc-

tion, which lowers the external quantum effi ciency. Signifi cant improvement in de-

vice characteristics can be made if the emitted photons are confi ned to a region near 

the junction. This confi nement can be achieved by using an optical dielectric wave-

guide. The basic device is a three-layered, double heterojunction structure known as 

a double heterojunction laser. A requirement for a dielectric waveguide is that the 

index of refraction of the center material be larger than that of the other two dielec-

trics. Figure 14.37 shows the index of refraction for the AlGaAs system. We may 

note that GaAs has the highest index of refraction.

 An example of a double heterojunction laser is shown in Figure 14.38a. A thin 

p-GaAs layer is between P-AlGaAs and N-AlGaAs layers. A simplifi ed energy-band 

diagram is shown in Figure 14.38b for the forward-biased diode. Electrons are in-

jected from the N-AlGaAs into the p-GaAs. Population inversion is easily obtained 

since the conduction band potential barrier prevents the electrons from diffusing 

into the P-AlGaAs region. Radiative recombination is then confi ned to the p-GaAs 

region. Since the index of refraction of GaAs is larger than that of AlGaAs, the light 

wave is also confi ned to the GaAs region. An optical cavity can be formed by cleav-

ing the semiconductor perpendicular to the N-AlGaAs–p-GaAs junction.
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Figure 14.37 | Index of refraction 

of AlxGa1�xAs as a function of mole 

fraction x.
(From Sze [18].)
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(From Yang [22].)
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 Typical optical output versus diode current characteristics are shown in Fig-

ure 14.39. The threshold current is defi ned to be the current at the breakpoint. At 

low currents, the output spectrum is very wide and is the result of the spontaneous 

transitions. When the diode current is slightly above the threshold value, the various 

resonant frequencies are observed. When the diode current becomes large, a single 

dominant mode with a narrow bandwidth is produced.

 The performance of the laser diode can be further improved if a very narrow 

recombination region is used with a somewhat wider optical waveguide. Very com-

plex structures using multilayers of compound semiconductor materials have been 

fabricated in a continuing effort to improve semiconductor laser performance.

14.7 | SUMMARY
■ The absorption or emission of light (photons) in semiconductors leads to the study of a 

general class of devices called optoelectronics. A few of these devices have been dis-

cussed and analyzed in this chapter.
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Figure 14.39 | Typical output power versus laser diode 

current at various temperatures.
(From Yang [22].)
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662 CHAPTER 14   Optical Devices

■ The photon absorption process has been discussed and the absorption coeffi cient data 

for semiconductors has been presented.

■ Solar cells convert optical power into electrical power. The simple pn junction solar cell 

was initially considered. The short-circuit current, open-circuit voltage, and maximum 

power were considered.

■ Heterojunction and amorphous silicon solar cells were also considered. Heterojunction 

cells can be fabricated that tend to increase the conversion effi ciency and produce rela-

tively large open-circuit voltages. Amorphous silicon offers the possibility of low-cost, 

large-area solar cell arrays.

■ Photodetectors are semiconductor devices that convert optical signals into electrical sig-

nals. The photoconductor is perhaps the simplest type of photodetector. The change in 

conductivity of the semiconductor due to the creation of excess electrons and holes by 

the incident photons is the basis of this device.

■ Photodiodes are diodes that have reverse-biased voltages applied. Excess carriers 

that are created by incident photons in the space-charge region are swept out by the 

electric fi eld creating a photocurrent. The photocurrent is directly proportional to the 

incident photon intensity. PIN and avalanche photodiodes are variations of the basic 

photodiode.

■ The photocurrent generated in a phototransistor is multiplied by the transistor gain. 

However, the time response of the phototransistor may be slower than that of a photodi-

ode because of the Miller effect and Miller capacitance.

■ The inverse mechanism of photon absorption in a pn junction is injection electro-

luminescence. The recombination of excess electrons and holes in a direct bandgap 

semiconductor can result in the emission of photons.

■ The light emitting diodes (LEDs) are the class of pn junction diodes whose photon 

output is a result of spontaneous recombinations of excess electrons and holes. A fairly 

wide bandwidth in the output signal, on the order of 30 nm, is a result of the sponta-

neous process.

■ The output of a laser diode is the result of stimulated emission. An optical cavity, or 

Fabry–Perot resonator, is used in conjunction with a diode so that the photon output 

is in phase, or coherent. Multilayered heterojunction structures can be fabricated to 

 improve the laser diode characteristics.

GLOSSARY OF IMPORTANT TERMS
absorption coeffi cient  The relative number of photons absorbed per unit distance in a semi-

conductor and denoted by the parameter �.

conversion effi ciency  The ratio of output electrical power to incident optical power in a 

solar cell.

delayed photocurrent  The component of photocurrent in a semiconductor device due to 

diffusion currents.

external quantum effi ciency  The ratio of emitted photons to generated photons in a semi-

conductor device.

fi ll factor  The ratio ImVm to IscVoc, which is a measure of the realizable power from a solar 

cell. The parameters Im and Vm are the current and voltage at the maximum power point, 

respectively, and Isc and Voc are the short-circuit current and open-circuit voltage.

fresnel loss  The ratio of refl ected to incident photons at an interface due to a change in the 

index of refraction.
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internal quantum effi ciency  The fraction of diode current that produces luminescence.

LASER diode  An acronym for Light Amplifi cation by Stimulated Emission of Radiation; 

the stimulated emission of photons produced in a forward-biased pn junction in conjunc-

tion with an optical cavity.

LED  An acronym for Light Emitting Diode; the spontaneous photon emission due to 

electron–hole recombination in a forward-biased pn junction.

luminescence  The general property of light emission.

open-circuit voltage  The voltage generated across the open-circuited terminals of a solar 

cell.

photocurrent  The current generated in a semiconductor device due to the fl ow of excess 

carriers generated by the absorption of photons.

population inversion  The condition whereby the concentration of electrons in one energy 

state is greater than that in a lower energy state; a nonequilibrium condition.

prompt photocurrent  The component of photocurrent generated within the space charge 

region of a semiconductor device.

radiative recombination  The recombination process of electrons and holes that produces a 

photon, such as the direct band-to-band transition in gallium arsenide.

short-circuit current  The current produced in a solar cell when the two terminals are 

shorted together.

stimulated emission  The process whereby an electron is induced by an incident photon to 

make a transition to a lower energy state, emitting a second photon.

CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Describe the optical absorption process in semiconductors. When is optical absorption 

essentially zero?

■ Describe the basic operation and characteristics of a solar cell, including the short-

circuit current and open-circuit voltage.

■ Discuss the factors that contribute to the solar cell conversion effi ciency.

■ Describe the advantages and disadvantages of an amorphous silicon solar cell.

■ Describe the characteristics of a photoconductor, including the concept of the photocon-

ductor gain.

■ Discuss the operation and characteristics of a simple pn junction photodiode.

■ Discuss the advantages of PIN and avalanche photodiodes compared to the simple 

pn junction photodiode.

■ Discuss the operation and characteristics of a phototransistor.

■ Describe the operation of an LED.

■ Describe the operation of a laser diode.

REVIEW QUESTIONS
 1. Sketch the general shape of the optical absorption coeffi cient in a semiconductor as a 

function of wavelength. When does the absorption coeffi cient become zero?

 2. Sketch the I–V characteristic of a pn junction solar cell. Defi ne short-circuit current and 

open-circuit voltage.
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664 CHAPTER 14   Optical Devices

 3. Discuss how a pn junction solar cell becomes forward biased.

 4. Write an expression for the steady-state photocurrent in a simple photoconductor.

 5. What is the source of prompt photocurrent in a photodiode? Does the prompt photocur-

rent depend on the reverse-biased voltage? Why or why not.

 6. Sketch the cross section of a phototransistor and show the currents that are created by 

incident photons. Explain how current gain is achieved.

 7. Explain the basic operation of an LED. State two factors that affect the effi ciency of the 

device.

 8. How can different colors be obtained in an LED?

 9. Discuss the difference between an LED and a laser diode.

10. Discuss the concept of population inversion in a laser diode.

PROBLEMS
Section 14.1  Optical Absorption

14.1 Determine the maximum wavelength � of a light source that can generate electron–

hole pairs in (a) Si, (b) Ge, (c) GaAs, and (d ) InP.

14.2 (a) Two sources generate light at wavelengths of � � 480 nm and � � 725 nm, 

respectively. What are the corresponding photon energies? (b) Three sources gen-

erate light with photon energies of E � 0.87 eV, E � 1.32 eV, and E � 1.90 eV, 

respectively. What are the corresponding wavelengths?

14.3 (a) A sample of GaAs is 1.2 �m thick. The sample is illuminated with a light source 

that generates photons with energies of h� � 1.65 eV. Determine the (i) absorption 

coeffi cient and (ii) fraction of energy that is absorbed in the material. (b) Repeat 

part (a) for a sample of GaAs that is 0.80 �m thick and is illuminated with photons 

with energies of h� � 1.90 eV.

14.4 A light source with h� � 1.3 eV and at a power density of 10�2 W/cm2 is incident 

on a thin slab of silicon. The excess minority carrier lifetime is 10�6 s. Determine 

the electron–hole generation rate and the steady-state excess carrier concentration. 

Neglect surface effects.

14.5 An n-type GaAs sample has a minority carrier lifetime of �p � 2 	 10�7 s. Incident 

photons with energies h� � 1.65 eV generate an excess carrier concentration of 

�p � 5 	 1015 cm�3 at the surface of the semiconductor. (a) Determine the incident 

power required. (b) At what distance in the semiconductor does the generation rate 

drop to 10 percent of that at the surface?

14.6 Consider a silicon semiconductor that is illuminated with photons with energies 

h� � 1.40 eV. (a) Determine the thickness of the material such that 90 percent of 

the energy is absorbed. (b) Determine the thickness of the material such that 30 per-

cent of the energy is transmitted through the material.

14.7 If the thickness of a GaAs semiconductor is 1 �m and 50 percent of the incident 

monochromic photon energy is absorbed, determine the incident photon energy and 

wavelength.

*14.8 Consider monochromatic light at an intensity I� 0 incident on the surface at x � 0 

of an n-type semiconductor that extends to x � �. Assume the electric fi eld is zero 

in the semiconductor and assume a surface recombination velocity, s. Taking into 

*Asterisks next to problems indicate problems that are more diffi cult.
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 account the absorption coeffi cient, determine the steady-state excess hole concen-

tration as a function of x.

*14.9 Monochromatic light with intensity I� 0 is incident on a p-type semiconductor as 

shown in Figure P14.9. Assume the surface recombination velocity at x � 0 is 

s � � and assume the surface recombination velocity at x � W is s � s0. Derive the 

expression for the steady-state excess electron concentration as a function of x.

Section 14.2  Solar Cells

14.10 A long silicon pn junction solar cell at T � 300 K has the following parameters: 

Na � 1016 cm�3, Nd � 1015 cm�3, Dn � 25 cm2/s, Dp � 10 cm2/s, �n0 � 10�6 s, and 

�p0 � 5 	 10�7 s. The cross-sectional area of the solar cell is 5 cm2. The entire junc-

tion is uniformly illuminated such that the generation rate of electron–hole pairs is 

GL � 5 	 1021 cm�3 s�1. (a) Calculate the short circuit photocurrent generated in 

the space charge region. (b) Using the results of part (a), calculate the open-circuit 

voltage. (c) Determine the ratio of Voc to Vbi.

14.11 A long silicon pn junction solar cell has the same parameters as described in 

Problem 14.10. The generated photocurrent in the cell is IL � 120 mA. Determine 

the (a) open-circuit voltage, (b) the voltage across the junction that will produce 

a total solar cell current of I � 100 mA, (c) the maximum power output of 

the solar cell, and (d) the external load resistance that will produce the maximum 

power.

14.12 Consider the solar cell described in Problem 14.10. (a) The generated photocurrent 

is IL � 10 mA. Determine (i) the open-circuit voltage and (ii) the maximum power 

output. (b) The solar cell now uses a solar concentrator such that the photocurrent 

increases by a factor of 10. Determine the new values of (i) open circuit voltage 

and (ii) maximum power output. (c) Determine the ratio of maximum power from 

part (b) to that from part (a).

14.13 Consider an ideal long n�p junction GaAs solar cell at T � 300 K in which excess 

carriers are uniformly generated. The parameters of the diode are as follows:

  Nd � 1019 cm�3 Dn � 225 cm2/s

  �n0 � �p0 � 5 	 10�8 s Dp � 7 cm2/s.

 The generated photocurrent density is JL � 30 mA/cm2. Plot the open-circuit volt-

age as a function of the acceptor doping concentration for 1015 � Na � 1018 cm�3.

I�0

x � 0

s � �

x � W

s � s0

Figure P14.9 | Figure for 

Problem 14.9.
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14.14 A long silicon pn junction solar cell with an area of 2 cm2 has the following 

 parameters:

  Nd � 1019 cm�3 Na � 3 	 1016 cm�3

  Dp � 6 cm2/s Dn � 18 cm2/s

  �p0 � 5 	 10�7 s �n0 � 5 	 10�6 s

 Assume that excess carriers are uniformly generated in the solar cell and that 

JL � 25 mA/cm2. Let T � 300 K. (a) Plot the I–V characteristics of the diode, 

(b) determine the maximum power output of the solar cell, and (c) calculate the 

 external load resistance that will produce the maximum power.

14.15 A silicon solar cell at T � 300 K has a cross-sectional area of 6 cm2 and a reverse 

saturation current of IS � 2 	 10�9 A. The induced short-circuit photocurrent is 

IL � 180 mA. Determine the (a) open-circuit voltage, (b) maximum power output, 

and (c) load resistance that will produce the maximum output power. (d ) If the load 

resistance determined in part (c) is increased by 50 percent, what is the new value 

of the maximum output power?

14.16 Consider a silicon solar cell at T � 300 K with a reverse saturation current of 

IS � 10�10 A and an induced short-circuit photocurrent of IL � 100 mA. (a) Deter-

mine Voc. (b) Find Vm, Im, and Pm. (c) How many cells, operating at the maximum 

output power, must be connected in series to produce an output voltage of at least 

10 V? (d) How many of the 10 V cells in part (c) must be connected in parallel to 

produce an output power of at least 5.2 W? (e) Considering the results of part (d ), 
what must be the load resistance connected across the solar cell system to produce 

the maximum output power?

*14.17 Consider the pn junction solar cell with nonuniform absorption. Derive the expres-

sion for the excess minority carrier electron concentration for the short-circuit con-

dition and for the case when the p region is very long and the n region is short.

14.18 The absorption coeffi cient in amorphous silicon is approximately 104 cm�1 at 

h� � 1.7 eV and 105 cm�1 at h� � 2.0 eV. Determine the amorphous silicon 

thickness for each case so that 90 percent of the photons are absorbed.

Section 14.3  Photodetectors

14.19 Consider an n-type silicon photoconductor at T � 300 K doped at 

Nd � 5 	 1015 cm�3. The cross-sectional area is A � 5 	 10�4 cm2 and the length 

is L � 120 �m. The carrier parameters are �n � 1200 cm2/V-s, �p � 400 cm2/V-s, 

�n0 � 5 	 10�7 s, and �p0 � 10�7 s. The photoconductor is uniformly illuminated 

such that the generation rate of electron–hole pairs is GL � 1021 cm�3 s�1. For 

3 volts applied to the photoconductor, determine (a) the thermal equilibrium cur-

rent, (b) the steady-state excess carrier concentration, (c) the photoconductivity, 

(d) the steady-state photocurrent, and (e) the photocurrent gain.

14.20 Excess carriers are uniformly generated in a GaAs photoconductor at a rate of 

GL � 1021 cm�3-s�1. The area is A � 10�4 cm2 and the length is L � 100 �m. The 

other parameters are:

  Nd � 5 	 1016 cm�3 Na � 0

  �n � 8000 cm2/V-s �p � 250 cm2/V-s

  �n0 � 10�7 s �p0 � 10�8 s.
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 If a voltage of 5 volts is applied, calculate (a) the steady-state excess carrier con-

centration, (b) the photoconductivity, (c) the steady-state photocurrent, and (d ) the 

photoconductor gain.

*14.21 Consider an n-type silicon photoconductor that is 1 �m thick, 50 �m wide, 

and has an applied electric fi eld in the longitudinal dimension of 50 V/cm. If 

the incident photon fl ux is 	0 � 1016 cm�2-s�1 and the absorption coeffi cient is 

� � 5 	 104 cm�1, calculate the steady-state photocurrent if �n � 1200 cm2/V-s, 

�p � 450 cm2/V-s, and �p0 � 2 	 10�7 s.

14.22 A long silicon pn junction photodiode has the following parameters at T � 300 K: 

Na � 1016 cm�3, Nd � 2 	 1015 cm�3, Dp � 10 cm2/s, Dn � 25 cm2/s, �p0 � 10�7 s, 

and �n0 � 5 	 10�7 s. The cross-sectional area of the diode is A � 10�3 cm2. 

Assume that a reverse-biased voltage of 5 volts is applied and that a uniform 

 generation rate for electron–hole pairs of GL � 1021 cm�3 s�1 exists throughout the 

entire photodiode. (a) Determine the prompt component of photocurrent. (b) Find 

the steady-state excess carrier concentrations in the p and n regions far from the 

junction. (c) Determine the total steady-state photocurrent.

*14.23 Starting with the ambipolar transport equation for minority carrier holes, derive 

Equation (14.41) using the geometry shown in Figure 14.17.

14.24 Three silicon PIN photodiodes A, B, and C, at T � 300 K have intrinsic region 

widths of 2, 10, and 80 �m, respectively. A photon fl ux of 	0 � 5 	 1017 cm�2 s�1 

is incident on the surface of each diode as shown in Figure 14.19. (a) For an ab-

sorption coeffi cient of � � 104 cm�1, calculate the prompt photocurrent density in 

each diode. (b) Repeat part (a) for an absorption coeffi cient of � � 5 	 102 cm�1.

14.25 Consider a silicon PIN photodiode at T � 300 K with the geometry shown in Figure 

14.19. The intrinsic region width is 100 �m. Assume that a reverse-biased voltage 

is applied such that the intrinsic region is completely depleted. The incident photon 

power is I� 0 � 0.080 W/cm2, the absorption coeffi cient is � � 103 cm�1, and the 

photon energy is 1.5 eV. Neglect any absorption in the p� top layer of the photodi-

ode. (a) Determine the steady-state electron–hole generation rate, GL, versus dis-

tance in the intrinsic region. (b) Determine the steady-state photocurrent density.

14.26 A silicon PIN photodiode at T � 300 K has the geometry shown in Figure 14.19. 

The intrinsic region width is 20 �m and is fully depleted. (a) The electron–hole 

pair generation rate in the intrinsic region is GL � 1021 cm�3 s�1 and is uniform 

throughout the intrinsic region. Calculate the steady-state photocurrent density for 

this condition. (b) The generation rate of electron–hole pairs is GL � 1021 cm�3 s�1 

at x � 0 and the absorption coeffi cient is � � 103 cm�1. Determine the steady-state 

photocurrent density for this situation.

14.27 Consider a silicon PIN photodiode exposed to sunlight. Calculate the intrinsic 

region width so that at least 90 percent of all photons with wavelengths � � 1 �m 

are  absorbed in the intrinsic region. Neglect any absorption in the p� or n� regions.

Section 14.4  Photoluminescence and Electroluminescence

14.28 Consider the AlxGa1�xAs system. Determine the range of the direct bandgap ener-

gies possible and the corresponding range of wavelengths.

14.29 Consider the GaAs1�xPx system. (a) For a mole fraction x � 0.2, determine the 

(i) bandgap energy and (ii) corresponding photon wavelength. (b) Repeat part (a) 

for a mole fraction x � 0.32.
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14.30 Using Figure 14.23, determine the mole fraction x in AlxGa1�x As such that the 

material would emit light at a wavelength of � � 0.670 �m. What is the corre-

sponding bandgap energy?

14.31 Repeat Problem 14.30 for the GaAs1�xPx system.

Section 14.5  Light Emitting Diodes

14.32 Consider a pn junction GaAs LED. Assume that photons are generated uniformly in 

all directions in a plane perpendicular to the junction at a distance of 0.50 �m from 

the surface. (a) Taking into account total internal refl ection, calculate the fraction of 

photons that have the potential of being emitted from the semiconductor. (b) Using 

the results of part (a) and including Fresnel loss, determine the fraction of gener-

ated photons that will be emitted from the semiconductor into air (neglect absorp-

tion losses).

*14.33 In a pn junction LED, consider a point source in the semiconductor at the junction 

and assume that photons are emitted uniformly in all directions. Show that (neglect-

ing photon absorption) the external quantum effi ciency of the LED is given by

�ext �   
2 
_
 n 1  
_
 n 2  __ 

( 
_
 n 1 �  

_
 n 2)2 

   (1 � cos �c)

 where  
_
 n 1 and  

_
 n 2 are the index of refraction parameters for the air and semiconductor, 

respectively, and �c is the critical angle.

Section 14.6  Laser Diodes

14.34 Consider an optical cavity. If N � 1, show that the wavelength separation between 

two adjacent resonant modes is �� � �2�2L.

14.35 If the photon output of a laser diode is equal to the bandgap energy, fi nd the 

wavelength separation between adjacent resonant modes in a GaAs laser with 

L � 75 �m.
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15
Semiconductor Microwave and 

Power Devices

�
n previous chapters, we have discussed the basic physics, operation, and char-

acteristics of diodes and transistors. We have analyzed the frequency response 

as well as the current–voltage characteristics of these semiconductor devices. 

However, we have not specifi cally considered the generation of microwave signals 

using semiconductor devices or the power capabilities of semiconductor transistors.

 In this chapter, we fi rst consider three semiconductor devices that are used to gen-

erate microwave signals. These devices include the tunnel diode, GUNN diode, and 

IMPATT diode. A basic principle of oscillators is that a region of negative differential 

resistance must exist. We consider the process by which a region of negative differen-

tial resistance is created in each device and discuss the basic operation of these devices.

 Second, we discuss three specialized semiconductor power devices, including 

power bipolar transistors and power MOSFETs. We have considered the basic phys-

ics of these devices in previous chapters, and analyzed the current–voltage character-

istics without specifi cally considering the current or voltage limitations or the power 

dissipation within the devices. In this chapter, we discuss the limitations in current 

and voltage, and the power capabilities of the devices. Finally, we discuss the opera-

tion and characteristics of a four-layered structure called a thyristor. ■

15.0 | PREVIEW
In this chapter, we will:

■ Discuss the concept of negative differential resistance in a tunnel diode and 

derive an expression for the maximum resistance cutoff frequency.

■ Discuss the concept of negative differential mobility in GaAs and discuss the 

process by which this characteristic can lead to microwave oscillations in a 

GUNN diode.

■ Discuss the operation of an IMPATT diode oscillator and determine the pro-

cess by which a dynamic negative resistance is created.

C H A P T E R
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 15.1   Tunnel Diode 671

■ Present the basic geometry and electrical characteristics of a power bipolar 

transistor. The limiting current and voltage factors will be analyzed, and the 

safe operating area of the BJT will be considered.

■ Present the basic geometry and electrical characteristics of a power MOSFET. 

The limiting current and voltage factors will be analyzed, and the safe operat-

ing area of the MOSFET will be considered. 

■ Discuss the operation of a four-layer switching device that is generally referred 

to as a Thyristor. The operation of several structures will be analyzed.

15.1 | TUNNEL DIODE
The tunnel diode, also known as the Esaki diode, has been briefl y discussed in Sec-

tion 8.5 of the book. Recall that the device is a pn junction in which both the n and p 

regions are degenerately doped. With the very high doping concentrations, the space 

charge region width is very narrow (W � 0.5 � 10�6 cm � 50 Å).

 The forward-bias current–voltage characteristics are again shown in Fig-

ure 15.1a. For small forward-bias voltages (V � Vp), electrons in the conduction 

band on the n side are directly opposite empty states in the valence band of the p 

region (see Figure 8.29). Electrons tunnel through the potential barrier into the empty 

states producing a tunneling current. For forward-bias voltages in the range Vp � V 

� Vv, the number of electrons on the n side directly opposite empty states on the p 

side decreases so that the tunneling current decreases. For V � Vv, the normal diode 

diffusion currents dominate.

 A decrease in current with an increase in voltage produces a region of negative 

differential resistance in the range Vp � V � Vv. A negative differential resistance 

phenomenon is necessary for oscillators.

Vp Vv V

(a)

Tunneling

current

Diffusion

current

Ip

I

Iv

Vp Vv V

(b)

Peak

�Rmin

Valley

Ip

I

Iv

Figure 15.1 | (a) Forward-bias current–voltage characteristics of a tunnel diode. 

(b) Expanded plot of I–V characteristics.

nea29583_ch15_670-706.indd   671nea29583_ch15_670-706.indd   671 12/11/10   12:57 PM12/11/10   12:57 PM



672 CHAPTER 15   Semiconductor Microwave and Power Devices

 Figure 15.1b shows an expanded plot of the I–V characteristics in the tunnel-

ing range. A point is shown on the curve where the minimum value of negative 

resistance occurs. (Note that Rmin is a positive quantity.) The equivalent circuit of 

the tunnel diode for the case when the diode is biased at the � Rmin point is shown in 

Figure 15.2. The parameter Cj is the junction capacitance, and the parameters Lp and 

Rp are the parasitic or interconnect line inductance and resistance, respectively.

 The small signal input impedance can be written as

 Z �  � Rp �   
Rmin  ___  

1 � �2  R min  
2
    C j  

2 
   �  � j�  � Lp �    

� R min  
2
  Cj 
 ___  

1 � �2  R min  
2
    C j  

2 
   �  (15.1)

The resistive part of the impedance goes to zero at a frequency of

 fr �   1 __ 
2�Rmin Cj 

    �
________

   
Rmin  _ 
Rp 

   � 1   (15.2)

For frequencies f � fr, the resistive part of the impedance becomes positive so that 

the diode loses its negative differential resistance characteristic. The operating fre-

quency must then occur at fo � fr. The frequency fr is referred to as the maximum 
resistive cutoff frequency.

 The tunneling process is a majority carrier effect so the diode does not exhibit 

time delays due to minority carrier diffusion, which means that the diode is capable 

of operating at microwave frequencies. However, due to the relatively small voltage 

range in which the diode exhibits the negative resistance characteristic, the tunnel 

diode is not used extensively.

15.2 | GUNN DIODE
Another negative differential resistance device is the GUNN diode, or Transferred-

Electron Device (TED). The transferred-electron phenomenon is demonstrated in a 

few semiconductors in which conduction electrons in a high-mobility band are scat-

tered to a low-mobility band by a high electric fi eld. In Chapter 5, we discussed the 

drift velocity of electrons in GaAs versus electric fi eld. Figure 15.3 again shows a 

plot of this characteristic. InP also shows this same characteristic.

 Figure 15.4 shows an expanded plot of the energy-band structure in GaAs that 

is given in Figure 5.8. For small electric fi elds, essentially all of the electrons in the 

RpLp

Cjz �Rmin

Figure 15.2 | Equivalent circuit of the tunnel 

diode.
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conduction band exist in the lower valley of the E versus k diagram, where the den-

sity of states electron effective mass is small. A small effective mass leads to a large 

mobility value.

 As the electric fi eld increases above a threshold or critical value, Eth, the electrons 

gain more than the 0.3 eV energy separating the two valleys so that electrons can be 

scattered into the upper valley, where the density of states electron effective mass is 

much larger. The larger effective mass yields a smaller mobility. The intervalley trans-

fer mechanism with a change in mobility results in a decreasing average drift velocity 

of electrons with electric fi eld, or a negative differential electron mobility. The maxi-

mum negative differential electron mobility in GaAs is approximately �2400 cm2  /V-s.

 Consider a two-terminal n-type GaAs device with ohmic contacts at the ends 

that is biased in the negative mobility region (Ebias � Eth) as shown in Figure 15.5a. 

A small space charge region may develop in the material near the cathode as shown 

in Figure 15.5b. As a result, the electric fi eld increases in this region as shown in 

Figure 15.5c. (Special device structures can be fabricated to ensure that the space 

charge fl uctuations are generated near the cathode.)

Figure 15.3 | Electron drift velocity versus electric 

fi eld for GaAs.
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Figure 15.4 | Energy-band structure of GaAs showing the 

lower valley and upper valley in the conduction band.
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674 CHAPTER 15   Semiconductor Microwave and Power Devices

 In discussing excess carrier behavior in Chapter 6, we found the time behavior 

of a net charge density in a semiconductor to be given by

 �Q(t) � �Q(0) e �t��d  (15.3)

where �d is the dielectric relaxation time constant and is on the order of a picosecond. 

Normally, a small space charge region would be quickly neutralized. The dielectric 

relaxation time constant is given by �d � ���, where � is the semiconductor conduc-

tivity. If the GaAs is biased in the negative mobility region, then the conductivity is 

negative and the exponent in Equation (15.3) becomes positive, so the space charge 

region, now called a domain, can actually build up as it drifts toward the anode. As the 

domain grows (Figure 15.6a), the electric fi eld in this region increases which means 

that the electric fi eld in the remaining material decreases. The E fi eld in the material 

outside of the domain can drop below the critical value, as indicated in Figure 15.6b, 

while the E fi eld within the domain remains above the critical value. For this reason, 

only one domain will normally be established in the material at any given time.

 As the domain reaches the anode, a current pulse is induced in the external cir-

cuit. After the domain reaches the anode, another domain may form near the cathode 

and the process repeats itself. Thus, a series of current pulses may be generated as 

shown in Figure 15.7. The time between current pulses is the time for the domain to 

drift through the device. The oscillation frequency is given by

 f � 1�� � vd�L (15.4)

where vd is the average drift velocity and L is the length of the drift region.

Figure 15.5 | (a) A simplifi ed two-terminal 

GaAs device. (b) Electron concentration versus 

distance showing a space charge formation. 

(c) Electric fi eld versus distance.
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 15.3   IMPATT Diode 675

 The oscillation mechanism just described is called the transit-time mode. More 

complex modes of operation are possible. Studies have shown that the effi ciency of 

the transit-time device is largest when the product n0 L is a few times 1012 cm�2. For 

this case, the domain fi lls about one-half of the drift region length and produces a 

current output that is nearly sinusoidal. The maximum dc-to-rf conversion effi ciency 

is approximately 10 percent.

 Oscillations in the frequency range of 1 to 100 GHz or higher can be obtained. If 

the device is operated in a pulsed mode, a peak output power in the range of hundreds 

of watts can be produced. Transferred-electron devices are now used as the micro-

wave source in many radar systems.

15.3 | IMPATT DIODE
The term IMPATT stands for IMPact ionization Avalanche Transit-Time. The 

IMPATT diode consists of a high-fi eld avalanche region and a drift region that pro-

duces a dynamic negative resistance at microwave frequencies. The negative resis-

tance characteristic produced in this device is a result of a time delay so that the ac 

current and voltage components are out of phase, and is a different phenomenon 

compared to the tunnel diode, for example. The tunnel diode has a negative dI�dV 

region in the I–V characteristic.

 One example of an IMPATT diode is a p�-n-i-n� structure as shown in 

Figure 15.8a. Typical doping concentrations (magnitudes) are shown in Figure 15.8b. 

The device is reverse biased so that the n and intrinsic regions are completely de-

pleted. The electric fi eld in the device is shown in Figure 15.8c. We may note that  ∫
 

 
 
  

  Edx � VB where VB is the applied reverse-biased voltage. The value of VB is very 

close to the breakdown voltage. The avalanche region is localized near the pn junc-

tion. The electric fi eld in the intrinsic region is nearly constant and the intrinsic layer 

provides the drift region.

Figure 15.6 | (a) Electron 

concentration versus distance 

showing a domain. (b) Electric fi eld 

versus distance.
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Figure 15.7 | Current pulses versus 

time in the GaAs device.
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676 CHAPTER 15   Semiconductor Microwave and Power Devices

 Figure 15.9 shows the circuit for an IMPATT diode oscillator. An LC resonant 

circuit is required for the oscillator operation. During the positive ac voltage across 

the LC circuit as shown in the fi gure, the diode goes into breakdown and electron–

hole pairs are generated at the p�n junction. The generated electrons fl ow back into 

the p� region, while the holes start drifting through the depleted intrinsic region. In 

general, the holes will travel at their saturation velocity. During the negative ac volt-

age, the device operates below the breakdown voltage so electron–hole pairs are no 

longer produced.

 There is an inherent ��2 phase shift between the peak value of the avalanche 

voltage at the p�n junction and the injection of the holes into the intrinsic drift re-

gion due to the fi nite buildup time of the avalanche generated electron–hole pairs. 

A further delay of ��2 is then required during the drift process to provide the total 

180 degrees of phase shift between the current and voltage at the output terminal. 

The transit time of the holes is � � L�vs, where L is the length of the drift region and 

vs is the saturation velocity of the holes. The LC circuit resonant frequency must be 

designed to be equal to the device resonant frequency, which is given by

 f �   1 _ 
2�

   �   
vs  _ 
2L

   (15.5)

 When the holes reach the n� cathode, the current is at a maximum value and the 

voltage is at its minimum value. The ac current and ac voltage are 180 degrees out of 

phase with respect to each other producing the dynamic negative resistance.

(a)

(b)

(c)

E

n�P� n i

1017

1020

1013

N (cm�3)

Figure 15.8 | (a) An IMPATT 

diode structure. (b) Typical doping 

concentrations in the IMPATT diode. 

(c) Electric fi eld versus distance 

through the IMPATT diode.
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Figure 15.9 | Circuit for an IMPATT diode oscillator.
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 15.4   Power Bipolar Transistors 677

 Devices can be designed to operate in the 100 GHz or higher frequency range 

and produce power outputs of a few watts. The effi ciency of these devices is in the 

range of 10 to 15 percent, and these devices provide the highest continuous out-

put power of all the semiconductor microwave devices. As with most semiconduc-

tor device designs, other structures can be fabricated to provide specialized output 

characteristics.

15.4 | POWER BIPOLAR TRANSISTORS
In our previous discussions, we have ignored any physical transistor limitations in 

terms of maximum current, voltage, and power. We implicitly assumed that the tran-

sistors are capable of handling the current and voltage, and could handle the power 

dissipated within the device without suffering any damage.

 However, with power transistors, we must be concerned with various transistor 

limitations. The limitations involve maximum rated current (on the order of am-

peres), maximum rated voltage (on the order of 100 V), and maximum rated power 

(on the order of watts or tens of watts).1 

15.4.1  Vertical Power Transistor Structure

Figure 15.10 shows the structure of a vertical npn power transistor. We have con-

sidered vertical npn bipolar transistors previously. However, with small switching 

devices, the collector terminal is still formed at the surface. In the vertical confi gura-

tion for the power bipolar transistor, the collector terminal is at the “bottom” of the 

device. This confi guration is preferred since it maximizes the cross-sectional area 

through which current is fl owing in the device. In addition, the doping concentrations 

1We must note that, in general, the maximum rated current and maximum rated voltage cannot occur at 

the same time.

n� � 1019 cm�3

p � 1016 cm�35–20 �m

50–200 �m

�200 �m

Base

Base

Collector

drift

region

Emitter

Collector

n� � 1014 cm�3

n� � 1019 cm�3

Figure 15.10 | Cross section of typical vertical npn power BJT.
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678 CHAPTER 15   Semiconductor Microwave and Power Devices

and dimensions are not the same as we have encountered in small switching transis-

tors. The primary collector region has a low-doped impurity concentration so that 

a large base–collector voltage can be applied without initiating breakdown. An-

other n region, with a higher doping concentration, reduces collector resistance and 

makes contact with the external collector terminal. The base region is also much 

wider than normally encountered in small devices. A large base–collector voltage 

implies a relatively large space charge width being induced in both the collector 

and base regions. A relatively large base width is required to prevent punch-through 

breakdown.

 Power transistors must also be large-area devices in order to handle large cur-

rents. We have previously considered the interdigitated structure that is repeated in 

Figure 15.11. Relatively small emitter widths are required to prevent the emitter cur-

rent crowding effects that were discussed in Section 12.4.4.

15.4.2  Power Transistor Characteristics

The relatively wide base width implies a much smaller current gain � for power 

transistors compared to small switching transistors, and large area device implies a 

larger junction capacitance and hence lower cutoff frequency for a power transistor 

compared to a small switching transistor. Table 15.1 compares the parameters of a 

Figure 15.11 | An interdigitated bipolar transistor structure 

showing the top view and cross-sectional view.
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 15.4   Power Bipolar Transistors 679

general-purpose small-signal BJT to those of two power BJTs. The current gain is 

generally smaller in the power transistors, typically in the range of 20 to 100, and 

may be a strong function of collector current and temperature. Figure 15.12 shows 

typical current gain versus collector current characteristics for the 2N3055 power 

BJT at various temperatures.

 The maximum rated collector current IC,max may be related to the maximum cur-

rent that the wires connecting the semiconductor to the external terminals can handle, 

the collector current at which the current gain falls below a minimum specifi ed value, 

or the current that leads to the maximum power dissipation when the transistor is 

biased in saturation.

 The maximum rated voltage in a BJT is generally associated with avalanche 

breakdown in the reverse-biased base–collector junction. In the common-emitter 

confi guration, the breakdown voltage mechanism also involves the transistor 

gain, as well as the breakdown phenomenon in the pn junction. This is discussed 

in Section 12.4.6. Typical IC versus VCE characteristics are shown in Figure 15.13. 

Table 15.1 |  Comparison of the characteristics and maximum ratings of small-signal 
and power BJTs

 Small-signal BJT Power BJT Power BJT
Parameter (2N2222A) (2N3055) (2N6078)

VCE (max) (V)  40  60 250

TC (max) (A)   0.8  15   7

PD (max) (W)    1.2 115  45
(at T � 25	C)

�  35–100   5–20  12–70

fT (MHz) 300   0.8   1

Figure 15.12 | Typical dc beta characteristics 

(hFE versus IC) for 2N3055.
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680 CHAPTER 15   Semiconductor Microwave and Power Devices

When the transistor is biased in the forward-active mode, the collector current be-

gins to increase signifi cantly before the actual breakdown voltage is reached. All 

the curves tend to merge to the same collector–emitter voltage once breakdown has 

occurred. This voltage, VCE, sus, is the minimum voltage necessary to sustain the tran-

sistor in breakdown.

 Another breakdown effect is called second breakdown, which occurs in a BJT 

operating at high voltage and high current. Slight nonuniformities in current den-

sity produce local regions of increased heating that increases the minority carrier 

concentrations in the semiconductor material, which in turn increases the current 

in these regions. This effect results in positive feedback, and the current continues 

to increase, producing a further increase in temperature, until the semiconduc-

tor material may actually melt, creating a short circuit between the collector and 

emitter.

 The average power dissipated in a BJT must be kept below a specifi ed maximum 

value, to ensure that the temperature of the device remains below a maximum value. 

If we assume the collector current and collector–emitter voltage are dc values, then 

at the maximum rated power PT for the transistor, we can write

 PT � VCE IC (15.6)

Equation (15.6) neglects the VBE IB component of power dissipation in the transistor.

 The maximum current, voltage, and power limitations can be illustrated on the 

IC versus VCE characteristics as shown in Figure 15.14. The average power limitation, 

PT, is a hyperbola described by Equation (15.6). The region where the transistor can 

be operated safely is known as the safe operating area (SOA) and is bounded by 

IC,max, VCE, sus, PT, and the transistor’s second breakdown characteristic curve. Fig-

ure 15.14a shows the safe operating area using linear current and voltage scales. 

Figure 15.14b shows the same characteristics using log scales.

Figure 15.14 | The safe operating area (SOA) of a bipolar transistor plotted on (a) linear scales and (b) logarithmic 

scales.
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 15.4   Power Bipolar Transistors 681

   EXAMPLE 15.1Objective: Determine the required current, voltage, and power rating of a power BJT.

 Consider the common-emitter circuit in Figure 15.15. The parameters are RL � 10 
 and 

VCC � 35 V.

■ Solution
For VCE � 0, the maximum collector current is

 IC (max) �   
VCC 

 _ 
RL 

   �   35 _ 
10

   � 3.5 A

For IC � 0, the maximum collector–emitter voltage is

 VCE (max) � VCC � 35 V

The load line is given by

 VCE � VCC � IC RL

and must remain within the SOA, as shown in Figure 15.16. 

 The transistor power dissipation is

 PT � VCE IC � (VCC � IC RL)IC � VCC IC �  I C   2
   RL

The current at which the maximum power occurs is found by setting the derivative of this 

equation equal to zero as follows:

   
dPT  _ 
dIC 

   � 0 � VCC � 2ICRL

which yields

 IC �   
VCC 

 _ 
2RL 

   �   35 _ 
2(10)

   � 1.75 A

Figure 15.15 | 

Bipolar common-

emitter circuit.

RL

vO

vI

VCC

Figure 15.16 | Load line and maximum power curve for 

Example 15.1.
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15.4.3  Darlington Pair Confi guration

As mentioned, the base width of a power BJT is relatively wide so that the current 

gain is then relatively small. One method that is used to increase the effective cur-

rent gain is to use a Darlington pair such as shown in Figure 15.17. Considering the 

currents, we see that

 iC � iCA � iCB � �AiB � �BiEA � �AiB � �B (1 � �A) iB (15.7)

The collector–emitter voltage at this maximum power point is

 VCE � VCC � ICRL � 35 � (1.75)(10) � 17.5 V

The maximum power dissipated in the transistor occurs at the center of the load line. The 

maximum transistor power dissipation is therefore

 PT � VCEIC � (17.5)(1.75) � 30.6 W

■ Comment
To fi nd a transistor for a given application, safety factors are normally used. For this example, 

a transistor with a current rating greater than 3.5 A, a voltage rating greater than 35 V, and a 

power rating greater than 30.6 W would be required for the application just described.

■ EXERCISE PROBLEM
Ex 15.1  Assume the BJT in the common-emitter circuit shown in Figure 15.15 has limit-

ing factors of IC,max � 5A, VCE, sus � 75 V, and PT � 30 W. Neglecting second 

breakdown effects, determine the minimum value of RL such that the Q-point 

of the transistor always stays within the safe operating area for (a) VCC � 60 V, 

(b) VCC � 40 V, and (c) VCC � 20 V. In each case, determine the maximum collec-

tor current and maximum transistor power dissipation.

IC (max) � 3 A, P(max) � 30 W; (c) RL � 4 
, IC (max) � 5 A, P(max) � 25 W]

[Ans. (a) RL � 30 
, IC (max) � 2 A, P(max) � 30 W; (b) RL � 13.3 
,
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Figure 15.17 | An npn Darlington pair 

confi guration.
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 15.4   Power Bipolar Transistors 683

The overall common-emitter current gain is then

   
iC 

 _ 
iB

   � �A�B � �A � �B (15.8)

Thus, if the gain of each individual transistor is �A � �B � 15, then the overall gain 

of the Darlington pair is iC �iB � 255. This overall gain is then substantially larger 

than that of the individual device. A diode may be incorporated as shown in Fig-

ure 15.17 to aid in turning off the transistor QB. A reverse current out of the base of 

QB through the diode will pull charge out of the base of this transistor and turn the 

device off faster than when no diode is used.

 The Darlington pair shown in Figure 15.17 is typically used in the output stage 

of a power amplifi er when an npn bipolar transistor is required. A pnp Darlington 

pair may also be used to increase the effective current gain of a power pnp device.

 The integrated circuit confi guration of the npn Darlington pair may be as shown 

in Figure 15.18. The silicon dioxide that is shown completely penetrates through the 

p-type base region so that the base regions of the two transistors are isolated.

Figure 15.18 | An integrated circuit implementation of the 

npn Darlington pair confi guration.
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TYU 15.1 Consider the vertical power silicon BJT shown in Figure 15.10. Assume that 

a  reverse-biased voltage of 200 V is applied to the base–collector junction. 

Calculate the space charge width that extends into the (a) collector region and 

(b) base region. 

[Ans. (a) xn � 50.6 	m; (b) xp � 0.506 	m]

TYU 15.2 For the emitter–follower circuit in Figure 15.19, the parameters are VCC � 10 V

and RE � 200 
. The transistor current gain is � � 150, and the current and 

voltage limitations are IC,max � 200 mA and VCE,sus � 50 V. Determine the mini-

mum transistor power rating such that the transistor Q-point is always inside the 

safe  operating area.

(Ans. Pmax � 0.5 W)

TEST YOUR UNDERSTANDING

Figure 15.19 | 

Figure for 

Exercise TYU 15.2.
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15.5 | POWER MOSFETs
The basic operation of the power MOSFET is the same as that of any MOSFET. How-

ever, the current handling capability of these devices is usually in the ampere range, 

and the drain-to-source blocking voltage may be in the range of 50 to 100 volts or even 

higher. One big advantage that a power MOSFET has over a bipolar power device is 

that the control signal is applied to the gate whose input impedance is extremely large. 

Even during switching between on and off states, the gate current is small, so that 

relatively large currents can be switched with very small control currents.

15.5.1  Power Transistor Structures

Large currents can be obtained in a MOSFET with a very large channel width. To achieve 

a large channel width device with good characteristics, power MOSFETs are fabricated 

with a repetitive pattern of small cells operating in parallel. To achieve a large blocking 

voltage, a vertical structure is used. There are two basic power MOSFET structures. The 

fi rst is called a DMOS device and is shown in Figure 15.20. The DMOS device uses a 

double diffusion process: The p-base or the p-substrate region and the n� source contact 

are diffused through a common window defi ned by the edge of the gate. The p-base 

region is diffused deeper than the n� source, and the difference in the lateral diffusion 

distance between the p-base and the n� source defi nes the surface channel length.

 Electrons enter the source terminal and fl ow laterally through the inversion layer 

under the gate to the n-drift region. The electrons then fl ow vertically through the 

n-drift region to the drain terminal. The conventional current direction is from the 

drain to the source. The n-drift region must be moderately doped so that the drain 

breakdown voltage is suffi ciently large. However, the thickness of the n-drift region 

should also be as thin as possible to minimize drain resistance.

 The second power MOSFET structure, shown in Figure 15.21, is a VMOS struc-

ture. The vertical channel or VMOS power device is a nonplanar structure that requires 

a different type of fabrication process. In this case, a p-base or p-“substrate” diffusion 

Figure 15.20 | Cross section of a 

double-diffused MOS (DMOS) 

transistor.
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Figure 15.21 | Cross section of a vertical 

channel MOS (VMOS) transistor.
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 15.5   Power MOSFETs 685

is performed over the entire surface followed by the n� source diffusion. A V-shaped 

groove is then formed, extending through the n-drift region. It has been found that 

certain chemical solutions etch the (111) planes in silicon at a much slower rate than 

the other planes. If (100) oriented silicon is etched through a window at the surface, 

these chemical etches will create a V-shaped groove. A gate oxide is then grown in the 

V-shaped groove and the metal gate material is deposited. An electron inversion layer 

is formed in the base or substrate so that current is again essentially a vertical current 

between the source and the drain. The relatively low-doped n-drift region supports the 

drain voltage since the depletion region extends mainly into this low-doped region.

 We mentioned that many individual MOSFET cells are connected in parallel 

to fabricate a power MOSFET with the proper width-to-length ratio. Figure 15.22 

shows a HEXFET structure. Each cell is a DMOS device with an n� polysilicon gate. 

The HEXFET has a very high packing density—it may be on the order of 105 cells 

per cm2. In the VMOS structure, the anisotropic etching of the grooves must be along 

the [110] direction on the (100) surface. This constraint limits the design options 

available for this type of device.

15.5.2  Power MOSFET Characteristics

Table 15.2 lists the basic parameters of two n-channel power MOSFETs. The drain 

currents are in the ampere range and the breakdown voltages are in the hundreds of 

volts range.

 An important parameter of a power MOSFET is the on resistance, which can be 

written as

 Ron � RS � RCH � RD (15.9)

where RS is the resistance associated with the source contact, RCH is the channel 

resistance, and RD is the resistance associated with the drain contact. The RS and RD 

Figure 15.22 | A HEXFET structure.
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686 CHAPTER 15   Semiconductor Microwave and Power Devices

resistance values are not necessarily negligible in power MOSFETs since small re-

sistances and high currents can produce considerable power dissipation.

 In the linear region of operation, we may write the channel resistance as

 RCH �   L  ___  
W	nCox (VGS � VT)

   (15.10)

We have noted in previous chapters that mobility decreases with increasing tempera-

ture. The threshold voltage varies only slightly with temperature so that, as current in 

a device increases and produces additional power dissipation, the temperature of the 

device increases, the carrier mobility decreases, and RCH increases, which  inherently 

limits the channel current. The resistances RS and RD are proportional to semiconduc-

tor resistivity and so are also inversely proportional to mobility and have the same 

temperature characteristics as RCH. Figure 15.23 shows a typical “on-resistance” 

characteristic as a function of drain current.

 The increase in resistance with temperature provides stability for the power 

MOSFET. If the current in any particular cell begins to increase, the resulting tem-

perature rise will increase the resistance, thus limiting the current. With this particu-

lar characteristic, the total current in a power MOSFET tends to be evenly distributed 

among the parallel cells, not concentrated in any single cell, a condition that can 

cause burnout.

Table 15.2 | Characteristics of two power MOSFETs

Parameter 2N6757 2N6792

VDS (max) (V) 150 400
ID (max) (at T � 25°C)   8   2
PD (W)  75  20
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Figure 15.23 | Typical drain-to-source resistance versus 

drain current characteristics of a MOSFET.

nea29583_ch15_670-706.indd   686nea29583_ch15_670-706.indd   686 12/11/10   12:57 PM12/11/10   12:57 PM



 15.5   Power MOSFETs 687

 Power MOSFETs differ from bipolar power transistors in both operating principles 

and performance. The superior performance characteristics of power MOSFETs are 

faster switching times, no second breakdown, and stable gain and response time over 

a wide temperature range. Figure 15.24a shows the transconductance of the 2N6757 

versus temperature. The variation with temperature of the MOSFET trans conductance 

is less than the variation in the BJT current gain that is shown in Figure 15.12. 

Figure 15.24b is a plot of drain current versus gate-to-source voltage at three different 

temperatures. We may note that at high current, the current decreases with temperature 

at a constant gate-to-source voltage, providing the stability that has been discussed.

 Power MOSFETs must operate in a SOA. As with power BJTs, the SOA is 

defi ned by three factors: the maximum drain current, ID,max, rated breakdown voltage, 

BVDSS, and the maximum power dissipation given by PT � VDSID. The SOA is shown 

in Figure 15.25a in which the current and voltage are plotted on linear scales. The 
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Figure 15.24 | Typical characteristics for high-power MOSFETs at various 

temperatures: (a) transconductance versus drain current; (b) drain current versus 

gate-to-source voltage.
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Figure 15.25 | The safe operating area (SOA) of a MOSFET plotted on (a) linear scales and 

(b) logarithmic scales.
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same SOA curve is shown in Figure 15.25b in which the current and voltage are 

plotted on log scales.

EXAMPLE 15.2 Objective: Find the optimum drain resistor in a MOSFET inverter circuit.

 A MOSFET inverter circuit is shown in Figure 15.26. Two different MOSFETs are being 

considered for use in the circuit. The parameters for devices A and B are given.

Device A Device B

BVDSS � 35 V BVDSS � 35 V
PT � 30 W PT � 30 W
ID,max � 6 A ID,max � 4 A

■ Solution
The SOA curves for the two devices are shown in Figure 15.27.

 The load line for the inverter circuit using device A is shown as curve A. The load line 

intersects the voltage axis at VDD � 24 V. This curve is tangent to the maximum power curve 

and intersects the current axis at ID � 5 A. Note that, if we had wanted the load line to intersect 

the maximum rated current of ID, max � 6 A, the load line would have gone outside of the SOA.

 For the load line A, the drain resistance is

 RD �   
VDD 

 _ 
ID 

   �   24  _ 
5
   � 4.8 


RD
ID

�

�

vO

vI VDS

VDD

Figure 15.26 | A 

MOSFET inverter 

circuit.
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Figure 15.27 | Safe operating area and load lines for devices in Example 15.2.
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The current at the maximum power point (using the results from Example 15.1) is

 ID �   
VDD 

 _ 
2RD 

   �   24  __ 
2(4.8)

   � 2.5 A

and the corresponding drain-to-source voltage is

 VDS � VDD � IDRD � 24 � (2.5)(4.8) � 12 V

The maximum power that may be dissipated in the transistor is P � VDS ID � (12)(2.5) � 

30 W � PT, which corresponds to the maximum rated power. This point is shown on the curve.

 The load line for the inverter circuit using device B is shown as curve B. The load line 

intersects the voltage axis at VDD � 24 V as before. This curve can now intersect the current 

axis at the maximum rated drain current of ID, max � 4 A. We see that the load line falls within 

the SOA of the transistor.

 For load line B, the drain resistance is

 RD �   
VDD 

 _ 
ID 

   �   24  _ 
4
   � 6 


The current at the maximum power point is

 ID �   
VDD 

 _ 
2RD 

   �   24  _ 
2(6)

   � 2 A

and the corresponding drain-to-source voltage is

 VDS � VDD � IDRD � 24 � (2)(6) � 12 V

The maximum power that may be dissipated in the transistor is P � VDD ID � (12)(2) � 24 W, 

which is less than the maximum rated power. This point is also shown on the curve.

■ Conclusion
We see that if device A is used, the drain resistor is determined by the maximum power. 

However, if device B is used, the drain resistor is determined by the maximum rated current 

of the device.

■ EXERCISE PROBLEM
Ex 15.2  Consider the common-source circuit shown in Figure 15.26. Determine the 

required current, voltage, and power ratings of the MOSFET for (a) RD � 12 
, 

VDD � 24 V and (b) RD � 8 
, VDD � 40 V. 

PT � 50 W]

[Ans. (a) BVDSS � 24 V, ID, max � 2 A, PT � 12 W; (b) BVDSS � 40 V, ID, max � 5 A,

15.5.3  Parasitic BJT

The MOSFET has a parasitic BJT as an inherent part of its structure. The parasitic 

BJT may be seen in both the DMOS and VMOS structures shown in Figures 15.20 

and 15.21. The source terminal corresponds to the n-type emitter, the p-type base or 

substrate region corresponds to the p-type base, and the n-type drain corresponds to 

the n-type collector. This is also shown schematically in Figure 15.28. The channel 

length of the MOSFET corresponds to the base width of the parasitic BJT. Since this 

length is normally quite small, the current gain � of the BJT can be larger than unity.

 15.5   Power MOSFETs 689
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690 CHAPTER 15   Semiconductor Microwave and Power Devices

 The BJT should be cutoff at all times, which means the source-to-body volt-

age (emitter-to-base voltage) should be as close to zero as possible. We see from 

the geometries of Figures 15.20 and 15.21 that the source ohmic contact also goes 

across the p-type body region so that this junction voltage is zero during steady-state 

operation of the transistor. However, the BJT may be turned on during high-speed 

switching of the MOSFET.

 Figure 15.28b shows that the base and the collector of the parasitic BJT are 

connected by the gate-to-drain capacitance. A parasitic or distributed resistance also 

connects the base to the emitter of the BJT. When the MOSFET is being turned 

off, the drain-to-source voltage increases and induces a current in the gate-to-drain 

capacitance in the direction from the parasitic collector terminal to the parasitic 

base terminal. This induced current may be large enough to induce a voltage in 

the parasitic resistance that is suffi cient to forward bias the base–emitter junction 

and therefore turn the BJT on. The turned on BJT may then induce a large drain 

current that can cause burnout of the MOSFET. This breakdown mechanism is 

known as snapback breakdown and has been discussed briefl y in Section 11.4.1. 

(a)

Source

Gate

Drain

Cgd

n�n�

p

n�

n�

p

(b)

Cgd

Parasitic

BJT

D

G

S

Figure 15.28 | (a) Cross section of vertical MOSFET showing parasitic BJT and 

distributed resistance; (b) equivalent circuit of MOSFET and parasitic BJT with 

distributed parameters.
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The current–voltage characteristics are shown in Figure 11.22. Devices can be de-

signed to minimize the parasitic or distributed base–emitter resistance to minimize 

this problem.

15.6 | THE THYRISTOR
One of the important applications of electronic devices is in switching between an 

off or blocking state to an on or low-impedance state. Thyristor is the name given 

to a general class of semiconductor pnpn switching devices that exhibit bistable 

regenerative switching characteristics. We have considered the transistor, which 

may be switched on with the application of a base drive or a gate voltage. The 

base drive or gate voltage must be applied as long as the transistor is to remain on. 

There are a number of applications in which it is useful to have a device remain 

in a blocking state until switched to the low-impedance state by a control signal, 

which then does not necessarily have to remain on. These devices are effi cient 

in switching large currents at low frequencies, such as industrial control circuits 

operating at 60 Hz.

 A Semiconductor Controlled Rectifi er (SCR) is the common name given to a 

three-terminal thyristor. The SCR (sometimes referred to as a silicon controlled rec-

tifi er) is a four-layer pnpn structure with a gate control terminal. As with most semi-

conductor devices, there are several variations of the device structure. We consider 

the basic SCR operation and limitations, and then discuss some variations of the 

basic four-layer device.

15.6.1  The Basic Characteristics

The four-layer pnpn structure is shown in Figure 15.29a. The upper p region is called 

the anode and the lower n region is called the cathode. If a positive voltage is applied 

to the anode, the device is said to be forward biased. However, the junction J2 is 

 reverse biased so that only a very small current exists. If a negative voltage is applied 

to the anode, then junctions J1 and J3 are reverse biased—again only a very small 

current will exist. Figure 15.29b shows the I–V characteristics for these conditions. 

The voltage Vp is the breakdown voltage of the J2 junction. For properly designed 

devices, the blocking voltage can be several thousand volts.

 To consider the characteristics of the device as it goes into its conducting state, 

we can model the structure as coupled npn and pnp bipolar transistors. Figure 15.30a 

shows how we can split the four-layer structure and Figure 15.30b shows the two-

transistor equivalent circuit with the associated currents. Since the base of the pnp 

device is the same as the collector of the npn transistor, the base current IB1 must in 

fact be the same as the collector current IC2. Similarly, since the collector of the pnp 

transistor is the same as the base of the npn device, the collector current IC1 must 

be the same as the base current IB2. In this bias confi guration, the B–C of the pnp 

and the B–C of the npn devices are reverse biased, while the B–E junctions are both 

forward biased. The parameters 
1 and 
2 are the common base current gains of the 

pnp and npn transistors, respectively.
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Figure 15.29 | (a) The basic four-layer 

pnpn structure. (b) The initial current–

voltage characteristic of the pnpn 

device.
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IB1 � IC2
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Figure 15.30 | (a) The splitting of the 

basic pnpn structure. (b) Two two-

transistor equivalent circuit of the 

four-layer pnpn device.

 We can write

 IC1 � �1 IA � IC01 � IB2 (15.11a)

and

 IC2 � �2 IK � IC02 � IB1 (15.11b)
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where IC01 and IC02 are the reverse B–C junction saturation currents in the two de-

vices. In this particular confi guration, IA = IK and IC1 + IC2 � IA. If we add Equa-

tions (15.11a) and (15.11b), we obtain

 IC1 � IC2 � IA � (
1 � 
2) IA � IC01 � IC02 (15.12)

The anode current IA, from Equation (15.12), can be found as

 IA �   
IC01 � IC02  ___  

1 � (
1 � 
2)
   (15.13)

As long as (
1 � 
2) is much smaller than unity, the anode current is small, as we 

have indicated in Figure 15.29b.

 The common base current gains, 
1 and 
2, are very strong functions of collector 

current as we discussed in Chapter 12. For small values of VA, the collector current in 

each device is just the reverse saturation current, which is very small. The small col-

lector current implies that both 
1 and 
2 are much smaller than unity. The four-layer 

structure maintains this blocking condition until the junction J2 starts into breakdown 

or until a current is induced in the J2 junction by some external means.

 Consider, initially, the condition when the applied anode voltage is suffi ciently 

large to cause the J2 junction to start into avalanche breakdown. This effect is shown 

in Figure 15.31a. The electrons generated by impact ionization are swept into the 

n1 region, making the n1 region more negative, and the holes generated by impact 

ionization are swept into the p2 region, making the p2 region more positive. The more 

negative voltage of the n1 region and the more positive voltage of the p2 region means 

that the forward-bias junction voltages V1 and V3 both increase. The increase in the 

respective B–E junction voltages causes an increase in current, which results in an 

increase in the common-base current gains 
1 and 
2, causing a further increase in 

(a)

IA

VA

� V1 �

p1 p2 n2
n1

J1 J2 J3

� V3 �

e�

h�

(b)

IA

VA

� V1 � � V2 �

p1 n2p2
n1

J1 J2 J3

� V3 �

Figure 15.31 | (a) The pnpn device when the J2 junction 

starts into avalanche breakdown. (b) The junction voltages 

in the pnpn structure when the device is in the high-current, 

low-impedance state.
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IA as seen in Equation (15.13). We now have a regenerative positive feedback situa-

tion, so the current IA will increase very rapidly.

 As the anode current IA increases and �1 � �2 increases, the two equivalent bipo-

lar transistors are driven into saturation and the junction J2 becomes forward  biased. 

The total voltage across the device decreases and is approximately equal to one diode 

drop as shown in Figure 15.31b. The current in the device is limited by the external 

circuit. If the current is allowed to increase, ohmic losses may become  important 

so that the voltage drop across the device may increase slightly with current. The 

IA versus VA characteristic is shown in Figure 15.32.

15.6.2  Triggering the SCR

In the last section, we considered the case when the four-layer pnpn device is turned 

on by the avalanche breakdown process in the center junction. The turn-on condition 

can also be initiated by other means. Figure 15.33a shows three-terminal SCR in 

which the third terminal is the gate control. We can determine the effect of the gate 

current by reconsidering Equations (15.11a) and (15.11b).

 Figure 15.33b again shows the two-transistor equivalent circuit including the 

gate current. We can write

 IC1 � �1IA � IC01 (15.14a)

and

 IC2 � �2IK � IC02 (15.14b)

We now have IK � IA � Ig and we can still write IC1 � IC2 � IA. Adding Equa-

tions (15.14a) and (15.14b), we fi nd that

 IC1 � IC2 � IA � (�1 � �2)IA � �2Ig � IC01 � IC02 (15.15)

IA

VA

Vp

Reverse

blocking
Forward

blocking

Forward

conducting

Figure 15.32 | The current–voltage 

characteristics of the pnpn device.
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Figure 15.33 | (a) The three-terminal SCR. (b) The two-transistor 

equivalent circuit of the three-terminal SCR.
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Solving for IA, we fi nd

 IA �   

2Ig � (IC01 � IC02) 

  ____  
1 � (
1 � 
2)

   (15.16)

 We can think of the gate current as the fl ow of holes into the p2 region. 

The additional holes increase the potential of this region, which increases the 

 forward-biased B–E voltage of the npn bipolar transistor, and the transistor ac-

tion. The transistor action of the npn increases the collector current IC2, which starts 

the transistor action of the pnp bipolar transistor, and the entire pnpn device can 

be turned on into its low-impedance state. The gate current required to switch the 

SCR into its on condition is typically in the milliamp range. SCR can be turned on 

with a small gate current, which can control hundreds of amperes of anode current. 

The gate current can be turned off and the SCR will remain in its conducting state. 

The gate loses control of the device once the SCR is triggered into its conducting 

state. The current–voltage characteristics of the SCR as a function of gate current is 

shown in Figure 15.34.

 A simple application of an SCR in a half-wave control circuit is shown in Fig-

ure 15.35a. The input signal is an ac voltage and a trigger pulse will control the 

turn-on of the SCR. We assume that the trigger pulse occurs at time t1 during the 

ac voltage cycle. Prior to t1, the SCR is off so that the current in the load is zero; thus, 

there is a zero output voltage. At t � t1, the SCR is triggered on and the input voltage 

appears across the load (neglecting the voltage drop across the SCR). The SCR turns 

off when the anode-to-cathode voltage becomes zero even though the trigger pulse 

has been turned off prior to this time. The time at which the SCR is triggered dur-

ing the voltage cycle can be varied, changing the amount of power delivered to the 

load. Full-wave control circuits can be designed to increase effi ciency and degree of 

control.

 The gate allows control of the turn-on of the SCR. However, the four-layer pnpn 

structure can also be triggered on by other means. In many integrated circuits, para-

sitic pnpn structures exist. One such example is the CMOS structure that we con-

sidered in Chapter 10. A transient ionizing radiation pulse can trigger the parasitic 

IA

Ig3

Ig3

Ig2

Ig2

Ig1

VAK
Ig1

0 � Ig1 � Ig2 � Ig3

Ig � 0
Ig � 0

0

Figure 15.34 | Current–voltage characteristics of an SCR.
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four-layer device by generating electron–hole pairs, particularly in the J2 junction, 

producing a photocurrent. The photocurrent is equivalent to a gate current in an SCR 

so the parasitic device can be switched into its conducting state. Again, once the 

device is switched on, it will remain in its conducting state even when the radiation 

ceases. An optical signal can also trigger the device in the same manner by generat-

ing electron–hole pairs.

 Another triggering mechanism in the pnpn device is dV �dt triggering. If the 

forward-bias anode voltage is applied rapidly, the voltage across the J2 junction will 

also change quickly. This changing reverse-biased J2 junction voltage means that the 

space charge region width is increasing; thus, electrons are being removed from the 

n1 side of the junction and holes are being removed from the p2 side of the junction. 

Vout

Vac
t1 t1�

(c)

t1�

Vac

t1

(b)

Trigger pulse

(a)

Trigger
pulse

Gate

SCR

AC voltage

�
Vac
�

�
Vout
�

A C

RL

Figure 15.35 | (a) Simple SCR circuit. (b) Input ac voltage 

signal and trigger pulse. (c) Output voltage versus time.
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If dV �dt is large, the rate of removal of these carriers is rapid, which leads to a large 

transient current that is equivalent to a gate current and can trigger the device into a 

low-impedance conducting state. In SCR devices, a dV �dt rating is usually specifi ed. 

However, in parasitic pnpn structures, the dV�dt triggering mechanism is a potential 

problem.

15.6.3  SCR Turn-Off

Switching the four-layer pnpn structure from its conducting state to its blocking 

state can be accomplished if the current IA is reduced below the value creating the 


1 � 
2 � 1 condition. This critical IA current is called the holding current. If a para-

sitic four-layer structure is triggered into the conducting state, the effective anode cur-

rent in the device must be reduced below the corresponding holding current in order to 

turn off the device. This requirement essentially implies that all power supplies must 

be turned off in order to bring the parasitic device back into its blocking state.

 The SCR can be triggered on by supplying holes to the p2 region of the device. 

The SCR can perhaps be turned off by removing holes from this same region. If the 

reverse gate current is large enough to bring the npn bipolar transistor out of satura-

tion, then the SCR can be switched from the conducting state into the blocking state. 

However, the lateral dimensions of the device may be large enough so that nonuni-

form biasing in the J2 and J3 junctions occurs during a negative gate current and 

the device will remain in the low-impedance conducting state. The four-layer pnpn 

device must be specifi cally designed for a turn-off capability.

15.6.4  Device Structures

Many thyristor structures have been fabricated with specifi c characteristics for spe-

cifi c applications. We consider a few of these types of device to gain an appreciation 

for the variety of structures.

Basic SCR  There are many variations of diffusion, implantation, and epitaxial 

growth that can be used in the fabrication of the SCR device. The basic structure is 

shown in Figure 15.36. The p1 and p2 regions are diffused into a fairly high resistivity 

n1 material. The n� cathode is formed and the p� gate contact is made. High thermal 

conductivity materials can be used for the anode and cathode ohmic contacts to aid in 

heat dissipation for high-power devices. The n1 region width may be on the order of 

250 	m in order to support very large reverse-biased voltages across the J2   junction. 

The p1 and p2 regions may be on the order of 75 	m wide, while the n� and p� regions 

are normally quite thin.

Bilateral Thyristor  Since thyristors are often used in ac power applications, it may 

be useful to have a device that switches symmetrically in the positive and  negative 

cycles of the ac voltage. There are a number of such devices, but the basic concept 

is to connect two conventional thyristors in antiparallel as shown in Figure 15.37a. 

The integration of this concept into a single device is shown in Figure 15.37b. Sym-

metrical n regions can be diffused into a pnp structure. Figure 15.37c shows the 

current–voltage characteristics in which the triggering into the conduction mode 
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would be due to breakdown triggering. The two terminals alternately share the role 

of anode and cathode during successive half cycles of the ac voltage.

 Triggering by a gate control is more complex for this device since a single gate 

region must serve for both of the antiparallel thyristors. One such device is known as a 

triac. Figure 15.38a shows the cross section of such a device. This device can be trig-

gered into conduction by gate signals of either polarity and with  anode-to-cathode 

voltages of either polarity.
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n2 p1

n1
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n2 p1�
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Figure 15.37 | (a) The antiparallel connection of two 

thyristors to form a bilateral device. (b) The bilateral 

thyristor as an integrated device. (c) The current–

voltage characteristics of the bilateral thyristor.
(From Ghandhi [7].)
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Figure 15.36 | The basic SCR device 

structure.
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Figure 15.38 | (a) The triac device. (b) The 

triac with a specifi c bias confi guration. 
(From Ghandhi [7].)

I

	IG

V12

	IG

Figure 15.39 | The current–voltage 

characteristics of the triac.

 One particular gate control situation is shown in Figure 15.38b. Terminal 1 is 

positive with respect to terminal 2, and a negative gate voltage is applied with respect 

to terminal 1, so the gate current is negative. This polarity arrangement induces the 

current I1 and the junction J4 becomes forward biased. Electrons are injected from 

n3, diffuse across p2, and are collected in the n1 region. In this case n3 p2 n1 behaves 

like a saturated transistor. The collected electrons in n1 lower the potential of n1 with 

respect to p2. The current across the p2n1 junction increases, which can trigger the 

p2 n1 p1 n4 thyristor into its conducting mode.

 We can show that the other combinations of gate, anode, and cathode volt-

ages will also trigger the triac into conduction. Figure 15.39 shows the terminal 

characteristics.
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700 CHAPTER 15   Semiconductor Microwave and Power Devices

MOS Gated Thyristor  The operation of a MOS gated thyristor is based upon 

controlling the gain of the npn bipolar transistor. Figure 15.40 shows a V-groove 

MOS gated thyristor. The MOS gate structure must extend into the n-drift region. If 

the gate voltage is zero, the depletion edge in the p-base remains essentially fl at and 

parallel to the junction J2; the gain of the npn transistor is low. This effect is shown in 

the fi gure by the dashed line. When a positive gate voltage is applied, the surface of 

the p base becomes depleted—the depletion region in the p base adjacent to the gate 

is shown by the dotted line. The undepleted base width W	 of the npn bipolar device 

narrows and the gain of the device increases.

 At a gate voltage approximately equal to the threshold voltage, electrons from 

the n� emitter are injected through the depletion region into the n-drift region. The 

potential of the n-drift region is lowered, which further forward biases the p� anode 

to n-drift junction voltage, and the regenerative process is initiated. The gate volt-

age required to initiate turn-on is approximately the threshold voltage of the MOS 

device. One advantage of this device is that the input impedance to the control ter-

minal is very high; relatively large currents can be switched with very small capacity 

coupled gate currents.

MOS Turn-Off Thyristor  The MOS turn-off thyristor can both turn on and turn 

off the anode current by applying a signal to a MOS gate terminal. The basic device 

structure is shown in Figure 15.41. By applying a positive gate voltage, the n�pn 

bipolar transistor can be turned on as just discussed. Once the thyristor is turned on, 

the device can be turned off by applying a negative gate voltage: the negative gate 

voltage turns on the p-channel MOS transistor that effectively short circuits the B–E 

junction of the n�pn bipolar transistor. Holes that now enter the p-base have an alter-

native path to the cathode. If the resistance of the p-channel MOSFET becomes low 

enough, all current will be diverted away from the n�p emitter and the n�pn device 

will effectively be turned off.

Depletion
layer edge n-drift region

Gate
Cathode

p� anode

Anode

W�p base p basen� n�

Figure 15.40 | The V groove MOS gated thyristor. 
(From Baliga [1].)
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Figure 15.41 | (a) The MOS turn-off thyristor. (b) Equivalent circuit for the MOS 

turn-off thyristor. 
(From Baliga [1].)

15.7 | SUMMARY
■ The concept of a negative differential resistance in the I–V characteristic of the tunnel 

diode is used in the design of a microwave tunnel diode oscillator. The expression for 

the maximum resistance cutoff frequency is derived.

■ The operation of a microwave GUNN diode oscillator is based on the concept of 

negative differential mobility.

■ The IMPATT diode oscillator uses injection and drift time delays to create a region of 

differential negative resistance.

■ The power BJT has a vertical confi guration and an interdigitated base–emitter surface 

structure. The collector drift region (doping and width) determines the rated blocking 

voltage of the BJT, while the base width must be suffi ciently wide to avoid punch-

through breakdown at the rated blocking voltage.

■ A power BJT is characterized by the maximum rated collector current, maximum rated 

voltage, and maximum rated power dissipation. These three parameters defi ne the SOA 

of the transistor.

■ A power MOSFET has a vertical confi guration and an interdigitated gate–source sur-

face structure. Two specifi c devices considered are the DMOS and VMOS structures. 

The drain-drift region (doping and width) determines the rated blocking voltage of 

the MOSFET, while the channel length of the base (body) must be suffi ciently wide to 

avoid punch-through breakdown at the rated blocking voltage.

■ A power MOSFET is characterized by the maximum rated drain current, maximum 

rated voltage, and maximum rated power dissipation. These three parameters defi ne the 

SOA of the transistor.
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702 CHAPTER 15   Semiconductor Microwave and Power Devices

■ The “on resistance” of a MOSFET has a positive temperature coeffi cient so that the 

power MOSFET is more stable versus temperature than a power BJT. This charac-

teristic allows MOSFETs to be fabricated in parallel to increase the current capability 

of the device.

■ The thyristor refers to a general class of pnpn switching devices that can be switched 

between a high-impedance, low-current state and a low-impedance, high-current state. 

These devices exhibit a bistable regenerative positive feedback switching characteristic.

■ The basic pnpn device can be modeled as coupled npn and pnp bipolar transistors. In 

the “on” state, both bipolar transistors are driven into saturation, creating the high-

current, low-voltage condition. In the “off” or blocking state, large voltages can be 

applied to the device and the current is essentially zero.

■ The turn-on characteristics of the thyristor can be controlled through a gate control 

terminal. The three-terminal thyristors are referred to as semiconductor controlled recti-

fi ers (SCRs).

GLOSSARY OF IMPORTANT TERMS
double-diffused MOSFET (DMOS)  A power MOSFET in which the source and channel 

regions are formed using a double diffusion process.

HEXFET  The structure of a power MOSFET in which many individual MOSFETs are 

placed in parallel in a hexagonal confi guration.

maximum rated current  The maximum allowed current in a power transistor such that 

proper operation is maintained.

maximum rated power  The maximum allowed power dissipation in a power transistor 

such that no permanent damage is done to the transistor.

maximum rated voltage  The maximum allowed applied voltage to a power transistor such 

that breakdown is not initiated.

negative differential mobility  A region in the drift velocity versus electric fi eld character-

istic of a semiconductor material in which the drift velocity decreases with an increase in 

the electric fi eld.

negative differential resistance  A region in the I–V characteristic of a device in which the 

current decreases while the voltage increases.

on resistance  The effective resistance between source and drain of a power MOSFET.

safe operating area  The allowed current–voltage regions of operation for a power transistor 

bounded by the maximum rated current, maximum rated voltage, and maximum power.

second breakdown  A breakdown effect in a power BJT in which high temperature causes a 

thermal runaway process.

SCR (semiconductor controlled rectifi er)  The common name given to a three-terminal 

thyristor.

thyristor  The name given to a general class of semiconductor pnpn switching devices ex-

hibiting bistable regenerative switching characteristics.

transferred-electron effect  The phenomenon in which conduction electrons are scattered 

from a lower energy, high-mobility band into a higher energy, low-mobility band.

triac  The name of a bilateral three-terminal thyristor.

V-groove MOSFET (VMOS)  A power MOSFET in which the channel region is formed 

along a V-shaped groove formed in the surface of the semiconductor.
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CHECKPOINT
After studying this chapter, the reader should have the ability to:

■ Explain how a region of negative differential resistance is developed in the I–V charac-

teristic of the tunnel diode.

■ Discuss the concept of negative differential mobility in GaAs and discuss how this phe-

nomenon leads to the generation of domains in a GUNN diode.

■ Discuss the operation of an IMPATT diode oscillator.

■ Sketch the cross section of a power BJT and discuss the voltage and current limitations 

of the device.

■ Discuss the reason the current gain of a power BJT is generally smaller than that of a 

small switching BJT.

■ Sketch the safe operating area of a power BJT.

■ Describe the reason for and the operation of a Darlington confi guration.

■ Sketch the cross section of the DMOS and VMOS power MOSFET structures.

■ Sketch the safe operating area of a power MOSFET.

■ Describe why the “on resistance” of a power MOSFET has a positive temperature coeffi cient.

■ Describe the switching characteristics of a pnpn device.

■ Describe the switching characteristics of a semiconductor controlled rectifi er.

REVIEW QUESTIONS
 1. Describe how a negative differential resistance region in the I–V characteristic of the 

tunnel diode is generated.

 2. Describe how a negative differential mobility region in the drift velocity versus electric 

fi eld characteristic in GaAs is developed.

 3. Describe how a negative differential resistance characteristic is produced in the 

IMPATT diode.

 4. Why is the doping concentration in the collector drift region low and why is the drift 

 region width large in a power BJT?

 5. Why does a power BJT have an interdigitated base–emitter structure?

 6. Sketch the safe operating area of a power BJT.

 7. Discuss how a DMOS structure of a power MOSFET is formed.

 8. Discuss the voltage limitation of a power MOSFET.

 9. Defi ne the “on resistance” of a power MOSFET and show that the on resistance has a 

positive temperature coeffi cient.

10. Discuss how the gate terminal of a semiconductor controlled rectifi er can control the 

switching characteristics.

PROBLEMS

Section 15.1  Tunnel Diode

15.1 Sketch the energy band diagrams of a tunnel diode in which both the n and p 

regions are degenerately doped for the case of (a) zero bias, (b) 0 � V � Vp, 

(c) Vp � V � Vv, and (d) V � Vv.
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15.2 The parameters in Figure 15.1b are Ip � 20 mA, Iv � 2 mA, Vp � 0.15 V, and 

Vv � 0.60 V. Assuming a straight-line approximation to the I–V characteristics 

between these two points, calculate the value of differential negative resistance.

15.3 For values of Rmin � 10 
, Rp � 1 
, and Cj � 2 nF, determine the maximum 

resistance cutoff frequency of a tunnel diode.

Section 15.2  GUNN Diode

15.4 (a) A GaAs transferred-electron device has a doping concentration of 

Nd � 1015 cm�3. Determine (i) the minimum device length, (ii) the time between 

current pulses, and (iii) the oscillation frequency (assume vd � 1.5 � 107 cm/s). 

(b) Repeat part (a) for a doping concentration of Nd � 1016 cm�3.

15.5 The drift region length of a GUNN diode is L � 15 	m. The voltage across the 

diode oscillates between 8 and 10 V. (a) Determine the average electric fi eld in the 

device. (b) Using Figure 15.3, fi nd the average electron drift velocity. (c) Using the 

results of part (b), fi nd the frequency of oscillation.

Section 15.3  IMPATT Diode

15.6 Find the frequency of oscillation of a silicon IMPATT diode with a drift region 

length of L � 10 	m.

Section 15.4  Power Bipolar Transistors

15.7 Consider the vertical npn power bipolar transistor shown in Figure 15.10. 

The doping concentrations are NE � 1018 cm�3, NB � 8 � 1015 cm�3, and 

NC � 6 � 1014 cm�3. The neutral base width is 2 	m, the electron diffusion 

coeffi cient in the base is DB � 20 cm2/s, and the B–E cross-sectional area is 

0.4 cm2. (a) The excess electron concentration in the base at the edge of the B–E 

junction is �np (0) � 1014 cm�3. Determine (i) the B–E voltage and (ii) the approxi-

mate collector current. (b) Determine the (i) B–E voltage at the edge of high injec-

tion and (ii) the approximate resulting collector current.

15.8 Consider the npn power bipolar transistor described in Problem 15.7. (a) Determine 

the expected B–C avalanche breakdown voltage. (b) Find the punch-through volt-

age. (c) What is the expected B–E avalanche breakdown voltage?

15.9 A silicon pnp power BJT is to be designed. The base doping concentration is 

NB � 5 � 1015 cm�3. The base–collector junction breakdown voltage is to be 

BVCBO � 1000 V. Determine the maximum collector doping concentration and the 

minimum base and collector region widths.

15.10 (a) Assume that BVCBO � 300 V for a power BJT. Determine BVCEO for (i) � � 10 

and (ii) � � 50. Assume n � 3 (see Equation (12.63)). (b) Repeat part (a) for 

BVCBO � 125 V.

15.11 The effective � of a Darlington pair is found to be �eff � 180. The driver BJT, QA, 

has a current gain �A � 25. (a) What is � of the output transistor QB? (b) If the 

rated collector current of QB is ICB, max � 20 A, what must be the rated collector 

current of QA?

15.12 The maximum current, voltage, and power rating of an npn power BJT are 2 A, 

120 V, and 30 W, respectively. (a) Sketch and label the safe operating area for this 

transistor using linear current and voltage scales. (b) Determine RL such that the 
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maximum power is delivered to the load if the quiescent collector–emitter voltage 

is 60 V. For this value of RL, what is the maximum current and maximum voltage? 

(c) Determine the value of RL such that the maximum current and maximum power 

can be obtained. (d) Determine the value of RL such that the maximum voltage and 

maximum power can be obtained.

15.13 The common-emitter circuit in Figure 15.15 is biased at VCC � 12 V. The power rat-

ing of the transistor is PT � 10 W. (a) Determine RL such that the maximum power 

is delivered to the load. (b) What must be the current rating of the transistor, IC, max?

15.14 The transistor in the common-emitter circuit in Figure 15.15 has parameters 

PT � 2.5 W, VCE,sus � 25 V, and IC, max � 500 mA. Let RL � 100 
. What is the value 

of VCC such that the maximum power is delivered to the load?

Section 15.5  Power MOSFETs

15.15 A power MOSFET is used in the inverter circuit shown in Figure 15.26 in which 

VDD � 200 V and RD � 100 
. The on resistance of the transistor is Ron � 2 
 at 

a junction temperature of 25	C. The on resistance increases linearly with tempera-

ture and is 3 
 at a junction temperature of 100	C. Plot the power dissipated in the 

 transistor as a function of junction temperature.

15.16 Three MOSFETs are to be used in parallel to sink 5 A of load current when they 

are on. (a) The on resistances of the three devices are Ron1 � 1.8 
, Ron2 � 2 
, 

and Ron3 � 2.2 
. Calculate the current in each device and the power dissipated in 

each device. (b) For some unknown reason, the on resistance of the second device 

increases to Ron2 � 3.6 
. Recalculate the current in each device and the power 

 dissipated in each device.

15.17 Consider a silicon DMOS power MOSFET shown in Figure 15.20. The source dop-

ing concentration is 5 � 1017 cm�3 and the base doping concentration is 1015 cm�3. 

(a) Design the drain doping concentration, channel length, and drain drift region 

width to support a blocking voltage of 200 V. (b) Repeat part (a) such that the 

blocking voltage is 80 V.

15.18 A power MOSFET is connected in a common-source confi guration as shown in 

Figure 15.26. The transistor parameters are Kn � 0.20 A/V2, VT � 2 V, ID, max � 8 A, 

BVDSS � 80 V, and PT � 45 W. The circuit parameters are VDD � 60 V and 

RL � 10 
. (a) Sketch and label the safe operating area for the transistor using lin-

ear current and voltage scales. Sketch the load line on the same curve. (b) Calculate 

the power dissipated in the transistor for VGS � 4, 6, and 8 V. Is there a possibility 

of damaging the transistor? Explain.

15.19 Consider the power MOSFET described in Problem 15.18. (a) For VDD � 60 V, 

determine the value of RL such that the maximum power is delivered to the load 

and the transistor remains biased in the safe operating area. For this case, what is 

the maximum allowed drain current? (b) For RL � 10 
, determine the maximum 

value VDD such that the maximum power is delivered to the load and the transistor 

remains biased in the safe operating area.

Section 15.6  The Thyristor

15.20 One condition for switching a thyristor is that 
1 � 
2 � 1. Show that this condi-

tion corresponds to �1 �2 � 1, where �1 and �2 are the common-emitter current 

gains of the pnp and npn bipolar transistors in the equivalent circuit of the thyristor.
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15.21 Explain how a pulse of ionizing radiation could trigger a basic CMOS structure 

into a high-current, low-impedance state.

15.22 Show that the triac can be triggered into its ON state by gate signals of either polar-

ity and with anode-to-cathode voltages of either polarity. Consider each voltage 

 polarity combination.
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707

A
Selected List of Symbols

T his list does not include some symbols that are defi ned and used specifi cally 

in only one section. Some symbols have more than one meaning; however, the 

context in which the symbol is used should make the meaning unambiguous. The 

usual unit associated with each symbol is given.

a  Unit cell dimension (Å), potential well width, acceleration, 

gradient of impurity concentration, channel thickness of a 

one-sided JFET (cm)

a0 Bohr radius (Å)

c Speed of light (cm/s)

d Distance (cm)

e Electronic charge (magnitude) (C), Napierian base

f Frequency (Hz)

fF (E ) Fermi–Dirac probability function

fT Cutoff frequency (Hz)

g Generation rate (cm�3 s�1)

g� Generation rate of excess carriers (cm�3 s�1)

g(E ) Density of states function (cm�3 eV�1)

gc, gv  Density of states function in the conduction band and 

valence band (cm�3 eV�1)

gd  Channel conductance (S), small-signal diffusion conductance (S)

gm Transconductance (A/V)

gn, gp Generation rate for electrons and holes (cm�3 s�1)

h  Planck’s constant (J-s), induced space charge width in a 

JFET (cm)

� Modifi ed Planck’s constant (h/2�)

hf Small-signal common-emitter current gain

A P P E N D I X
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j Imaginary constant,  �
___

 �1  

k Boltzmann’s constant (J/K), wavenumber (cm�1)

kn Conduction parameter (A/V2)

m Mass (kg)

m 0 Rest mass of the electron (kg)

m* Effective mass (kg)

 m cn  *  ,  m cp  *   Conductivity effective mass of electron and hole (kg)

 m dn  *  ,  m dp  *  Density of states effective mass of electron and hole (kg)

 m n  * ,  m p  *  Effective mass of electron and hole (kg)

n Integer

n, l, m, s Quantum numbers

n, p Electron and hole concentration (cm�3)

 
_
 n  Index of refraction

n�, p� Constants related to the trap energy (cm�3)

nB0, pE0, pC0  Thermal-equilibrium minority carrier electron 

concentration in the base and minority carrier hole 

concentration in the emitter and collector (cm�3)

nd Density of electrons in the donor energy level (cm�3)

ni Intrinsic concentration of electrons (cm�3)

n0, p0  Thermal-equilibrium concentration of electrons and 

holes (cm�3)

np, pn  Minority carrier electron and minority carrier hole 

concentration (cm�3)

np0, pn0  Thermal-equilibrium minority carrier electron and minority 

carrier hole concentration (cm�3)

ns Density of a two-dimensional electron gas (cm�2)

p Momentum

pa Density of holes in the acceptor energy level (cm�3)

pi Intrinsic hole concentration (� ni)(cm�3)

q Charge (C)

r, �, � Spherical coordinates

rd, r� Small-signal diffusion resistance (�)

rds Small-signal drain-to-source resistance (�)

ro Output resistance (�)

s Surface recombination velocity (cm/s)

t Time (s)

td Delay time (s)

tox Gate oxide thickness (cm or Å)

ts Storage time (s)
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u(x) Periodic wave function

v Velocity (cm/s)

vd Carrier drift velocity (cm/s)

vds, vs, vsat Carrier saturation drift velocity (cm/s)

x, y, z Cartesian coordinates

x Mole fraction in compound semiconductors

xB, xE, xC Neutral base, emitter, and collector region widths (cm)

xd Induced space charge width (cm)

xdB, xdC Space charge width in base and collector (cm)

xBO Metallurgical base width (cm)

xdT Maximum space charge width (cm)

xn, xp  Depletion width from the metallurgical junction into n-type 

and p-type semiconductor regions (cm)

A Area (cm2)

A* Effective Richardson constant (A/K2/cm2)

B Magnetic fl ux density (Wb/m2)

B, E, C Base, emitter, and collector

BVCBO  Breakdown voltage of collector–base junction with emitter 

open (V)

BVCEO  Breakdown voltage of collector–emitter  with base open (V)

C Capacitance (F)

C� Capacitance per unit area (F/cm2)

Cd, C� Diffusion capacitance (F)

CFB Flat-band capacitance (F)

Cgs, Cgd, Cds Gate-source, gate-drain, and drain-source capacitance (F)

 C  j  �  Junction capacitance per unit area (F/cm2)

CM Miller capacitance (F)

Cn, Cp Constants related to capture rate of electrons and holes

Cox Gate oxide capacitance per unit area (F/cm2)

C� Reverse-biased B–C junction capacitance (F)

D, S, G Drain, source, and gate of an FET

D� Ambipolar diffusion coeffi cient (cm2/s)

DB, DE, DC  Base, emitter, and collector minority carrier diffusion 

coeffi cients (cm2/s)

Dit Density of interface states (#/eV-cm3)

Dn, Dp  Minority carrier electron and minority carrier hole 

diffusion coeffi cient (cm2/s)

E Energy ( J or eV)

Ea Acceptor energy level (eV)
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Ec, Ev  Energy at the bottom edge of the conduction band and top 

edge of the valence band (eV)

�Ec, �Ev  Difference in conduction band energies and valence band 

energies at a heterojunction (eV)

Ed Donor energy level (eV)

EF Fermi energy (eV)

EFi Intrinsic Fermi energy (eV)

EFn, EFp Quasi-Fermi energy levels for electrons and holes (eV)

Eg Bandgap energy (eV)

�Eg  Bandgap narrowing factor (eV), difference in bandgap 

energies at a heterojunction (eV)

Et Trap energy level (eV)

F Force (N)

 F n  
� ,  F p  

�  Electron and hole particle fl ux (cm�2 s�1)

F1/2(�) Fermi–Dirac integral function

G Generation rate of electron–hole pairs (cm�3 s�1)

GL Excess carrier generation rate (cm�3 s�1)

Gn0, Gp0  Thermal-equilibrium generation rate for electrons and 

holes (cm�3 s�1)

G01 Conductance (S)

I Current (A)

Ib, Ie, Ic Small-signal base, emitter, and collector currents (A)

IA Anode current (A)

IB, IE, IC Base, emitter, and collector current (A)

ICBO  Reverse-biased collector–base junction current with 

emitter open (A)

ICEO Reverse-biased collector–emitter current with base open (A)

ID Diode current (A), drain current (A)

ID (sat) Saturation drain current (A)

IL Photocurrent (A)

IP1 Pinchoff current (A)

IS Ideal reverse-biased saturation current (A)

ISC Short-circuit current (A)

Iv Photon intensity (energy/cm2/s)

J Electric current density (A/cm2)

Jgen Generation current density (A/cm2)

JL Photocurrent density (A/cm2)

Jn, Jp Electron and hole electric current density (A/cm2)

 J n  
� ,  J p  

�   Electron and hole particle current density (cm�2 s�1)
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Jrec Recombination current density (A/cm2)

Jr0 Zero-bias recombination current density (A/cm2)

JR Reverse-biased current density (A/cm2)

JS Ideal reverse-biased saturation current density (A/cm2)

JsT  Ideal reverse-saturation current density in a Schottky 

diode (A/cm2)

L Length (cm), inductance (H), channel length (cm)

�L Channel length modulation factor (cm)

LB, LE, LC  Minority carrier diffusion length in the base, emitter, and 

collector (cm)

LD Debye length (cm)

Ln, Lp Minority carrier electron and hole diffusion length (cm)

M, Mn Multiplication constant

N Number density (cm�3)

Na Density of acceptor impurity atoms (cm�3)

NB, NE, NC Base, emitter, and collector doping concentrations (cm�3)

Nc, Nv  Effective density of states function in the conduction band 

and valence band (cm�3)

Nd Density of donor impurity atoms (cm�3)

Nit Interface state density (cm�2)

Nt Trap density (cm�3)

P Power (W)

P(r) Probability density function

Q Charge (C)

Q� Charge per unit area (C/cm2)

QB Gate-controlled bulk charge (C)

 Q n  �  Inversion channel charge density per unit area (C/cm2)

 Q sig  �   Signal charge density per unit area (C/cm2)

 Q SD  �   (max) Maximum space charge density per unit area (C/cm2)

 Q SS  �   Equivalent trapped oxide charge per unit area (C/cm2)

R  Refl ection coeffi cient, recombination rate (cm�3 s�1), 

resistance (�)

R(r) Radial wave function

Rc Specifi c contact resistance (�-cm2)

Rcn, Rcp Capture rate for electrons and holes (cm�3 s�1)

Ren, Rep Emission rate for electrons and holes (cm�3 s�1)

Rn, Rp Recombination rate for electrons and holes (cm�3 s�1)

Rn0, Rp0  Thermal-equilibrium recombination rate of electrons and 

holes (cm�3 s�1)

nea29583_appA-G_707-729.indd   711nea29583_appA-G_707-729.indd   711 12/11/10   12:54 PM12/11/10   12:54 PM



712 APPENDIX  A  Selected List of Symbols

T  Temperature (K), kinetic energy (J or eV), transmission 

coeffi cient

V Potential (V), potential energy (J or eV)

Va Applied forward-bias voltage (V)

VA Early voltage (V), anode voltage (V)

Vbi Built-in potential barrier (V)

VB Breakdown voltage (V)

VBD Breakdown voltage at the drain (V)

VBE , VCB , VCE  Base–emitter, collector–base, and collector–emitter 

voltage (V)

VDS, VGS Drain-source and gate-source voltage (V)

VDS (sat) Drain-source saturation voltage (V)

VFB Flat-band voltage (V)

VG Gate voltage (V)

VH Hall voltage (V)

Voc  Open-circuit voltage (V)

Vox Potential difference across an oxide (V)

Vp0 Pinchoff voltage (V)

Vpt Punch-through voltage (V)

VR Applied reverse-biased voltage (V)

VSB Source-body voltage (V)

Vt Thermal voltage (kT/e)

VT Threshold voltage (V)

�VT Threshold voltage shift (V)

W Total space charge width (cm), channel width (cm)

WB Metallurgical base width (cm)

Y Admittance

�  Photon absorption coeffi cient (cm�1), ac common-base 

current gain

�n, �p Electron and hole ionization rates (cm�1)

�0 dc common-base current gain

�T Base transport factor

� Common-emitter current gain

	  Emitter injection effi ciency factor


  Recombination factor


n, 
p Excess electron and hole concentration (cm�3)


np, 
pn  Excess minority carrier electron and excess minority 

carrier hole concentration (cm�3)

� Permittivity (F/cm2)
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�0 Permittivity of free space (F/cm2)

�ox Permittivity of an oxide (F/cm2)

�r Relative permittivity or dielectric constant

�s Permittivity of a semiconductor (F/cm2)

� Wavelength (cm or �m)

� Permeability (H/cm)

�� Ambipolar mobility (cm2/V-s)

�n, �p Electron and hole mobility (cm2/V-s)

�0 Permeability of free space (H/cm)

 Frequency (Hz)

� Resistivity (�-cm), volume charge density (C/cm3)

� Conductivity (��1 cm�1)

�� Photoconductivity (��1 cm�1)

�i Intrinsic conductivity (��1 cm�1)

�n, �p Conductivity of n-type and p-type semiconductors 

(��1 cm�1)

� Lifetime (s)

�n, �p Electron and hole lifetime (s)

�n0, �p0 Excess minority carrier electron and hole lifetime (s)

�0 Lifetime in space charge region (s)

� Potential (V)

�(t) Time-dependent wave function

�� Schottky barrier lowering potential (V)

�Bn Schottky barrier height (V)

�B0 Ideal Schottky barrier height (V)

�fn, �fp  Potential difference (magnitude) between EFi and EF

in n-type and p-type semiconductors (V)

�Fn, �Fp  Potential difference (with sign) between EFi and EF

in n-type and p-type semiconductors (V)

�m Metal work function (V)

 � m  �   Modifi ed metal work function (V)

�ms Metal–semiconductor work function difference (V)

�n, �p  Potential difference (magnitude) between Ec and EF

in n-type and between Ev and EF in p-type

semiconductor (V)

�s  Semiconductor work function (V), surface potential (V)

� Electron affi nity (V)

�� Modifi ed electron affi nity (V)

�(x) Time-independent wave function
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� Radian frequency (s�1)

	 Refl ection coeffi cient

E Electric fi eld (V/cm)

EH Hall electric fi eld (V/cm) 

Ecrit Critical electric fi eld at breakdown (V/cm)


(�) Angular wave function

� Photon fl ux (cm�2 s�1)

�(�) Angular wave function

�(x, t) Total wave function
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715

System of Units, 
Conversion Factors, 

and General Constants

Table B.1 | International system of units*

Quantity Unit Symbol Dimension

Length meter m
Mass kilogram kg
Time second s or sec
Temperature kelvin K
Current ampere A
Frequency hertz Hz 1/s
Force newton N kg-m/s2

Pressure pascal Pa N/m2

Energy joule J N-m
Power watt W J/s
Electric charge coulomb C A-s
Potential volt V J/C
Conductance siemens S A/V
Resistance ohm � V/A
Capacitance farad F C/V
Magnetic fl ux weber Wb V-s
Magnetic fl ux density tesla T Wb/m2

Inductance henry H Wb/A

*The centimeter is the common unit of length and the electron-volt is the common unit of 

energy (see Appendix D) used in the study of semiconductors.  However, the joule and in 

some cases the meter should be used in most  formulas.

BA P P E N D I X

nea29583_appA-G_707-729.indd   715nea29583_appA-G_707-729.indd   715 12/11/10   12:54 PM12/11/10   12:54 PM



716 APPENDIX  B  System of Units, Conversion Factors, and General Constants

Table B.2 | Conversion factors

 Prefi xes

1 Å (angstrom) � 10�8 cm � 10�10 m 10�15 femto-  � f

1 �m (micrometer) � 10�4 cm 10�12 pico-    � p

1 mil � 10�3 in. � 25.4 �m 10�9 nano-  � n

2.54 cm � 1 in. 10�6 micro-  � �
1 eV � 1.6  10�19 J 10�3 milli-  � m

1 J � 107 erg 10�3 kilo-   � k

 10�6 mega-  � M

 10�9 giga-   � G

 10�12 tera    � T

Table B.3 | Physical constants

Avogadro’s number NA � 6.02  10�23

  atoms per gram
  molecular weight

Boltzmann’s constant   k � 1.38  10�23 J/K
     � 8.62  10�5 eV/K

Electronic charge   e � 1.60  10�19 C
(magnitude)

Free electron rest mass m0 � 9.11  10�31 kg

Permeability of free space  �0 � 4�  10�7 H/m

Permittivity of free space    �0 � 8.85  10�14 F/cm

    � 8.85  10�12 F/m

Planck’s constant      h � 6.625  10�34 J-s

    � 4.135  10�15 eV-s

    
h _ 

2�
   � � � 1.054  10�34 J-s

Proton rest mass    M � 1.67  10�27 kg

Speed of light in vacuum   c � 2.998  1010 cm/s

Thermal voltage (T � 300 K)    Vt �   kT _ e   � 0.0259 V

  kT � 0.0259 eV 
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Table B.4 | Silicon, gallium arsenide, and germanium properties (T � 300 K)

Property Si GaAs Ge

Atoms (cm�3) 5.0  1022 4.42  1022 4.42  1022

Atomic weight 28.09 144.63 72.60

Crystal structure Diamond Zincblende Diamond

Density (g/cm3) 2.33 5.32 5.33

Lattice constant (Å) 5.43 5.65 5.65

Melting point (�C) 1415 1238 937

Dielectric constant 11.7 13.1 16.0

Bandgap energy (eV) 1.12 1.42 0.66

Electron affi nity, � (V) 4.01 4.07 4.13

Effective density of states in 2.8  1019 4.7  1017 1.04  1019

conduction band, Nc (cm�3)

Effective density of states in 1.04  1019 7.0  1018 6.0  1018

valence band, Nv (cm�3)

Intrinsic carrier concentration (cm�3) 1.5  1010 1.8  106 2.4  1013

Mobility (cm2/V-s)
  Electron, �n  1350 8500 3900
  Hole, �p 480 400 1900

Effective mass  �   m* _ m0 
   � 

  Electrons  m I  *  � 0.98 0.067 1.64

  m t   *  � 0.19  0.082

  Holes  m lh  *   � 0.16 0.082 0.044

  m hh  *   � 0.49 0.45 0.28
Density of states effective mass

  Electrons  �    m dn  *  
 _ mo 

   �  1.08 0.067 0.55

  Holes  �    m dp  *  
 _ mo 

   �  0.56 0.48 0.37

Conductivity effective mass

  Electrons  �    m cn  *  
 _ mo 

   �  0.26 0.067 0.12

  Holes  �    m cp  *  
 _ mo 

   �  0.37 0.34 0.21

Table B.5 | Other semiconductor parameters

Material Eg(eV) a (Å) εr χ  
__

 n 

Aluminum arsenide 2.16 5.66 12.0 3.5 2.97
Gallium phosphide 2.26 5.45 10 4.3 3.37
Aluminum phosphide 2.43 5.46 9.8  3.0
Indium phosphide 1.35 5.87 12.1 4.35 3.37
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Table B.6 | Properties of SiO2 and Si3N4 (T � 300 K)

Property SiO2 Si3N4

Crystal structure [Amorphous for most integrated
 circuit applications]

Atomic or molecular 2.2  1022 1.48  1022

density (cm�3)

Density (g/cm3) 2.2 3.4

Energy gap � 9 eV 4.7 eV

Dielectric constant 3.9 7.5

Melting point (�C) �1700 �1900
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C
The Periodic Table

A P P E N D I X

 Group I Group II Group III Group IV Group V Group VI Group VII Group VIII

Period a b a b a b a b a b a b a b a b

 I l H               2 He

  1.0079               4.003

 II 3 Li  4 Be   5 B  6 C  7 N   8 O  9 F  10 Ne

  6.94  9.02   10.82  12.01  14.01  16.00  19.00  20.18

 III 11 Na  12 Mg   13 Al  14 Si  15 P  16 S  17 Cl  18 Ar

  22.99  24.32   26.97  28.06  30.98  32.06  35.45  39.94

 IV 19 K  20 Ca  21 Sc  22 Ti  23 V  24 Cr  25 Mn  26 Fe 27 Co  28 Ni

  39.09  40.08  44.96  47.90  50.95  52.01  54.93  55.85  58.94 58.69

   29 Cu  30 Zn  31 Ga  32 Ge  33 As  34 Se  35 Br  36 Kr

   63.54  65.38  69.72  72.60  74.91  78.96  79.91  83.7

 V 37 Rb  38 Sr  39 Y  40 Zr  41 Nb  42 Mo  43 Tc  44 Ru   45 Rh   46 Pd

  85.48  87.63  88.92  91.22  92.91  95.95  99  101.7  102.91  106.4

   47 Ag  48 Cd  49 In  50 Sn  51 Sb  52 Te  53 I  54 Xe

   107.88  112.41  114.76  118.70  121.76  127.61  126.92  131.3

 VI 55 Cs  56 Ba  57–71  72 Hf  73 Ta  74 W  75 Re  76 Os   77 Ir   28 Pt

  132.91  137.36  Rare earths  178.6  180.88  183.92  186.31  190.2   193.1   195.2

   79 Au  80 Hg  81 Tl  82 Pb  83 Bi  84 Po  85 At    86 Rn

   197.2  200.61  204.39  207.21  209.00  210  211    222

 VII 87 Fr  88 Ra  89 Ac  90 Th  91 Pa  92 U  93 Np  94 Pu  95 Am  96 Cm  97 Bk  98 Ct  99 Es  100 Fm 101 Md

  223  226.05  227  232.12  231  238.07  237  239 241 242 246 249 254 256 256

Rare earths

 VI 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu

 57-71 138.92 140.13 140.92 144.27 147 150.43 152.0 156.9 159.2 162.46 164.90 167.2 169.4 173.04 174.99

The numbers in front of the symbols of the elements denote the atomic numbers; the numbers underneath are the atomic weights.
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D
Unit of Energy—The 

Electron Volt

T he electron volt (eV) is a unit of energy that is used constantly in the study of 

semiconductor physics and devices. This short discussion may help in “getting 

a feel” for the electron-volt.

 Consider a parallel-plate capacitor with an applied voltage as shown in 

Figure D.1. Assume that an electron is released at x � 0 at time t � 0. We may write

 F � m0a � m0   
d 2x _ 
dt2

   � eE (D.1)

where e is the magnitude of the electronic charge and E is the magnitude of the electric 

fi eld as shown. Upon integrating, the velocity and distance versus time are given by

 v �   eEt _ m0

   (D.2)

A P P E N D I X

V ��

E-field

x � 0 x � d

Figure D.1 | Parallel-plate 

capacitor.
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 APPENDIX  D  Unit of Energy—The Electron Volt 721

and

 x �   eEt2

 _ 
2m0

   (D.3)

where we have assumed that v � 0 at t � 0.
 Assume that at t � t0 the electron reaches the positive plate of the capacitor so 

that x � d. Then

 d �   
eE t 0  

2 
 _ 

2m0

   (D.4a)

or

 t0 �  �
_____

   
2m0 d _ 

eE
     (D.4b)

The velocity of the electron when it reaches the positive plate of the capacitor is

 v(t0) �   
eEt0 _ m0

   �  �
_____

   2eE d _ m0

     (D.5)

The kinetic energy of the electron at this time is

 T �   1 _ 
2
   m0 v(t0)

2 �   1 _ 
2
   m0  �   2eE d _ m0 

   �  � eEd (D.6)

The electric fi eld is

 E �   V _ 
d
   (D.7)

so that the energy is

 T � e · V (D.8)

If an electron is accelerated through a potential of 1 V, then the energy is

 T � e · V � (1.6  10�19)(1) � 1.6  10�19 joule (J) (D.9)

 The electron-volt (eV) unit of energy is defi ned as

 Electron-volt �   
joule

 _ e   (D.10)

Then, the electron that is accelerated through a potential of 1 V will have an energy 

of

 T � 1.6  10�19 J �   1.6  10�19

 __ 
1.6  10�19 

   (eV) (D.11)

or 1 eV.

 We may note that the magnitude of the potential (1 V) and the magnitude of the 

electron energy (1 eV) are the same. However, it is important to keep in mind that the 

unit associated with each number is different.
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E
“Derivation” of Schrodinger’s 

Wave Equation

S chrodinger’s wave equation is stated in Equation (2.6). The time-independent 

form of Schrodinger’s wave equation is then developed and given by Equation 

(2.13). The time-independent Schrodinger’s wave equation can also be developed 

from the classical wave equation. We may think of this development more in terms 

of a justifi cation of the Schrodinger’s time-independent wave equation rather than a 

strict derivation.

 The time-independent classical wave equation, in terms of voltage, is given as

   
�2V(x)

 __ 
�x2 

   �  �   �2

 _ 
 v p  

2  
   �  V(x) � 0 (E.1)

where � is the radian frequency and vp is the phase velocity.

 If we make a change of variable and let �(x) � V(x), then we have

   
�2�(x)

 __ 
�x2 

   �  �   �2

 _ 
 v p  

2  
   �  �(x) � 0 (E.2)

We can write that

   �
2

 _ 
 v p  

2 
   �   �   2� _ vp 

   �  2  �   �   2� _ 
� 

   �  2  (E.3)

where v and � are the wave frequency and wavelength, respectively.

 From the wave–particle duality principle, we can relate the wavelength and 

 momentum as

 � �   h _ p   (E.4)

Then

   �   2� _ 
�

   �  2  �   �   2� _ 
h
   · p �  2  (E.5)

A P P E N D I X
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 APPENDIX  E  “Derivation” of Schrodinger’s Wave Equation 723

and since � �   h _ 
2�

  , we can write

   �   2� _ 
�

   �  2  �   �   p _ 
�

   �  2  �   2m _ 
�2

    �   p2

 _ 
2m

   �  (E.6)

Now

   
p2

 _ 
2m

   � T � E � V (E.7)

where T, E, and V are the kinetic energy, total energy, and potential energy terms, 

 respectively.

 We can then write

   �
2

 _ 
 v p  

2 
   �   �   2� _ 

�
   �  2  �   2m _ 

�2
    �   p2

 _ 
2m

   �  �   2m _ 
�2

   (E � V) (E.8)

Substituting Equation (E.8) into Equation (E.2), we have

   
�2�(x)

 __ 
�x2

   �   2m _ 
�2

   (E � V )�(x) � 0 (E.9)

which is the one-dimensional, time-independent Schrodinger’s wave equation.

nea29583_appA-G_707-729.indd   723nea29583_appA-G_707-729.indd   723 12/11/10   12:54 PM12/11/10   12:54 PM



724

F
Effective Mass Concepts

I n Chapter 3, we have discussed the relationship between the effective masses of 

electrons and holes and the E versus k diagrams. In that discussion, we have lim-

ited ourselves to a one-dimensional analysis in k space.

F.1 | ENERGY-BAND STRUCTURES
GaAs Energy Bands: The E versus k diagram for GaAs is given in Figure 3.25a.  

The minimum conduction band energy and the maximum valence band energy occur 

at k � 0. In a three-dimensional kx � ky � kz coordinate system, the constant energy 

surface near the minimum conduction band energy is essentially spherical as shown 

in Figure F.1. The electron effective mass can be determined as previously discussed 

and is found to be  m n  *  � 0.067mo, where mo is the rest mass of an electron.

Silicon Conduction Energy Band: The E versus k diagram for silicon is given in 

Figure 3.25b. The minimum conduction band energy is in the [100] direction. The 

constant energy surface near the minimum conduction band energy in the three-

dimensional kx � ky � kz coordinate system is approximately an ellipsoid. There 

are actually six ellipsoid energy surfaces corresponding to the six equivalent [100] 

directions in the crystal as shown in Figure F.2a. The effective mass in both the 

kx and ky directions is called a transverse effective mass mt, and the effective mass in 

the kz direction is called a longitudinal effective mass ml. These effective masses are 

indicated in a single ellipsoid as shown in Figure F.2b. The values of these effective 

masses in silicon are found to be mt � 0.19mo and ml � 0.98mo.

 Electrons are continually undergoing random scattering effects (see Chapter 5) 

so that, at any given time, one-third of the electrons are moving in the kx direction with 

an effective mass mt , one-third of the electrons are moving in the ky direction with an 

effective mass mt , and one-third of the electrons are moving in the kz direction with 

an effective mass ml . The effective mass parameter in the density of states function 

and the effective mass parameter in conductivity calculations must therefore involve 

some type of averaging of the transverse and longitudinal effective masses.

A P P E N D I X
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 APPENDIX  F  Effective Mass Concepts 725

Silicon Valence Energy Band: The maximum energy of the valence band in sili-

con occurs at k � 0. The valence band actually has two branches (not shown in 

Figure 3.25b) with approximately parabolic shapes. The sharper parabola (larger 

d 2E�dk2) corresponds to light holes and the wider parabola (smaller d 2E�dk2) cor-

responds to heavy holes. The effective masses of the light and heavy holes in silicon 

are mlh � 0.16mo and mhh � 0.49mo, respectively.

F.2 | DENSITY OF STATES EFFECTIVE MASS
Density of States Effective Mass—Electrons: The kinetic energy of an electron, 

corresponding to a constant ellipsoidal energy surface in silicon (see Figure F.2b) 

can be written as

E �   
 p x  

2 
 _ 

2mt 
   �   

 p y  
2 
 _ 

2mt 
   �   

 p z  
2 
 _ 

2ml 
  

or

1 �   
 p x  

2 
 _ 

2mt E
   �   

 p y  
2 
 _ 

2mt E
   �   

 p z  
2 
 _ 

2ml E
  

 The general equation of an ellipsoid in momentum space can be written as

1 �   
 p x  

2 
 _ 

a2 
   �   

 p y  
2 
 _ 

b2 
   �   

 p z  
2 
 _ 

c2 
  

where a, b, and c are the axes of the ellipsoid. For the energy ellipsoid in Figure F.2b, 

we can write

a2 � 2mt E, b2 � 2mt E, c2 � 2ml E

 The volume of an ellipsoid is proportional to the product a � b � c, so we have

Volume �  �
______

 (mt)
2 ml

  

kz

ky

kx

Figure F.1 | Spherical 

constant energy surface in the 

conduction band of GaAs.

kz

kx ky

(a) (b)

(001)

(001)

(100)(010)

(100) (010)

kz

mt

mt

mt

ky

kx

Figure F.2 | (a) Six equivalent ellipsoidal constant 

energy surfaces in the conduction band of silicon. 

(b) A single ellipsoidal energy surface showing the 

effective masses.
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There are six energy ellipsoids, so the total volume is proportional to

Total volume � 6 �
______

 (mt)
2 ml

  

 In the derivation of the density of states function in the conduction band, the vol-

ume in k space (momentum space) is included. So, from Equation (3.72), the density 

of states function is proportional to

gc (E) � Volume � ( m dn  *  )3�2 � 6 �
_______

 (mt)
2 ml   

The density of states function electron effective mass can then be written as

 m dn  *   � 62�3 [(mt)
2 ml]

1�3

 For silicon, we have mt � 0.19mo and ml � 0.98mo. Then, we fi nd

 m dn  *   � 62�3 [(0.19mo)
2 (0.98mo)]

1�3 � 1.08mo

where  m dn  *   is the density of states electron effective mass.

Density of States Effective Mass—Holes: In the three-dimensional kx � ky � kz 

coordinate system, the constant energy is essentially spherical for both the heavy and 

light holes. The volume of a sphere in momentum space is

Volume � p3

where, for the heavy and light holes, respectively, we have

 p hh  
2
   � 2mhh E and  p lh  

2
   � 2mlh E

The total volume is the sum of the two spherical volumes, so that

Total volume � (mhh)
3�2 � (mlh)

3�2

 In the derivation of the density of states function in the valence band, the volume 

in k space (momentum space) is included. So, from Equation (3.75), the density of 

states function for holes is proportional to

gv (E ) � Volume � ( m dp  *  )3�2 � (mhh)
3�2 � (mlh)

3�2

The density of states function effective hole mass is then

 m dp  *   � [(mhh)
3�2 � (mlh)

3.2]2�3

For silicon, we have mhh � 0.49mo and mlh � 0.16mo, so that

 m dp  *   � [(0.49mo)
3.2 � (0.16mo)

3�2]2�3 � 0.55mo

where  m dp  *    is the density of states hole effective mass.

F.3 | CONDUCTIVITY EFFECTIVE MASS
Conductivity Effective Mass—Electrons: From Chapter 5, the average drift 

velocity of a carrier due to an applied electric fi eld is given by

�vd� �   1 _ 
2
    �   e�c  _ 

 m c  * 
   �  � E
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where �c is the mean time between collisions, E is the electric fi eld, and  m c  *  is now 

the conductivity effective mass.

 For a simple electron gas, the electron kinetic energy can be written as

E �   1 _ 
2
   m* (�vd�)2 �   

 p x  
2 
 _ 

 2m cn  *  
   �   

 p y  
2 
 _ 

 2m cn  *  
   �   

 p z  
2 
 _ 

 2m cn  *  
  

For the case of silicon and the ellipsoid energy surface, we have

E �   
 p x  

2 
 _ 

2mt 
   �   

 p y  
2 
 _ 

2mt 
   �   

 p z  
2 
 _ 

2ml 
  

The two expressions for kinetic energy are equal if

3  �   1 _ 
2 m cn  *  

   �  �   2 _ 
2mt 

   �   1 _ 
2ml

  

or

  3 _  m cn  *  
   �   2 _ mt 

   �   1 _ ml 
  

Again, for electrons in silicon, we have mt � 0.19mo and ml � 0.98mo. Then

  3 _  m cn  *  
   �   2 __ 

0.19mo 
   �   1 __ 

0.98mo 
  

which gives  m cn  *   � 0.26mo, where  m cn  *   is the conductivity effective mass for electrons.

Conductivity Effective Mass—Holes: From Chapter 5, the drift current density 

due to holes is given by

J � e�ppE � e  �   e�c  _ 
m*

   � pE

Assuming the mean time between collisions is the same for heavy holes and light 

holes, we can write

JTotal � Jhh � Jlh

which can be written as

JTotal � e  �   e�c  _  m cp  *  
   �  ( m dp  *  )3�2

where p is the total hole concentration and is proportional to ( m dp  *  )3�2. The parameter  

m cp  *   is the conductivity effective mass for holes and  m dp  *   is the density of states effec-

tive mass for holes.

 The individual currents for heavy holes and light holes are proportional to

Jhh � e  �   e�c  _ mhh 
   �  (mhh)

3�2 � e(e�c)(mhh)
1�2

and

Jlh � e  �   e�c  _ mlh 
   �  (mlh)

3�2 � e(e�c)(mlh)
1�2

We then have

  
( m dp  *  )3�2 

 __  m cp  *  
   � (mhh)

1�2 � (mlh)
1�2
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or

 m cp  *   �   
( m dp  *  )3�2 
 ___  

(mhh)
1�2 � (mlh)

1�2 
   �   

(mhh)
3�2 � (mlh)

3�2 
  ___  

(mhh)
1�2 � (mlh)

1�2 
  

For silicon, we again have mhh � 0.49mo and mlh � 0.16mo, so that

 m cp  *   �   
(0.49mo)

3�2 � (0.16mo)
3�2 
  _____  

(0.49mo)
1�2 � (0.16mo)

1�2 
   � 0.37mo

and  m cp  *   is the conductivity effective mass for holes.

F.4 | SUMMARY
The energy-band structure of germanium is essentially the same as silicon with four 

ellipsoidal energy surfaces in the conduction band and two spherical energy surfaces 

in the valence band corresponding to heavy and light holes. The calculations for the 

density of states effective masses and conductivity effective masses are then identi-

cal to those for silicon. Gallium arsenide also has two spherical energy surfaces in 

the valence band corresponding to heavy and light holes. So the calculations for the 

density of states effective mass for holes and conductivity effective mass for holes 

are also identical to those for silicon.

 The density of states effective masses for electrons and holes are denoted as 

 m dn  *   and  m dp  *  , respectively. The conductivity effective masses for electrons and holes 

are denoted as  m cn  *   and  m cp  *  , respectively. In analyses and calculations in the text, the 

effective masses for electrons and holes are usually denoted simply as  m n  *  and  m p  * , 

respectively. Whether the density of states effective mass or the conductivity effec-

tive mass is to be used should be clear from the context of the problem.
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G
The Error Function

 erf(z) �   2 _ 
 �

__
 �  
     
∫

0

 
 
z 

   e �t 2  dt

 erf(0) � 0   erf(�) � 1

 erfc(z) � 1 � erf(z)

 z erf(z) z erf(z)

0.00 0.00000 1.00 0.84270
0.05 0.05637 1.05 0.86244
0.10 0.11246 1.10 0.88021
0.15 0.16800 1.15 0.89612
0.20 0.22270 1.20 0.91031
0.25 0.27633 1.25 0.92290
0.30 0.32863 1.30 0.93401
0.35 0.37938 1.35 0.94376
0.40 0.42839 1.40 0.95229
0.45 0.47548 1.45 0.95970
0.50 0.52050 1.50 0.96611
0.55 0.56332 1.55 0.97162
0.60 0.60386 1.60 0.97635
0.65 0.64203 1.65 0.98038
0.70 0.67780 1.70 0.98379
0.75 0.71116 1.75 0.98667
0.80 0.74210 1.80 0.98909
0.85 0.77067 1.85 0.99111
0.90 0.79691 1.90 0.99279
0.95 0.82089 1.95 0.99418
1.00 0.84270 2.00 0.99532

A P P E N D I X
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A N S W E R S  T O  S E L E C T E D  P R O B L E M S

HA P P E N D I X

Chapter 1

1.1 (a) 4 atoms, (b) 2 atoms, (c) 8 atoms

1.3 (a) 2.35 Å, (b) 5 � 1022 atoms/cm3

 (c) 2.33 gm/cm3

1.5 (a) 2.447 Å, (b) 3.995 Å

1.7 (a) 3.9 Å, (b) 5.515 Å,

 (c) 4.503 Å, (d) 9.007 Å

1.9 (a) 0.228 gm/cm3, (b) 0.296 gm/cm3 

1.11 (b)  a � 2.8 Å, (c) 2.28 � 1022 cm�3 for both 

 Na and Cl, (d) 2.21 gm/cm3

1.13 (a) For A and B atoms, 4.687 � 1014 cm�2,

 (b) For A and B atoms, 3.315 � 1014 cm�2 

1.15 (a) (i) See Figure 1.10b,

  (ii) See Figure 1.10c,

  (iii) Same as (110) plane,

  (iv) Intercepts at p � 2, q � 3, s � 6;

 (b) Directions perpendicular to planes

1.17 (634) plane

1.19 (a) (i) 4.47 � 1014 cm�2, (ii) 3.16 � 1014 cm�2,

  (iii) 2.58 � 1014 cm�2;

 (b) (i) 4.47 � 1014 cm�2, (ii) 6.32 � 1014 cm�2,

  (iii) 2.58 � 1014 cm�2; 

 (c) (i) 8.94 � 1014 cm�2, (ii) 6.32 � 1014 cm�2,

  (iii) 1.03 � 1015 cm�2 

1.21 (a) 1.328 � 1022 cm�3, 

 (b) 3.148 � 1014 cm�2,

 (c) 4.74 Å, (d) 5.14 � 1014 cm�2, 3.87 Å

1.23 1.77 � 1023 cm�3 

1.25 (a) 1.542 � 10�7, (b) 2.208 � 10�5 

1.27 d�ao � 116

Chapter 2

2.5 � � 0.254 �m (gold), � � 0.654 �m (cesium)

2.7 (a) (i) 11.2 Å, (ii) 3.54 Å, (iii) 1.12 Å; (b) 0.262 Å

2.9 10.3 keV

2.11 (a) 12.4 kV, (b) 0.11 Å

2.13 (a) (i) �p � 8.783 � 10�26 kg-m/s,

  (ii) �E � 1.31 eV;

 (b) (i) �p � 8.783 � 10�26 kg-m/s,

  (ii) �E � 5.55 � 10�2 eV

2.15 (a) �t � 8.23 � 10�16 s, (b) �p � 7.03 � 10�25 kg-m/s

2.17 �A� �   1 _ 
 �

__

 2  
  

2.19 (a) P � 0.393, (b) P � 0.239, (c) P � 0.865

2.21 (a) P � 0.25, (b) P � 0.25, (c) P � 1

2.23 (a) �(x, t) � A exp [�j(kx � �t)],
 (b) k � 8.097 � 108 m�1, � � 7.76 � 10�9 m,
  � � 7.586 � 1013 rad/s

2.25 E1 � 6.69 � 10�3 eV, E2 � 2.67 � 10�2 eV,

 E3 � 6.02 � 10�2 eV

2.27 (a) n � 7.688 � 1029, (b) En�1 � 15 mJ, (c) No

2.29 �1 � A cos  �   �x _ a   � , �2 � B sin  �   2�x _ a   � ,
 �3 � C cos  �   3�x _ a   � , �4 � D sin  �   4�x _ a   � 
2.31 (a) Enxny

 �   h
2

 _ 
2m

    �    n x  
2 �2

 _ 
a2

   �   
 n y  

2 �2

 _ 
b2

   � 
2.33 (a) �1 (x) � B1 exp (�jk1 x), k1 �  �

_____

   2mE _ 
h2

    ;

  �2 (x) � A2 exp ( jk2x) � B2 exp (�jk2 x),

   k2 �  �
___________

    2m _ 
h2

    (E � VO)  

 (b) R �   �   k2 � k1 __ 
k2 � k1 

   �  2 , T �   
4k1 k2 __ 

(k1 � k2)2
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2.35 (a) T � 0.0295, (b) T � 1.24 � 10�5,

 (c) N � 1.357 � 1010 cm�3 

2.37 (a) T � 5.875 � 10�7, (b) a � 0.842 � 10�14 m

2.39 T �   
4k1 k3 __ 

(k1 � k3)2
  

2.41 E1 � �13.58 eV, E2 � �3.395 eV, 

 E3 � �1.51 eV, E4 � �0.849 eV

Chapter 3

3.5 (b) (i) �a � �, �a � 1.729�;

  (ii) �a � 2�, �a � 2.617�

3.9 (a) �E � 0.559 eV, (b) �E � 2.15 eV

3.11 (a) �E � 1.005 eV, (b) �E � 3.635 eV

3.13 m*(A) � m*(B)

3.15 A,B: velocity � �x direction;

 C,D: velocity � �x direction;

 B,C: positive mass; A,D: negative mass

3.17 A: m* � �0.976mo; B: m* � �0.0813mo 

3.21 (a)  m dn  *   � 0.56mo, (b)  m cn  *   � 0.12mo 

3.25 g(E) �   1 _ 
	�

    �
____

   
2 m n  * 

 _ 
E

     �   1.055 � 1018

 ___ 
 �

__
 E  
   m�3 J�1

3.27 (a)  (i) gv � 4.12 � 1019 cm�3,
(ii) gv � 6.34 � 1019 cm�3;

 (b)  (i) gv � 3.27 � 1019 cm�3,
(ii) gv � 5.03 � 1019 cm�3 

3.29 (a) 2.68, (b) 0.0521

3.31 (a) 120; (b) (i) 66, (ii) 495

3.33 (a) 0.269, (b) 6.69 � 10�3, (c) 4.54 � 10�5 

3.35 EF �   
Ec � Ev  __ 

2
   � Emidgap

3.37 (a) EF � 2.35 eV, (b) EF � 5.746 eV

3.39 (a) E1 � EF � 4.6kT, (b) f (E1) � 0.01

3.41 (a) 0.00304, (b) 0.1496, (c) 0.997, (d) 0.50

3.43 (a) At E � E1,  f (E) � 9.3 � 10�6;

  At E � E2, 1 � f (E) � 1.66 � 10�19 

 (b) At E � E1,  f (E) � 7.88 � 10�18;

  At E � E2, 1 � f (E) � 1.96 � 10�7 

3.45 (a) Si:  f (E) � 4.07 � 10�10; Ge:  f (E) � 2.93 � 10�6;

  GaAs: f (E) � 1.24 � 10�12;

 (b) Same values as part (a)

3.47 (a) �E � 0.1017 eV, (b) �E � 0.2034 eV

Chapter 4

4.1 (a)  ni � 7.68 � 104 cm�3; 2.38 � 1012 cm�3;
9.74 � 1014 cm�3,

 (b)  ni � 2.16 � 1010 cm�3; 8.60 � 1014 cm�3;
3.82 � 1016 cm�3,

 (c)  ni � 1.38 cm�3; 3.28 � 109 cm�3;
5.72 � 1012 cm�3

4.3 (a) T � 367.5 K, (b) T � 417.5 K

4.5 (a) 9.325 � 10�6, (b) 4.43 � 10�4, (c) 3.05 � 10�3 

4.7 0.0854

4.11 For T � 200 K, EFi � Emidgap � �0.0086 eV;

 For T � 400 K, EFi � Emidgap � �0.0171 eV;

 For T � 600 K, EFi � Emidgap � �0.0257 eV

4.13 no � K � kT exp  �   �(Ec � EF)
 __ 

kT 
   	 

4.15 r1 � 15.4 Å, E � 0.029 eV

4.17 (a) 0.2148 eV, (b) 0.9052 eV, (c) 6.90 � 103 cm�3,

 (d) Holes, (e) 0.338 eV

4.19 (a) 0.2764 eV, (b) 2.414 � 1014 cm�3, (c) p type

4.21 (a) no � 6.86 � 1015 cm�3, po � 7.84 � 107 cm�3;

 (b) Ec � EF � 0.2153 eV, po � 7.04 � 103 cm�3 

4.23 (a) no � 7.33 � 1013 cm�3, po � 3.07 � 106 cm�3;

 (b) no � 8.80 � 109 cm�3, po � 3.68 � 102 cm�3 

4.25 (a) 0.2787 eV, (b) 0.8413 eV, (c) 1.134 � 109 cm�3,

 (d) Holes, (e) 0.2642 eV

4.27 (a) po � 6.68 � 1014 cm�3, no � 7.23 � 104 cm�3;

 (b) EF � Ev � 0.3482 eV, no � 8.49 � 109 cm�3 

4.29 0.0777 eV

4.31 E � Ec �   1 _ 
2
   kT, E � Ev �   1 _ 

2
   kT

4.35 (a) po � 3 � 1015 cm�3, no � 1.08 � 10�3 cm�3;

 (b) no � 3 � 1016 cm�3, po � 1.08 � 10�4 cm�3;

 (c) no � po � 1.8 � 106 cm�3;

 (d) po � 4 � 1015 cm�3, no � 1.44 � 102 cm�3;

 (e) no � 1014 cm�3, po � 1.48 � 107 cm�3 

4.37 (a)   
nd  _ 
Nd 

   � 8.85 � 10�4, (b) fF (E) � 2.87 � 10�5

4.39 (a)  n type; (b) no � 8 � 1014 cm�3, 

 po � 2.81 � 105 cm�3;

 (c)  N a  
  � 4.8 � 1015 cm�3, no � 5.625 � 104 cm�3

4.41 no � 6.88 � 1011 cm�3, po � 2.75 � 1012 cm�3,

 Na � 2.064 � 1012 cm�3

4.45 ni � 5.74 � 1013 cm�3, po � 3 � 1013 cm�3

4.47 (a)  n type; (b) no � 1.125 � 1016 cm�3, 

 po � 2 � 104 cm�3;

 (c) Nd � 1.825 � 1016 cm�3 

4.49 For 1014 cm�3, Ec � EF � 0.3249 eV,

 EF � EFi � 0.2280 eV;

 1015 cm�3, Ec � EF � 0.2652 eV, 

 EF � EFi � 0.2877 eV;

 1016 cm�3, Ec � EF � 0.2056 eV, 

 EF � EFi � 0.3473 eV,
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732 APPENDIX  H  Answers to Selected Problems

 1017 cm�3, Ec � EF � 0.1459 eV, 

 EF � EFi � 0.4070 eV

4.51 T � 200 K, EFi � EF � 0.4212 eV,

 T � 400 K, EFi � EF � 0.2465 eV,

 T � 600 K, EFi � EF � 0.0630 eV

4.53 (a) EFi � Emidgap � �0.0447 eV;

 (b) (i) Acceptors, (ii) Na � 1.97 � 1013 cm�3

4.55 (a)  (i) Ec � EF � 0.2188 eV,
(ii)  N d  
  � 1.031 � 1016 cm�3;

 (b)  (i) Ec � EF � 0.1594 eV,
(ii)  N d  
  � 1.718 � 1015 cm�3 

4.57 Add acceptors, Na � 4 � 1015 cm�3

4.59 (a) 0.2009 eV, (b) 1.360 eV, (c) 0.7508 eV,

 (d) 0.2526 eV, (e) 1.068 eV

Chapter 5

5.1 (a) � � 4.808 �-cm, (b) 	 � 0.208(�-cm)�1

5.3 (a) Nd � 6 � 1016 cm�3, �n � 1050 cm2/V-s;

 (b) Na � 1017 cm�3, �p � 320 cm2/V-s

5.5 �n � 1116 cm2/V-s

5.7 (a) R � 100 �, (b) 	 � 0.01(�-cm)�1,

 (c)  Nd � 4.63 � 1015 cm�3,

 (d) Na � 1.13 � 1015 cm�3 

5.9 (a) L � 0.0256 cm, (b) vd � 1.56 � 106 cm/s,

 (c) I � 80 mA

5.11 (a) Si: tt � 8.33 � 10�11 s, GaAs: tt � 1.33 � 10�11 s;

 (b) Si: tt � 1.05 � 10�11 s, GaAs: tt � 1.43 � 10�11 s

5.13 (a) po � 1.3 � 1017 cm�3, no � 2.49 � 10�5 cm�3;

 (b) no � 5.79 � 1014 cm�3, po � 3.89 � 105 cm�3 

5.15 (a)  (i) 4.39 � 10�6 (�-cm)�1,

  (ii) 2.23 � 10�2 (�-cm)�1,

  (iii) 2.56 � 10�9 (�-cm)�1;

 (b) (i) 5.36 � 109 �, (ii) 1.06 � 106 �,

  (iii) 9.19 � 1012 �

5.17 	avg � 3.97 (�-cm)�1 

5.21 (a) J � 1.60 A/cm2, (b) T � 456 K

5.23 (a) n type: no � 5 � 1016 cm�3, po � 4.5 � 103 cm�3;
   p type: po � 2 � 1016 cm�3,

no � 1.125 � 104 cm�3; compensated:
no � 3 � 1016 cm�3, po � 7.5 � 103 cm�3;

 (b) n type: �n � 1100 cm2/V-s;

  p type: �p � 400 cm2/V-s;

  compensated: �n � 1000 cm2/V-s;

 (c) n type: 	 � 8.8 (�-cm)�1;

  p type: 	 � 1.28 (�-cm)�1;

  compensated: 	 � 4.8 (�-cm)�1;

 (d) n type: E � 13.6 V/cm;

  p type: E � 93.75 V/cm;

  compensated: E � 25 V/cm

5.25 (a) 2388 cm2/V-s, (b) 844 cm2/V-s

5.29 n(0) � 0.25 � 1014 cm�3 

5.31 (a)  n(x1) � 1.67 � 1014 cm�3,

 (b) n(x1) � 8.91 � 1014 cm�3

5.33 JTotal � �18 A/cm2 

5.35 E � 14.5 � 26 exp  �   x _ 
18

   �  V/cm

5.37 (a) n(x) � 6.51 � 1015 � (3.255 � 1015) exp �    �x _ 
d
    � cm�3;

 (b)  n(0) � 3.26 � 1015 cm�3,

 n(50) � 6.19 � 1015 cm�3;

 (c) Jdrf � 95.08 A/cm2, Jdiff � 4.92 A/cm2 

5.39 (a) E �   24.1 __ 
 �   x _ 
L

   � 1 � 
  , (b) E �   13.4 __ 

 � 1 �   x _ 
L

   � 
  

5.41 V � �2.73 mV

5.43 (a) Jdiff � �(1.24 � 105) exp  � �  x _ 
L

   �  A/cm2,

 (b) E � 2.59 � 103 V/cm

5.45 (a) (i) 29.8 cm2/s, (ii) 160.6 cm2/s;

 (b) (i) 308.9 cm2/V-s, (ii) 1351 cm2/V-s

5.47 (a) VH � �0.3125 mV, (b) EH � �1.56 � 10�2 V/cm,

 (c) �n � 3125 cm2/V-s

5.49 (a) VH � �0.825 mV, (b) n type, 

 (c) n � 4.92 � 1015 cm�3, (d) �n � 1015 cm2/V-s

Chapter 6

6.1 (a) no � 5 � 1015 cm�3, po � 4.5 � 104 cm�3;

 (b) R
 � 5 � 1020 cm�3 s�1 

6.3 (a) 
n0 � 8.89 � 10�6 s,

 (b) G � 1.125 � 109 cm�3 s �1,

 (c) G � R � 1.125 � 109 cm�3 s�1

6.7   
� F p  

�  
 _ 

�x
   � �2 � 1019 cm�3 s�1

6.9 (a) �
 � �n � 1300 cm2/V-s; 

 (b) D
 � Dn � 33.67 cm2/s;

 (c) 
nt � 
nO � 10�7 s, 
pt � 2.18 � 104 s

6.13 (a) For 0  t  10�6 s: 

 �n � �p � (2 � 1014) � 1 � exp  �   �t _ 
pO    �  	  cm�3,

 For t � 10�6 s: 

 �n � �p � (2 � 1014) exp  �   �(t � 10�6)
 __ 
pO    	  cm�3;

 (b) For 0  t  10�6 s: 

 	 � 6.0 � 0.250 � 1 � exp  �   �t _ 
pO    �  	  (�-cm)�1,

 For t � 10�6 s: 

 	 � 6.0 � 0.250 exp  �   �(t � 10�6)
 __ 
pO    	  (�-cm)�1 
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6.15 (a) 
nO � 2.5 � 10�7 s; 

 (b) �n � �p � (5 � 1014) � 1 � exp  �   �t _ 
nO    �  	  cm�3,

 R
 � (2 � 1021) � 1 � exp  �   �t _ 
nO    �  	  cm�3 s�1;

 (c) (i) 7.19 � 10�8 s, (ii) 1.73 � 10�7 s,

  (iii) 3.47 � 10�7 s, (iv) 7.49 � 10�7 s

6.17 (a) (i) For 0  t  5 � 10�7 s: 

  �p � (2.5 � 1014) � 1 � exp  �   �t _ 
pO    �  	  cm�3,

  For t � 5 � 10�7 s: 

  �p � (1.58 � 1014) exp  �   �(t � 5 � 10�7)
  ___ 
pO    	  cm�3;

  (ii) At t � 5 � 10�7 s: �p � 1.58 � 1014 cm�3;

 (b) (i) For 0  t  2 � 10�6 s: 

  �p � (2.5 � 1014)  � 1 � exp  �   � t _ 
pO    �  	  cm�3,

  For t � 2 � 10�6 s:

  �p � (2.454 � 1014) exp  �   �(t � 2 � 10�6)
  ___ 
pO    	  cm�3;

  (ii) At t � 2 � 10�6 s: �p � 2.454 � 1014 cm�3 

6.19 (a) �n � �p � (2 � 1014) exp  �   �x _ 
Ln 

   �  cm�3,

 Ln � 5.575 � 10�3 cm;

 (b) Jn � �0.1784 exp  �   �x _ 
Ln 

   �  A/cm2, 

 Jp � �0.1784 exp  �   �x _ 
Ln 

   �  A/cm2 

6.21 �n(x) � (5 � 1014) exp  �   �x _ 
Ln 

   �  cm�3, Ln � 5 � 10�3 cm;

 Jn (x) � �0.4 exp  �   �x _ 
Ln 

   �  A/cm2,

 Jp (x) � �0.4 exp  �   �x _ 
Ln 

   �  A/cm2 

6.25 For 0  t  T: �n �  G o  
 t,
 For t � T: �n �  G o  
 T
6.27 �p � 390.6 cm2/V-s, Dp � 10.42 cm2/s

6.31 (a) EFi � EF � 0.3294 eV; 

 (b) EFn � EFi � 0.2697 eV, EFi � EFp � 0.3318 eV

6.33 (a) �n � �p � 5.05 � 1014 cm�3;

 (b) EFi � EFp � 0.3362 eV;

 (c) (i) EF � EFp � kT ln  �   po � �p
 __ po 

   � ,
  (ii) EF � EFp � 2.093 meV

6.39 (a) R �   
�ni  __ 


pO � 
nO 
  

6.41 (a) (i) �p � 1014 cm�3,

  (ii) �p � 1014  � 1 � 0.167 exp  �   �x _ 
Lp 

   �  	  cm�3,

  (iii) �p � 1014  � 1 � exp  �   �x _ 
Lp 

   �  	  cm�3, Lp � 10�3 cm;

 (b) (i) �p(0) � 1014 cm�3, 
 (ii) �p(0) � 0.833 � 1014 cm�3,

  (iii) �p(0) � 0

6.43 (a) �p(x) � 1018 (20 � 10�4 � x) cm�3,

 (b) �p(x) � 1018 (70 � 10�4 � x) cm�3 

Chapter 7

7.1 (a) (i) 0.611 V, (ii) 0.671 V, (iii) 0.731 V;

 (b) (i) 0.731 V, (ii) 0.790 V, (iii) 0.850 V

7.3 (a) For Na � Nd � 1014 cm�3, Vbi � 0.4561 V

  1015 cm�3, 0.5754 V

  1016 cm�3, 0.6946 V

  1017 cm�3, 0.8139 V

 (b) For Na � Nd � 1014 cm�3, Vbi � 0.9237 V

  1015 cm�3,  1.043 V

  1016 cm�3,  1.162 V

  1017 cm�3,  1.282 V

 (c) Silicon:

  For Na � Nd � 1014 cm�3, Vbi � 0.2582 V

  1015 cm�3,  0.4172 V

  1016 cm�3,  0.5762 V

  1017 cm�3,  0.7353 V

  GaAs:

  For Na � Nd � 1014 cm�3, Vbi � 0.7129 V

  1015 cm�3,  0.8719 V

  1016 cm�3,  1.031 V

  1017 cm�3,  1.190 V

7.5 (a)  n side: EF � EFi � 0.3653 eV, 
p side: EFi � EF � 0.3653 eV;

 (b) Vbi � 0.7306 V; 

 (c) Vbi � 0.7305 V; 

 (d) xn � 0.154 �m, xp � 0.154 �m, 
 �Emax� � 4.75 � 104 V/cm

7.7 For T �  200 K, Vbi � 1.257 V
300 K,       1.157 V
400 K,       1.023 V

7.9 (a) Vbi � 0.635 V; 
(b) xn � 0.864 �m,

 xp � 0.0864 �m;

 (d) �Emax� � 1.34 � 104 V/cm

7.11 T � 380 K

7.13 (a) Vbi � 0.456 V,

 (b) xn � 2.43 � 10�7 cm,

 (c) xp � 2.43 � 10�3 cm,

 (d ) �Emax� � 3.75 � 102 V/cm

7.17 (a) Vbi � 0.8081 V; 

 (b) xn � 0.2987 �m, 

 xp � 0.0597 �m, W � 0.3584 �m;

 (c) �Emax� � 1.85 � 105 V/cm; 

 (d) C � 5.78 pF

7.19 (a) �Vbi � 0.02845 V, (b) 1.732

7.21 (a) 3.13, (b) 0.316, (c) 0.319

nea29583_appH_730-737.indd   733nea29583_appH_730-737.indd   733 12/11/10   12:52 PM12/11/10   12:52 PM



734 APPENDIX  H  Answers to Selected Problems

7.23 VR2 � 2.58 V

7.25 (a) L � 3.306 mH; 

 (b) (i) f � 0.794 MHz, (ii) f � 1.069 MHz

7.27 (a) Na � 6.016 � 1015 cm�3, Nd � 1.504 � 1015 cm�3;

 (b) Na � 1.19 � 1016 cm�3, Nd � 2.976 � 1015 cm�3

7.29 (a) VR � 193 V, (b) xn � 0.5 �m, 

 (c) �Emax� � 7.65 � 104 V/cm

7.31 (a) N � 5.36 � 1015 cm�3, (b) A � 7.56 � 10�5 cm2,

 (c) VR � 2.96 V

7.33 (a) Vbi � Vt ln  �   NaO NdO 
 __ 

 n i  
2 
   	 ,

 (c) p region: E �   
�eNaO 

 __ �   (x � xp);

   n region: 0 � x � xo, E �   
eNdO x _ 

2�
   �   

eNdO  _ �    

�  � xn �   xo  _ 
2
   � ;

  xo � x � xn, E �   
�eNdO 

 __ �   (xn � x)

7.35 (a) Na � 1.29 � 1016 cm�3, 

 (b) Na � 2.59 � 1016 cm�3 

7.37 (a) VB � 75 V, (b) VB � 450 V

7.39 xn (min) � 5.09 �m

7.41 (a) VR � 4.35 � 103 V, (b) VR � 1.74 � 104 V

 (Note that breakdown is reached fi rst in each case.)

Chapter 8

8.1 (a) 60 mV, (b) 120 mV

8.3 (a)  pn (xn) � 4.0 � 1011 cm�3,

 np (�xp) � 1.0 � 1011 cm�3;

 (b)  pn (xn) � 9.03 � 1014 cm�3,

 np (�xp) � 2.26 � 1014 cm�3;

 (c) pn (xn) � 0, np (�xp) � 0

8.5 (a) In � 1.85 mA, (b) Ip � 4.52 mA, (c) I � 6.37 mA

8.7 (a) I � 0.244 mA, (b) I � �1.568 � 10�8 A

8.9 V � �59.6 mV

8.11 (a)   
Nd  _ 
Na 

   � 12.73, (b)   
Nd  _ 
Na 

   � 0.354

8.15 (a)  p side: EFi � EF � 0.329 eV, n side:

 EF � EFi � 0.407 eV;

 (b) IS � 4.426 � 10�15 A, I � 1.07 �A;

 (c)   
Ip 

 _ 
I
   � 0.0741

8.17 (a) �pn (x) � (3.81 � 1014) exp  �   �x __ 
2.83 � 10�4

   �  cm�3,

 (b) Jp � 0.597 A/cm2, (c) Jn � 1.39 A/cm2 

8.19 (a) Np � 1.51 � 104, Nn � 2.41 � 103;

 (b) Np � 7.17 � 105, Nn � 1.15 � 105;

 (c) Np � 3.40 � 107, Nn � 5.45 � 106

8.21 (b) (i)   
IS (400)

 __ 
IS (300)

   � 1383, (ii)   
IS (400)

 __ 
IS (300)

   � 1.17 � 105

8.23 T � 502 K, reverse-biased current

8.29 (a) T � 567 K, IS � Igen � 2.314 �A;

 (b) Va � 0.5366 V

8.31 Va � 0.4 V: Id � 7.64 � 10�16 A, Irec � 1.35 � 10�10 A;

  0.6 V: 1.73 � 10�12 A, 6.44 � 10�9 A;

  0.8 V: 3.90 � 10�9 A, 3.06 � 10�7 A;

  1.0 V: 8.80 � 10�6 A, 1.45 � 10�5 A;

  1.2 V: 1.99 � 10�2 A, 6.90 � 10�4 A

8.35 Jgen � 1.5 � 10�3 A/cm2

8.37 (a) rd � 21.6 �, Cd � 11.6 nF;

 (b) rd � 216 �, Cd � 1.16 nF

8.39 For 10 kHz, Z � 25.9 � j 0.0814;
 For 100 kHz, Z � 25.9 � j 0.814;
 For 1 MHz, Z � 23.6 � j 7.41;
 For 10 MHz, Z � 2.38 � j 7.49

8.41 
p0 � 1.3 � 10�7 s; Cd � 2.5 � 10�9 F

8.43 (a) R � 72.3 �, I � 1.38 mA

8.45 (a) Va � 0.4896 V, (b) Va � 0.4733 V

8.47 (a)   
ts  _ 
pO

   � 0.956, (b)   
ts  _ 
pO

   � 0.228

8.49 2.21 � 10�7 s

Chapter 9

9.1 (c) �n � 0.206 V, �B0 � 0.27 V,

 Vbi � 0.064 V, �Emax� � 1.41 � 104 V/cm,

 (d) �Bn � 0.55 V, �Emax� � 3.26 � 104 V/cm

9.3 (a) �BO 1.09 V;

 (b) Vbi � 0.8844 V;

 (c) (i) xn � 0.4939 �m, �Emax� � 7.63 � 104 V/cm;

  (ii) xn � 0.8728 �m, �Emax� � 1.35 � 105 V/cm

9.5 (b) �n � 0.1177 V;

 (c) Vbi � 0.7623 V;

 (d) (i) xn � 0.7147 �m, �Emax� � 4.93 � 104 V/cm,

  (ii) xn � 1.292 �m, �Emax� � 8.92 � 104 V/cm

9.7 (a) Vbi � 0.90 V, (b) Nd � 1.05 � 1016 cm�3,

 (c) �n � 0.0985 V, (d) �Bn � 0.9985 V

9.13  D it  
   � 4.97 � 1011 cm�2 eV�1

9.15 (a) �BO � 0.63 V; (i) 0.151 V, (ii) 0.211 V, 
 (iii) 0.270 V;

 (b) (i) 0.0654 V, (ii) 0.1317 V, (iii) 0.201 V

9.21 pn junction: (a) 0.678 V, (b) 0.718 V, (c) 0.732 V;

 Schottky junction: (a) 0.447 V, (b) 0.487 V, 
(c) 0.501 V

9.23 pn junction: (a) 0.691 V, (b) I � 120 mA;

 Schottky junction: (a) 0.445 V, (b) I � 53.3 mA

9.25 (a) R � 0.1 �, (b) R � 1 �, (c) R � 10 �

9.27 (a) �Bn � 0.258 V, (b) �Bn � 0.198 V
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9.29 Nd � 3.5 � 1018 cm�3

9.33 ��Ec� � 0.17 eV

Chapter 10

10.1 (a) p type, inversion;

 (b) p type, depletion;

 (c) p type, accumulation;

 (d) n type, inversion

10.3 (a) Nd � 8.38 � 1014 cm�3, (b) �s � 0.566 V

10.5 �ms � �0.9932 V

10.7 (a) VFB � �1.04 V, (b) VFB � �1.012 V

10.9  Q ss  
  �e � 1.2 � 1010 cm−2

10.11 (a) VTP � �1.20 V, (b) VTP � �0.210 V,

 (c) VTP � �1.08 V

10.13 Na � 4 � 1016 cm�3

10.15 Nd � 5 � 1014 cm�3

10.17 (a) tC � 0.863 �m, (b) VT � �1.07 V

10.23 (a) Cox � 2.876 � 10�7 F/cm2, 
 C FB  
   � 1.346 � 10�7 F/cm2,

  C min  
   � 3.083 � 10�8 F/cm2,
 C
(inv) � 2.876 � 10�7 F/cm2;

 (b) Cox,  C FB  
  , and  C min  
   unchanged from part (a),

 C
(inv) � 3.083 � 10�8 F/cm2;

 (c) VFB � �1.10 V, VT � �0.2385 V

10.29 (b) VFB � �0.695 V;

 (c) (i) For VG � �3 V, Vox � 0.359 V

10.31 Point  1: Inversion, 2: Threshold, 3: Depletion, 

 4: Flat band, 5: Accumulation

10.33 (a) 0.0864 mA, (b) 0.1152 mA, (c) 0.1152 mA, 
(d) 0.4608 mA

10.35 (a)   W _ 
L

   � 9.26, (b) ID � 3.06 mA, (c) ID � 0.271 mA

10.37 (a) VGS � 0.6 V, ID (sat) � 0.025 mA

   1.2 V, 0.625 mA

   1.8 V, 2.025 mA

   2.4 V, 4.225 mA

 (c) VGS � 0.6 V, ID � 0.0222 mA

   1.2 V, 0.156 mA

   1.8 V, 0.289 mA

   2.4 V, 0.422 mA

10.39 (a) VGS � 0 V, ID (sat) � 0.711 mA

   0.8 V, 2.84 mA

   1.6 V, 6.40 mA

10.43 For VSG � 0.35 V, gd � 0;

 For VSG � 0.35 V, gd � 2(0.961)(VSG � 0.35)

10.45 VT 
 0.2 V, �n � 342 cm2/V-s

10.47 (a) (i)  k n  
  � 86.29 �A/V2, (ii)   W _ 
L

   � 7.24;

 (b) (i)  k p  
  � 40.27 �A/V2, (ii)   W _ 
L

   � 15.5

10.49 (a) gmL � 0.192 mA/V, (b) gms � 2.21 mA/V

10.51 VTO � 0.386 V

10.53 (a) VT � �0.357 V, (b) VSB � 5.43 V

10.55 (a) rs � 198 �, (b) 12% reduction

10.57 (a) fT � 3.18 GHz, (b) fT � 0.83 GHz

Chapter 11

11.1 ID � 10�15 exp �   VGS  __ 
(2.1)Vt 

   � , IT � (106)ID,

 P � IT � VDD; for VGS � 0.5 V,

 ID � 9.83 pA, IT � 9.83 �A,

 P � 49.2 �W; for VGS � 0.7 V,

 ID � 0.388 nA, IT � 0.388 mA,

 P � 1.94 mW; for VGS � 0.9 V,

 ID � 15.4 nA, IT � 15.4 mA, P � 77 mW

11.3 (a) �L � 0.1413 �m, (b) �L � 0.2816 �m,

 (c) �L � 0.0346 �m, (d) �L � 0.1749 �m

11.5 (a) (i) �L � 0.0735 �m, (ii) �L � 0.1303 �m,

  (iii) �L � 0.2205 �m;

 (b) L � 1.84 �m

11.7 (a) (i) ID � 75.94 �A, (ii)  I D  
   � 78.22 �A,

  (iii) ro � 658 k�;

 (b) (i) ID � 0.30375 mA, (ii)  I D  
   � 0.3129 mA,

  (iii) ro � 165 k�

11.9 (a) Assume VDS(sat) � 1 V; then

 L � 3 �m ⇒ Esat � 3.33 � 103 V/cm

 L � 1 �m ⇒ Esat � 104 V/cm

 L � 0.5 �m ⇒ Esat � 2 � 104 V/cm

 (b) Assume �n � 500 cm2/V-s,  � �nEsat,

 L � 3 �m ⇒  � 1.67 � 106 cm/s

 L � 1 �m ⇒  � 5 � 106 cm/s

 L  0.5 �m ⇒  ≈ 107 cm/s

11.13 (a) (i) ID � 0.7175 mA, (ii) ID � 1.23 mA,

  (iii) ID � 1.409 mA, (iv) ID � 1.64 mA;

 (b) (i) ID � 0.552 mA, (ii) ID � 1.10 mA,

  (iii) ID � 1.38 mA, (iv) ID � 1.38 mA;

 (c) For (a), VDS (sat) � 2 V; for (b), VDS (sat) � 1.25 V

11.15 (a) Both bias conditions, ID 
 kID,

 (b) P 
 k2P
11.17 (a) (i) ID (max) � 2.438 mA, (ii) ID (max) � 1.298 mA;

 (b) (i) P(max) � 7.314 mW, (ii) P(max) � 2.531 mW

11.19 VTO � 0.389 V

11.25 �VT → k�VT
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11.27 W � 1.11 �m

11.29 �VT → k�VT

11.31 (a) tox � 400 Å, (b) tox � 600 Å

11.33 Near punch-through, Vpt � 2.08 V;

 Ideal punch-through, Vpt � 4.9 V

11.35 L � 1.08 �m

11.37 Donor ions, DI � 7.19 � 1011 cm�2

11.39 (a) VTO � �0.0969 V;

 (b) Donor ions, DI � 3.63 � 1011 cm�2

11.41 For VSB � 1 V: �VT � 0.0443 V

   3 V: 0.0987 V

   5 V: 0.138 V

11.43 �VT � �2.09 V

Chapter 12

12.3 (a) IS � 7.2 � 10�15 A;

 (b) (i) IC � 38.27 �A, (ii) IC � 0.571 mA,
 (iii) IC � 8.519 mA

12.5 (a) � � 65.7;

 (b) (i) IB � 0.5828 �A, IE � 38.85 �A;

  (ii) IB � 8.695 �A, IE � 0.5797 mA;

  (iii) IB � 0.1297 mA, IE � 8.649 mA;

 (c) � � 165.7;

  (i) IB � 0.2310 �A, IE � 38.50 �A;

  (ii) IB � 3.446 �A, IE � 0.5744 mA;

  (iii) IB � 51.41 �A, IE � 8.570 mA

12.9 (a) pEO � 2.8125 � 102 cm�3,

 nBO � 1.125 � 104 cm�3,

 pCO � 2.25 � 105 cm�3;

 (b) nB (0) � 6.064 � 1014 cm�3,

  pE (0) � 1.516 � 1013 cm�3

12.11 (a) VBE � 0.6709 V, (b) pE (0) � 5.0 � 1013 cm�3 

12.15 (a) 0.126%, (b) 11.32%

12.19 (b) nB (xB) � 6.7 � 1012 cm�3,

 pC (0) � 9.56 � 1013 cm�3;

 (c) xB � 0.994 �m

12.21 (a) (i) � � 0.99305, (ii) �T � 0.990,

  (iii) �� 0.990167, (iv) � � 0.97345,

  (v) � � 36.7;

 (b) InC � 0.4986 mA, IpE � 1.38 �A, IR � 1.39 �A

12.23 (a) JnE � 1.779 A/cm2, JpE � 0.0425 A/cm2,

 JnC � 1.773 A/cm2, JR � 3.22 � 10�3 A/cm2;

 (b) � � 0.9767, �T � 0.9966, � � 0.9982, 
� � 0.9716, � � 34.2

12.25 (b) (i)   
�T (B)

 _ 
�T (A)

   � 1, (ii)   
�T (C)

 _ 
�T (A)

   � 1

12.27 (a) xB�LB � 0.01: �T � 0.99995, � � 19,999

   0.10: 0.995 199

   1.0: 0.648 1.84

   10.0: � 0 � 0

 (b) NB�NE � 0.01: � � 0.990, � � 99

   0.10: 0.909 9.99

   1.0: 0.50 1.0

   10.0: 0.0909 0.10

12.29 (a) Let xB � 0.80 �m, then NE � 4.61 � 1018 cm�3;

 (b) �T � 0.99930, � � 0.99656

12.35 (a) (i) ro � 101.7 k�, (ii) go � 9.84 � 10�6 (�)�1,

  (iii) IC � 1.22 mA;

 (b) (i) ro � 648 k�, (ii) go � 1.54 � 10�6 (�)�1,

  (iii) IC � 0.253 mA

12.37 (a) (i) JC � 52.16 A/cm2, (ii) JC � 57.18 A/cm2,

  (iii) JC � 61.85 A/cm2

 (b) VA � 38.4 V

12.39 (a) �xdB � 0.1188 �m, (b) �IC � 0.519 mA,

 (c) VA � 13.3 V, (d) ro � 7.705 k�

12.41 (a) NB � 1.83 � 1015 cm�3,

 (b) NB � 4.02 � 1016 cm�3

12.43 S � 1.42 �m

12.45 (a) BVBCO � 180 V, (b) BVECO � 34.5 V,

 (c) BVEB � 19 V

12.47 (a) BVCBO � 64 V, (b) Vpt � 70.0 V

12.49 xBO � 0.1483 �m

12.55 (a) (i) 
e � 36.26 ps, (ii) 
b � 84.5 ps,

  (iii) 
d � 22 ps, (iv) 
c � 0.72 ps;

 (b) 
ec � 143.48 ps;

 (c) fT � 1.109 GHz;

 (d) f� � 8.87 MHz

Chapter 13

13.3 (a) (i) VpO � 3.312 V, (ii) Vp � �1.984 V;

 (b) (i) a � h � 0.103 �m, (ii) a � h � 0.065 �m,

 (iii) a � h � 0;

 (c) (i) VDS (sat) � 1.984 V, (ii) VDS (sat) � 0.984 V

13.5 (a) Na � 9.433 � 1015 cm�3, (b) Vp � 1.47 V,

 (c) VGS � 0.347 V, (d) VSD � 1.47 V

13.7 (a) a � 0.50 �m;

 (b) VpO � 3.86 V;

 (c) (i) VSD (sat) � 3.0 V, (ii) VSD (sat) � 1.5 V

13.9 (a) a � 0.436 �m;

 (b) (i) VpO � 5.886 V, (ii) Vp � �5.0 V
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13.11 (a) Ip1 � 1.03 mA;

 (b) (i) VDS (sat) � 1.056 V, (ii) VDS (sat) � 0.792 V,

  (ii) VDS (sat) � 0.528 V, (iv) VDS (sat) � 0.264 V;

 (c) (i) ID1 � 0.258 mA, (ii) ID1 � 0.141 mA,

  (iii) ID1 � 0.061 mA, (iv) ID1 � 0.0148 mA

13.13 (a) GO1 � 2.69 � 10�3 S;

 (b) (i) VDS (sat) � 0.35 V, (ii) VDS (sat) � 0.175 V;

 (c) (i) ID1 (sat) � 50.6 �A, (ii) ID1 (sat) � 12.4 �A

13.15 (a) gms (max) � 0.295 mS, (b) gms (max) � 1.48 mS

13.17 (a) Nd � 8.1 � 1015 cm�3, (b) VT � 0.051 V

13.19 (a) VT � �0.1103 V, (b) a � 0.2095 �m

13.21 (a) a � 0.26 �m,VT � 0.092 V;

 (b) VDS (sat) � 0.258 V

13.23 (a) kn � 1.206 mA/V2; 

 (b) (i) ID1 (sat) � 12.06 �A, (ii) ID1 (sat) � 0.1085 mA;

 (c) (i) VDS (sat) � 0.10 V, (ii) VDS (sat) � 0.30 V

13.27 (a) L � 2.333 �m, (b) L � 2.946 �m

13.29 (a) VDS � 2 V, (b) hsat � 0.306 �m,

 (c) ID1 (sat) � 3.72 mA, (d) ID1 (sat) � 9.05 mA

13.31 (a) td � 5 ps, (b) td � 20 ps

13.33 (a) IDG � 0.39 pA, (b) IDG � 0.42 pA,

 (c) IDG � 0.50 pA

13.35 fT � 9.76 GHz

13.37 (a) fT � 8.74 GHz, (b) fT � 35.0 GHz

13.39 (a) Voff � �2.07 V, (b) ns � 3.25 � 1012 cm�2

13.41 d � 251 Å

Chapter 14

14.1 (a) 1.11 �m, (b) 1.88 �m, (c) 0.873 �m,

 (d) 0.919 �m

14.3 (a) (i) � � 9 � 103 cm�1, (ii) 0.66;

 (b) (i) � � 2.6 � 104 cm�1, (ii) 0.875

14.5 (a) IvO � 0.733 W/cm2, (b) d � 2.56 �m

14.7 E � 1.65 eV, � � 0.75 �m

14.11 (a) Voc � 0.4847 V, (b) V � 0.4383 V,

 (c) Pm � 46.5 mW, (d) RL � 3.65 �

14.15 (a) Voc � 0.474 V, (b) Pm � 67.9 mW,

 (c) RL � 2.379 �, (d) P � 55.2 mW

14.17 �np �   
��o 
n  __ 

�2 L n  
2  � 1

    � exp  �   �x _ 
Ln 

   �  � exp (��x) 	 
14.19 (a) I � 120 mA, (b) �p � 1014 cm�3,

 (c) �	 � 2.56 � 10�2 (�-cm)�1,

 (d) IL � 3.2 mA, (e) �ph � 3.33

14.21 IL � 0.131 �A

14.25 (a) GL (x) � (3.33 � 1020) exp [�(103)x] cm�3 s�1,

 (b) JL � 53.3 mA/cm2

14.27 d � 230 �m

14.29 (a) (i) Eg � 1.64 eV, (ii) � � 0.756 �m;

 (b) (i) Eg � 1.78 eV, (ii) � � 0.697 �m

14.31 x � 0.38, Eg � 1.85 eV

14.35 �� � 5.08 � 10�3 �m

Chapter 15

15.1 See Figure 8.29

15.3 fr � 23.9 MHz

15.5 (a) E � 6 � 103 V/cm, (b) vd � 1.5 � 107 cm/s,

 (c) f � 10 GHz

15.7 (a) (i) VBE � 0.5696 V, (ii) IC � 0.640 A;

 (b) (i) VBE � 0.6234 V, (ii) IC � 5.12 A

15.9 NC � 2 � 1014 cm�3, base width � 3.16 �m, 
collector width � 78.9 �m

15.11 (a) �B � 5.96, (b) ICA � 3.23 A

15.13 (a) RL � 3.60 �, (b) IC, max � 3.33 A

15.17 (a)  Let Nd � 1014 cm�3, channel length � 4.86 �m,

 drift region � 48.6 �m;

 (b)  Let Nd � 1014 cm�3, channel length � 3.08 �m,

 drift region � 30.8 �m

15.19 (a) RL � 20 �, ID, max � 3 A;

 (b) VDD � 42.4 V
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I N D E X

A
Abrupt junction approximation, 268

Absorption coeffi cient, 658, 662

Accelerating fi eld, 531

Acceptor atoms, 148

Acceptor concentration, 244

Acceptor impurity atom, 120

Acceptor states, 401

Acceptor-type trap, 222

Accumulation layer, 373

Accumulation layer charge, 431

Accumulation layer of electrons, 375–376

Accumulation layer of holes, 394–395

Accumulation mode, 395

Accumulation of electrons, 377

Active device, 491

AIAs (aluminum arsenide), 2, 333

AlGaAs (aluminum gallium arsenide)

AlxGal-xAs, 2, 630, 646, 660

grown on substrates, 20

heteroepitaxy, 19

heterojunction bipolar transistor (HBT), 556–557

heterojunction LED, 653–654

AlGaAs-GaAs (aluminum gallium arsenide-gallium 

arsenide)

HEMT, 604–605

heterojunction, 556–557

junctions, 354

Allowed energy bands, 60–61, 69–72, 76–77, 79–82, 98

Allowed energy state, 221

Almost empty band, 81

Almost full band, 81

AlP (aluminum phosphide), 2

Alpha cutoff frequency, 547, 559

Aluminum (Al), 122, 333

Aluminum arsenide (AIAs), 2, 333

Aluminum gallium arsenide (AlGaAs)

AlxGal-xAs, 2, 630, 646, 660

GaAs-AlGaAs HEMT, 604–605

GaAs-AlGaAs junctions, 354

grown on substrates, 20

heteroepitaxy, 19

heterojunction bipolar transistor (HBT), 556–557

heterojunction LED, 653–654

Aluminum phosphide (AlP), 2

Ambipolar diffusion, 201

Ambipolar diffusion coeffi cient, 203, 231

Ambipolar mobility, 231

Ambipolar mobility coeffi cient, 203

Ambipolar phenomenon, 206

Ambipolar transport, 198, 201–219, 231, 503, 524

Ambipolar transport equation, 201–203, 206–214, 

232, 637

Ambipolar transport equation simplifi cations, 206

Amorphous silicon, 662

Amorphous silicon solar cells, 631–632

Amorphous solids, 2–3

Amphoteric impurities, 123

Amplifi cation, 500–501, 537

Anisotype junction, 355, 364

Anode, 674, 691–692, 700–701

Anode current, 693, 700

Areal hole trap densities, 476–477

Arsenic (As), 122

Atomic bonding, 12–14

Atomic thermal vibration, 14

Auger recombination, 644

Auger recombination process, 644

Avalanche breakdown

bipolar transistor, 464–465, 467, 533–534

defi ned, 258, 260

pn junction, 258–262

thyristor, 693

Avalanche breakdown condition, 260

Avalanche breakdown voltage, 260

Avalanche effect, 258

Avalanche photodiode, 641–642

Average drift velocity, 157–158, 170, 183

Azimuthal (angular) quantum number (l), 48

B
Ballistic transport, 453–455

Band splitting, 80, 82

Bandgap energy, 63, 81

Bandgap narrowing, 526–528, 556–557, 559

Bandgap narrowing factor, 527–528

Barrier height. See Schottky barrier height

Base current, 497–498, 554
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 Index 739

emitter bandgap narrowing, 526–528

emitter current, 496–497

emitter injection effi ciency factor, 511–513, 518, 526, 

556, 559

emitter region, 492, 506–507

emitter-base (EùB) charging time, 556

equivalent circuit models, 536–541

forward-active mode, 494–495, 500, 502–510, 559

frequency limitations, 544–549

glossary of terms, 559

Gummel-Pool model, 540–541

HBT (heterojunction bipolar transistor), 552, 556–559

high injection, 524–526

hybrid-pi model, 537, 541–544

interaction pn junction, 495

inverse-active mode, 499–500, 508, 559

large-signal switching, 549–552

low-frequency common-base current gain, 509–521, 546

minority carrier distribution, 501–509

modes of operation, 498–500, 508–509

nonideal effects, 522–536

nonuniform base doping, 530–531

notation, 502

polysilicon emitter BJT (bipolar junction transistor), 

552–554

punch-through, 531–532

reading list, 569–570

recombination factor, 511, 515–516, 518

review and problems, 559–569, 736

saturation mode, 499

Schottky-clamped transistor, 551–552

silicon-germanium (SiGe)-base transistor, 552, 

554–556

simplifi ed transistor current relation, 495–498

specialized structures, 552–559

summary, 558

time-delay factors, 544–546

transistor currents, 509–521

transistor cutoff frequency, 546–549

Bipolar transistor action, 492–501

BJT (bipolar junction transistor), 491

Bloch theorem, 63

Bode plot, 548

Body diagonal, 9

Body-centered cubic structure (bcc), 4–5, 7

Body-effect coeffi cient, 420–421

Bohr model of the atom, 120

Bohr radius, 120–121

Bohr theory, 46, 120

Boltzmann approximation, 96, 98

Born, Max, 32–33, 51

Base Gummel number, 541

Base region, 492, 503–506, 528–529, 554

Base transit time, 545–546, 556, 559

Base transport factor, 511, 513–514, 518, 559

Base width modulation, 522–524, 541, 559

Base-collector (B-C) pn junction, 493

Base-collector (B-C) space charge region, 546

Base-emitter (B-E) pn junction, 493

Base-emitter (B-E) voltage, 496–497, 526, 543, 558

Basic Ebers-Moll equivalent circuit, 538

Basic interband transitions, 644

Basic MOS capacitor structure, 372

Basic SCR device, 697–698

Basic transistor action, 491, 496, 558

B-C (base-collector) pn junction, 493

B-C (base-collector) space charge region, 546

Bcc (body-centered cubic structure), 4–5, 7

B-E (base-emitter) pn junction, 493

B-E (base-emitter) voltage, 496–497, 526, 543, 558

Beryllium (Be), 50, 122–123

Beta cutoff frequency, 547–548, 559

Bilateral thyristor, 697–698

Binary semiconductor, 2, 20

Bipolar junction transistor (BJT), 491

Bipolar phototransistor, 642

Bipolar transistor, 491–570

amplifi cation, 500–501, 537

avalanche breakdown, 533–534

bandgap narrowing, 526–528, 556–557, 559

base current, 497–498, 554

base region, 492, 503–506, 528–529, 554

base transit time, 545–546, 556, 559

base transport factor, 511, 513–514, 518, 559

base width modulation, 522–524, 541, 559

base-collector (B-C) pn junction, 493

base-emitter (B-E) pn junction, 493

base-emitter (B-E) voltage, 496–497, 526, 543, 558

basic principle of operation, 493–495

breakdown voltage, 531–536

collector current, 495–499, 509, 522–526, 529, 537, 

550, 555, 558

collector region, 492, 507–508

collector-emitter (C-E) voltage, 499, 523

common-base current gain, 497, 509–521, 534–535, 

537–538, 546, 559

current crowding, 528–530, 559

current gain effects, 555

cutoff frequency, 547–548, 558–559

cutoff mode, 500, 508, 559

Early effect, 522–523, 559

Ebers-Moll model, 537–540, 551
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glossary of terms, 183

graded impurity distribution, 176–180, 183

Hall effect, 180–182

induced electric fi eld, 176–178

mobility effects, 159–164

reading list, 191

resistivity, 164–166, 183

review and problems, 184–191, 732

summary, 183

total current density, 175–176

velocity saturation, 169–172

Carrier velocity, 452

Carrier velocity saturation, 167–169, 452–453

Cathode, 674, 691–692, 700–701

C-E (collector-emitter) loop, 498–499

C-E (collector-emitter) saturation voltage, 539

Channel conductance, 406, 431, 585, 609

Channel conductance modulation, 431, 609

Channel conductivity, 410

Channel length modulation, 424, 446–450, 481, 

594–596, 610

Channel length modulation effect, 447–448

Channel length modulation parameter, 449

Channel space charge region, 577

Channel transit time

JFET, 600–601

MOSFET, 425

Channel width, 411, 461–464

Charge carriers, 107–118, 148

Charge distribution (MOSFET), 387–388

Charge neutrality, 135–148, 411

Charge sharing, 459

Charge storage, 551

Charge storage and diode transients, 314–317

Charging time constant, 546, 556

Chemical bonds, 14

Chemical vapor-phase deposition (CVD), 19

Chromium (Cr), 333

Circuit layout techniques, 430

Classical mechanics, compared to quantum mechanics, 

33, 38, 43, 45, 80

CMOS (complementary MOS), 427–431

CMOS circuit, 371

CMOS inverter, 428–429

Collector, 492, 495

Collector capacitance charging time, 545–546, 559

Collector current, 495–499, 509, 522–526, 529, 537, 

550, 555, 558

Collector depletion region transit time, 545–546, 559

Collector region, 492, 507–508

Collector series resistance, 546

Boron (B), 17, 50, 119–120, 122, 554

Bose-Einstein function, 91

Bound particle, 36

Boundary conditions

minority carrier concentrations, 284

pn junction diode, 279–283

Schrodinger’s wave equation, 33–34

short diode, 294

Breakdown voltage, 258, 261–262, 464–468, 531–536

Broken gap, 354–355

Built-in potential barrier, 243–246, 267–268

Bulk charge effect, 418

C
Cgd, 423

Cgdp, 423

CgdT, 424

Cgs, 423

Cgsp, 423

CgsT, 424

C�FB, 397

C�min, 396

Cox, 397

CoxT, 398

Cadmium (Cd), 122–123

Capacitance, 394

Capacitance charging time

JFET, 600, 609

MOSFET, 425

Capacitance-voltage characteristics (MOSFET), 394–403

Carbon (C), 50

Carrier density gradient, 183

Carrier diffusion, 172–176

Carrier diffusion coeffi cient, 183

Carrier diffusion current density, 172–175

Carrier drift, 157–172

Carrier drift current density, 157–159

Carrier drift velocity, 170, 454

Carrier generation, 232

Carrier generation and recombination, 193–198

Carrier injection, 322

Carrier mobility, 159–164, 183, 450, 452, 478

Carrier recombination, 232

Carrier transport phenomenon, 156–191

carrier diffusion, 172–176

carrier drift, 157–172

carrier mobility, 159–164, 183

conductivity, 164–169, 183

diffusion current density, 172–175, 183

drift current density, 157–159, 183

Einstein’s relation, 179, 183
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diamond structure, 10–11

glossary of terms, 20–21

growth of semiconductor materials, 17–20

imperfections and impurities, 14–17

reading list, 24

review and problems, 21–24, 730

semiconductor materials, 1–2

space lattices, 3–9

summary, 20

types of, 4–5

Current, 107

Current capability/current handling capability, 415

Current crowding, 528–530, 559

Current density, 510

Current gain effects, 555

Current gain factors. See Common-base current gain; 

Common-emitter current gain

Current-voltage (C-V) relationship. See I-V relationship/

characteristics

Curvature effect, 465

Cutoff, 498

Cutoff frequency

bipolar transistor, 547–548, 558–559

JFET, 600–602, 610

MOSFET, 426–427, 431, 453

Cutoff mode, 500, 508, 559

C-V (current-voltage) relationship. See I-V relationship/

characteristics

CVD (chemical vapor-phase deposition), 19

Czochralski method, 17, 19

D
DEc, 359

DEv, 359

Darlington pair confi guration, 682–684

Davisson-Germer experiment, 28

Dc bias current, 311

Dc common-base current gain, 511

Dc emitter current, 545

Dc voltage sources, 500

De Broglie, Louis, 28, 31

De Broglie wavelength, 28, 36, 51

Decoupling, 430

Deep traps, 430

Defi nitions. See Glossary of terms

Degenerate n-type semiconductor, 130

Degenerate p-type semiconductor, 130

Degenerate semiconductor, 130–131, 148

Delay time, 545, 550

Delayed photocurrent, 639, 662

Density gradient, 242–243

Collector-emitter (C-E) loop, 498–499

Collector-emitter (C-E) saturation voltage, 539

Collector-emitter (C-E) voltage, 499, 523

Collector-to-substrate capacitance, 546

Common-base current gain, 497, 509–521, 534–535, 

537–538, 546, 559

Common-emitter circuit confi guration, 500

Common-emitter current gain, 498–499, 517–518, 525, 

534–535, 547–548, 559

Compensated semiconductors, 135–136, 148

Complementary MOS (CMOS), 427–431

Complete hybrid-pi equivalent circuit, 543

Complete ionization, 133–134, 148

Complete small-signal equivalent circuit, 313

Compound semiconductor, 2

Compton effect, 27–28

Conduction bands, 74–75, 77, 81

Conduction parameter, 410, 418, 431, 591, 610

Conduction-band edge

graded heterojunction, 357

N-AlGaAs, n-GaAs heterojunction, 357

N-AlGaAs-intrinsic GaAs abrupt heterojunction, 602

N-AlGaAs-undoped AlGaAs-undoped GaAs 

heterojunction, 603

Conduction-band energy, 279

Conductivity, 164–169, 183

Conductivity effective mass, 157n1, 726–728

Constant of motion (k), 65

Constant-fi eld device scaling, 456

Constant-fi eld scaling, 455–456

Constants

charging time, 546, 556

dielectric relaxation time, 214–216, 674

physical, 716

Planck’s, 26, 30, 619

Richardson, 343–345, 364

separation-of-variables, 47n7, 48

Continuity equations, 198–199, 214

Conversion effi ciency, 627–628

Conversion effi ciency of solar cell, 627–628, 662

Conversion factors, 623, 716

Coulomb attraction, 47

Covalent bonding, 13, 20, 72–73

Critical angle, 651–652

Critical angle loss, 650

Critical electric fi eld, 268

Crystal momentum, 72

Crystal planes, 6–7

Crystal pullers, 18

Crystal structure of solids, 1–24

atomic bonding, 12–14
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742 Index

Drain-to-source voltage, 408, 410–419, 578, 582, 

585, 608

Drain-to-substrate capacitance, 598

Drain-to-substrate pn junction, 404

Drain-to-substrate pn junction capacitance, 423

Drift, 157, 183

Drift current, 74–75, 183

Drift current density, 157–159, 178

Drift velocity, 158, 169–171, 183, 452–454

DV/dt triggering, 696–697

E
E, 619

Ef, 114

EFi, 114

Eg, 619

EV (electron-volt), 648, 720–721

E versus k diagram

asymmetric distribution of electrons, 75

conduction/valence bands, 73–74

displacements of allowed energy bands, 71

electron in bottom of conduction band, 89

empty states, 78

free electron, 76

GaAs1-xPx, 647

gallium arsenide (GaAs), 83–84

one-dimensional, 85

parabolic approximation, 88

reduced-zone representation, 71

silicon (Si), 83–84

Early effect, 522–523, 559

Early voltage, 522–523, 555, 559

E-B (emitter-base) charging time, 556

E-B (emitter-base) junction, 516

E-B (emitter-base) junction capacitance charging time, 

545, 559

E-B (emitter-base) space charge region, 494

Ebers-Moll model, 537–540, 551

Effective density of states, 130, 148, 725–726

Effective density of states function in the conduction 

band (Nc), 110, 113

Effective density of states function in the valence band 

(Nv), 112–113, 148

Effective density of states functions, 109, 113

Effective electric fi eld, 452

Effective electron mobility, 451

Effective inversion charge mobility, 451–452

Effective mass, 75, 77, 114, 724–728

Effective mass values, 113

Effective mobility, 451–452

Effective Richardson constant, 343–345

Density of states effective mass, 725–726, 728

Density of states function, 85–90, 98

Dependent current source, 543

Depletion layer capacitance, 255, 268

Depletion layer thickness, 376–379

Depletion mode

JFET, 578–580, 582–587, 610

MOSFET, 394–395, 403–405, 408–409, 415, 

431, 477

Depletion mode device, 404, 573

Depletion region, 243, 267–268, 461

Depletion width, 446

Diamond lattice, 10–11, 13, 20, 83

DIBL (drain-induced barrier lowering), 468, 470, 481

Dielectric relaxation time constant, 214–216, 674

Differential voltage, 583

Diffusion, 172, 183

Diffusion capacitance, 306–307, 311–313, 322

Diffusion coeffi cient, 179, 183

Diffusion conductance, 311, 322

Diffusion current, 172, 175, 183, 495, 522

Diffusion current density, 172–175, 183

Diffusion force, 242

Diffusion of impurities, 16

Diffusion resistance, 305–306, 322

Diode current-voltage (C-V) relationship, 344–345, 364

Direct bandgap semiconductor, 84

Direct band-to-band generation, 193

Directions in crystals, 9

Distribution laws, 91

DMOS (double-diffused MOSFET), 684–685, 702

Domain, 674

Donor atoms, 148

Donor concentration, 130

Donor electron, 118–120

Donor impurity atom, 119

Donor impurity concentration, 527

Donor states, 401

Dopant atoms, 20, 118, 130

Doping, 16–17, 19–20, 118, 141, 144, 472

Doping concentration, 167

Double heterojunction laser, 660

Double-diffused MOSFET (DMOS), 684–685, 702

Double-diffused npn bipolar transistor, 531

Draft, 59

Drain current, 424–425

Drain overlap capacitance, 423, 426

Drain-induced barrier lowering (DIBL), 468, 470, 481

Drain-to-source parasitic capacitance, 598

Drain-to-source resistance, 686

Drain-to-source saturation voltage, 582
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Emitter injection effi ciency factor, 511–513, 518, 526, 

556, 559

Emitter region, 492, 506–507

Emitter-base (E-B) charging time, 556

Emitter-base (E-B) junction, 516

Emitter-base (E-B) junction capacitance charging time, 

545, 559

Emitter-base (E-B) space charge region, 494

Emitter-to-collector transit time, 548

Empty band, 71

Empty state, 73, 78, 99, 107

Energy band theory (single crystal), 61, 63, 72, 80

Energy bands, 59–63. See also Allowed energy bands; 

Forbidden energy bands

Energy quanta, 26–27

Energy shells, 12–13, 49

Energy-band diagrams

adding donors, 138

amorphous silicon PIN solar cell, 632

bandgap materials, 355

channel length (accumulation/weak inversion/

inversion), 445

degenerate semiconductors, 131

discrete acceptor energy state, 120

discrete donor energy state, 119

double heterojunction laser, 660

forward bias, 223, 277, 280, 299, 308, 342

GaAlAs heterojunction LED, 654

GaAs, 171, 672–673, 724

HEMT, 605–606

heterojunctions, 354–357, 362

ideal (See Ideal energy-band diagrams)

interface states (charge trapped therein), 402

interface states (oxide-semiconductor interface), 401

inversion point, 419

ionization of acceptor state, 120, 134

ionization of donor state, 119, 134

ionized/un-ionized donors and acceptors, 136

ionizing radiation-induced processes, 475

MESFET, 577

metals, 82

MOS (n-type substrate, negative applied gate bias), 384

MOS capacitor (accumulation mode), 395, 402

MOS capacitor (depletion mode), 395

MOS capacitor (fl at band), 386

MOS capacitor (inversion mode), 396, 402

MOS capacitor (midgap), 402

MOS capacitor (p-type substrate, large positive gate 

bias), 375

MOS capacitor (p-type substrate, moderate positive 

gate bias), 374

Effective transverse electric fi eld, 451–452

Effective trapped oxide charge, 401

Effi cient luminescent material, 645

Einstein, Albert, 26

Einstein’s relation, 179, 183, 540

Electric fi eld (pn junction), 246–254, 267

Electrical conduction in solids, 72–82

Electroluminescence, 644

Electromagnetic frequency spectrum, 29

Electromagnetic waves, 30

Electron, 30, 98, 107

Electron affi nity, 333

Electron affi nity rule, 356, 364

Electron and hole

concentrations, 107, 113, 123–124, 135–141

mobilities, 162–163

Electron behavior. See Quantum mechanics

Electron capture, 222

Electron conductivity effective mass, 726–727

Electron density of states effective mass, 

725–726, 728

Electron diffusion coeffi cient, 174, 176

Electron diffusion current, 173–174

Electron diffusion current density, 176, 287

Electron drift, 175

Electron effective mass, 75–77, 80, 85, 98–99

Electron emission, 222

Electron hole generation and recombination, 193

Electron in free space, 35–36

Electron inversion charge density, 381

Electron mobility, 158, 164, 451

Electron spin, 50

Electron-hole pair formation, 619

Electron-hole pair generation rate, 622–624

Electron-volt (eV), 648, 720–721

Elemental semiconductor, 2, 20

Elements, 17–20. See also specifi c elements
group I elements, 12–13

group II elements, 2, 122

group III elements, 1–2, 119–120

group III-V elements, 19, 122

group IV elements, 1, 10, 13, 122–123

group V elements, 1, 19, 118

group VI elements, 2

group VII elements, 12

periodic table, 50–51, 719

work functions of, 333

Emitter bandgap narrowing, 526–528

Emitter current, 496–497

Emitter current crowding, 528–530, 559

Emitter doping, 526–528, 556
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Epitaxial growth, 19

Epitaxial layer, 20

Equilibrium. See Semiconductor in equilibrium

Equivalent circuit

Ebers-Moll model, 537–540, 551

hybrid-pi model, 537, 541–544

JFET, 598–602

MOSFET, 422–426

MOSFET/parasitic BJT (distributed parameters), 

689–691

parasitic bipolar transistor, 466

pn junction, 313–314

three-terminal SCR, 694

Equivalent fi xed oxide charge, 431

Error function, 317, 729

Esaki diode, 671

Excess carrier generation and recombination, 194–198

Excess carrier lifetime, 221–226

Excess carrier pulse, 217–218

Excess carrier recombination rate, 226

Excess carriers, 198–201, 213, 232. See also 

Nonequilibrium excess carriers

Excess electron concentration, 212, 504–505

Excess electron pulse, 212

Excess electrons, 194, 232

Excess hole concentration, 212–213

Excess holes, 194, 232

Excess minority carrier electron concentration, 504

Excess minority carrier hole concentration, 208, 507

Excess minority carrier holes, 212

Excess minority carrier lifetime, 197, 232

External quantum effi ciency, 650–653, 662

Extrinsic doping, 203–206, 225–226

Extrinsic materials, 118

Extrinsic semiconductor, 120, 123–131, 148

F
FT, 426

Fabry-Perot cavity, 657, 659

Fabry-Perot resonator, 657

Face-centered cubic structure (fcc), 4–5, 7

Fermi energy, 93–99, 109, 113, 123–124, 129–130, 146

Fermi energy level, 141–147

Fermi-Dirac distribution function, 93–98

Fermi-Dirac integral, 128–130

Fermi-Dirac probability function, 91–93

Field oxide (FOX), 428

Field oxide charge, 386

Field-effect, 431

Fill factor, 627, 662

Fixed oxide charge, 472

Energy-band diagrams—(Cont.)
MOS capacitor (p-type substrate, negative 

gate bias), 374

MOS capacitor (p-type substrate, zero gate bias), 374

MOS capacitor (n-type substrate, large negative gate 

bias), 377

MOS capacitor (n-type substrate, moderate negative 

gate bias), 377

MOS capacitor (n-type substrate, positive 

gate bias), 377

MOS structure (negative applied gate bias), 17

MOS structure (p-type substrate), 394, 444

MOS structure (point x), 413

MOS structure (positive applied gate bias), 389

MOS structure (thermal equilibrium), 382

MOS structure (zero gate bias), 374, 383

MOSFET (double-subscripted voltage variables), 419

MOSFET (equipotential plot), 468

MOSFET (n-channel), 419

n-AlGaAs emitter and p-GaAs base junction, 

556–557

nonuniform donor impurity concentration, 176

npn bipolar transistor, 494

npn bipolar transistor (punch-through), 532

n-semiconductor-to-metal junction, 351

n-type semiconductor, 131, 380

pn junction (forward bias), 277, 280, 299, 308

pn junction (reverse biased), 251, 277

pn junction (thermal equilibrium), 243

pn junction (zero bias), 277, 320

p-type semiconductor, 131, 219, 378–379

reverse biased, 223, 251, 277

Si-base transistor, 554

SiGe-base transistor, 554

surface potential (p-type semiconductor), 378

threshold inversion point (n-type 

semiconductor), 379

threshold inversion point (p-type 

semiconductor), 378

tunnel diode, 319–321

zero bias, 277, 320

Energy-band splitting, 61

Energy-band structure, 171

Energy-band theory of single-crystal materials, 

61, 63, 72, 80

Enhancement mode

JFET, 589–590, 592, 610

MESFET, 577–578, 590–591

MOSFET, 403–404, 406, 409, 412, 416–418, 422, 

428, 431, 477

pn junction FET, 578
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 Index 745

E versus k diagram, 83–84

effective density of states function, 113

effective mass values, 113

electron affi nity, 333

electron and hole mobilities in, 163

electron drift velocity versus electric fi eld, 673

energy-band diagrams, 171, 672–673, 724

as group III-V compound semiconductor, 122

heteroepitaxy process, 19

heterojunction, 556

impurity ionization energies, 123

intrinsic carrier concentration, 115

JFET, 601–602

LED, 653

MESFET, 576, 588, 601

mobility/diffusion values, 158, 179

optical devices, 621–622, 628, 630, 645, 647–648, 

653–654, 660

properties, 717

resistivity, 165

Schottky barrier diode, 345

Schottky diode, 337

as substrate, 20

visible spectrum, 645

zincblende structure, 11

Gallium arsenide phosphide (GaAsP)

diode brightness, 653

GaAs1-xPx, 646–647, 653

Gallium arsenide-aluminum gallium arsenide 

(GaAs-AlGaAs)

HEMT, 604–605

heterojunction, 556–557

junctions, 354

Gallium phosphide (GaP), 2, 165, 653

Gamma function, 110

GaP, 2, 165, 653

Gate capacitance charging time (JFET), 600, 609

Gate charging time, 425

Gate voltage, 452

Gate-to-channel space charge regions, 573–576

Gate-to-drain capacitance, 424

Gate-to-source capacitance, 424

Gate-to-source voltage, 410–419, 423

Gaussian-type distribution, 474

Gauss’s law, 411–412

Generalized scaling, 457

Generalized three-dimensional unit cell, 4

Generation, 193

Generation current, 322

Generation rate, 232

Generation-recombination currents, 295–302

Fixed oxide charge effects, 400–403

Fixed positive oxide charge, 401

Flat band, 374

Flat-band capacitance, 397–398

Flat-band condition, 385, 397

Flat-band voltage, 385–388, 431, 458–459, 476

Fluorine (F), 50

Forbidden energy bands, 61–62, 72, 82, 99

Forward active, 494, 559

Forward bias, 322, 333

Forward-active mode, 494–495, 500, 502–510, 559

Forward-active operating mode, 494

Forward-bias current density, 345

Forward-bias current-voltage (C-V) relationship, 293

Forward-bias recombination current, 298–301

Forward-bias voltage, 280, 282, 347

Forward-biased npn bipolar transistor, 496

Forward-biased pn junction, 280, 282, 285, 299–300, 

303, 308

FOX (fi eld oxide), 428

Free particle, 36

Freeze-out, 133, 145, 148

Frenkel defect, 15

Frequency effects, 399–400

Frequency limitations

bipolar transistor, 544–549

JFET, 600–602

MOSFET, 422–430

Fresnel loss, 650, 662

G
GaAlAs (gallium aluminum arsenide)

GaAlxAs1-x, 653

heterojunction LED, 653–654

GaAs (gallium arsenide). See Gallium arsenide (GaAs)

GaAs-AlGaAs (gallium arsenide-aluminum gallium 

arsenide)

HEMT, 604–605

heterojunction, 556–557

junctions, 354

GaAsP (gallium arsenide phosphide)

diode brightness, 653

GaAs1-xPx, 646–647, 653

Gallium aluminum arsenide (GaAlAs)

GaAlxAs1-x, 653

heterojunction LED, 653–654

Gallium arsenide (GaAs)

barrier height, 340

as compound semiconductor, 2, 11

direct bandgap material, as, 646–648

drift velocity, 170–171
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746 Index

Helium (He), 50

HEMT (high electron mobility transistor), 602–609

advantages/disadvantages, 609

alternative names, 603

energy-band diagrams, 605–606

inverted structure, 605

multilayer, 608

quantum well structures, 603–604

transistor performance, 604–609

uses, 608

Heteroepitaxy, 19

Heterojunction AlGaAs-GaAs bipolar transistor, 556

Heterojunction bipolar transistor (HBT), 552, 

556–559

Heterojunction solar cell, 629–630

Heterojunctions, 354–363

defi ned, 364

electron affi nity rule, 356, 364

energy-band diagrams, 354–357, 362

equilibrium electrostatics, 358–362

I-V relationship/characteristics, 342–345, 363

materials, 354

potential well, 358

two-dimension electron gas, 356–358

types, 355

HEXFET, 685, 702

High electron mobility transistor (HEMT). See HEMT

High injection, 524–526

High-level injection, 302–304, 322

High-speed logic circuits, 608

High-temperature coil, 17

(hkl) plane, 9

Holding current, 697

Hole, 78–80, 98–99, 107

Hole concentrations, 107, 113, 123–124, 135–141

Hole conductivity effective mass, 727–728

Hole density of states effective mass, 726, 728

Hole diffusion coeffi cient, 174, 176

Hole diffusion current density, 176, 302

Hole drift, 175

Hole effective mass, 99

Hole-particle fl ux, 198

Homoepitaxy, 19

Homojunction, 331, 354

Hot electrons, 475, 481

Hot-electron charging effects, 480

Hybrid-pi equivalent circuit model, 537, 541–544

Hydrogen (H), 13, 19, 50, 479

Hydrogen atom, 13

Hydrogen chloride (HCl), 19

Hydrogen fl uoride (HF), 14

Germanium (Ge)

covalent bonding, 13

diamond structure of, 11

drift velocity, 170–171

effective density of states function, 113

effective mass values, 113

electron affi nity, 333

electron and hole mobilities in, 163

as elemental semiconductor, 2

energy bands, 728

as group IV element, 10

as indirect bandgap material, 84

intrinsic carrier concentration, 122–123

ionization energy of, 122–123

mobility/diffusion values, 158, 179

properties, 717

resistivity, 165

SiGe-base transistor, 554

Germer, Lester, 28

Glossary of terms

bipolar transistor, 559

carrier transport phenomenon, 183

crystal structure of solids, 20–21

JFET (junction fi eld-effect transistor), 609–610

MOSFET (metal-oxide-semiconductor fi eld-effect 

transistor), 431–432

nonequilibrium excess carriers, 231–232

optical devices, 662–663

pn junction, 268

pn junction diode, 322

quantum mechanics, 51–52

quantum theory of solids, 98–99

Schottky barrier diode, 364

semiconductor in equilibrium, 148

semiconductor/microwave power devices, 702

Gold (Au), 16, 333

Graded impurity distribution, 176–180

Grain boundaries, 3

Grains, 2

Group III-V semiconductors, 19, 122

Gummel-Pool model, 540–541

GUNN diode, 672–675

H
Hv, 619

Hall effect, 180–183

Hall fi eld, 181

Hall voltage, 181, 183

Haynes-Shockley experiment, 216–219

HBT (heterojunction bipolar transistor), 552, 556–559

Heisenberg uncertainty principle, 30, 51
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 Index 747

Impurity scattering, 160–161, 183

Incident particles, 41

Incident photon illumination, 629

Incident photon intensity, 662

Incident wave, 651

Incremental conductance, 305

Incremental resistance, 305–306

Indirect bandgap semiconductor, 84

Indium phosphide (InP), 2, 621, 672

Induced absorption, 655

Induced electric fi eld, 176–178

Induced emission, 655

Infi nite potential well, 36–40

Infi nite surface recombination velocity, 231

Injection electroluminescence, 644, 648, 662

InP (indium phosphide), 2, 621, 672

Interacting pn junction, 495

Interaction between atoms, 12

Interdigitated bipolar transistor structure, 678

Interdigitated npn bipolar transistor, 529

Interface charge effects, 400–403

Interface states, 340–341, 367, 401–403, 431, 478–479

Interfacial layer, 340–341, 367

Internal pinchoff voltage, 578–582, 610

Internal quantum effi ciency, 649–650, 663

Internal refl ection, 652

International system of units, 715

Interstitial defects, 14–15

Interstitial impurity, 16

Intrinsic angular momentum, 50

Intrinsic carrier concentration, 113–116, 122–123, 139, 

147, 167, 376, 526, 556

Intrinsic electron concentration, 113, 128

Intrinsic Fermi energy, 114

Intrinsic Fermi-level position, 116–118

Intrinsic hole concentration, 113, 128

Intrinsic material, 120

Intrinsic semiconductor, 107

Intrinsic silicon lattice, 118

Inverse active, 500, 559

Inverse-active mode, 499–500, 508, 559

Inversion, 394

Inversion carrier mobility, 416

Inversion charge density, 381, 452

Inversion charge mobility, 451

Inversion layer, 375, 451

Inversion layer charge, 406, 431, 447, 450

Inversion layer mobility, 431

Inversion layer of electrons, 430

Inversion layer of holes, 430

Inversion mode, 396

Hydrogen valence electrons, 13

Hydrogenic model, 122

Hyperabrupt junction, 265–268

Hyperbolic functions, 506

Hyperbolic sine function, 505

I
ICBO, 533–535

ICEO, 534–535

ID, 406–407, 409, 414

ID(sat), 418

Ideal current-voltage relationship. See I-V relationship/

characteristics

Ideal energy-band diagrams. See also Energy-band 

diagrams

metal-n-semiconductor junction, 332, 349

metal-n-type semiconductor ohmic contact, 350

metal-p-type semiconductor junction, 350

metal-semiconductor (forward bias), 342

metal-semiconductor junction (forward bias), 223

metal-semiconductor junction (interfacial layer and 

interface states), 341

metal-semiconductor junction (reverse biased), 223

nN heterojunction, 357

Np heterojunction, 362

nP heterojunction, 356

pP heterojunction, 362

Ideal intrinsic semiconductor, 107

Ideal junction properties, 334–338

Ideal nonrectifying barriers, 349–351

Ideal pn junction current, 286–290

Ideal reverse-saturation current density, 288, 292, 

298, 346

Ideal Richardson constant, 345

Ideal saturation drain current, 585

Ideal solar cell effi ciency, 628

Ideal-diode equation, 288

Ideality factor, 302

Image force-induced lowering, 338, 364

Impact ionization, 464, 475, 480

Impact ionization avalanche transit-time (IMPATT), 

675–677

IMPATT diode, 675–677

Imperfections, 14–15

Implant approximation, 473

Impurities, 16–17

Impurity atoms, 16, 118, 130

Impurity concentration, 16, 169

Impurity diffusion, 16

Impurity doping concentration, 135

Impurity ionization energies, 123

nea29583_index_738-762.indd   747nea29583_index_738-762.indd   747 12/13/10   2:24 PM12/13/10   2:24 PM



748 Index

p-channel, 573

p-channel pn JFET, 579–582

pn JFET, 571–576

reading list, 616–617

review and problems, 610–616, 736–737

small-signal equivalent circuit, 598–600

subthreshold current/gate current effects, 596–598

summary, 609

threshold voltage, 579

transconductance, 587–588, 596, 599–600

velocity saturation, 596

Junction breakdown, 258–262

Junction breakdown voltage, 470

Junction capacitance, 254–256, 268

Junction current, 277–295

Junction fi eld-effect transistor (JFET). See JFET

K
Kinetic energy, 42

Kirchoff’s voltage equation, 499

Kirchoff’s voltage law, 500

Kronig-Penney model, 63–67, 72, 99

K-space diagram, 67–72, 83–84, 99

KVL equations, 498

L
Laplace transform technique, 551

Laplacian operator, 47

Lapping operation, 19

Large-signal switching, 549–552

Laser diode, 654–661, 663

Lasing, 655–659

Lasing modes, 658

Latch-up, 429–430

Lattice, 3, 20

Lattice defects, 16

Lattice planes, 6

Lattice point, 3–4

Lattice scattering, 160–161, 452

Lattice vibrations, 14

LC resonant circuit, 676

LDD (lightly doped drain) transistor, 470–471, 481

LED (light emitting diode), 662

Light, generation of, 648–649

Light application by stimulated emission of radiation 

(laser), 654

Light emitting diode (LED), 648–654, 662

Light spectrum, 622

Lightly doped drain (LDD) transistor, 470–471, 481

Lilienfeld transistor, 572

Line defects, 15

Inverted GaAs-AlGaAs HEMT, 605

Inverted MODFET, 604

Ion implantation, 16, 20, 472–474

Ionic bond, 12, 14

Ion-implanted profi le, 472

Ionization effect, 133

Ionization energy, 120, 122–123

Ionized impurity scattering, 160–161, 183

Ionizing radiation, 475–479

Isotype junction, 355–356, 364

I-V relationship/characteristics

diode, 344–345, 364

forward-bias, 293

heterojunctions, 342–345, 363

ideal bipolar transistor common-base current-voltage 

(C-V) characteristics, 497

ideal I-V characteristic of a pn junction diode, 

288–289

JFET, 582–587

MESFET, 591

MODFET, 607

MOS capacitor, 394–399

MOSFET, 404–418, 469

pn junction diode, 278–279

Schottky barrier diode, 342–345

SCR, 692

thyristor, 695

triac, 698

J
JFET (junction fi eld-effect transistor), 571–617

capacitance charging time, 600, 609

channel length modulation, 594–596

channel transit time, 600–601

cutoff frequency, 600–602, 610

depletion mode, 578–580, 582–587, 610

drain-to-source saturation voltage, 582

enhancement mode JFET, 589–590, 592, 610

enhancement mode MESFET, 577–578, 590–591

equivalent circuit, 598–602

frequency limitations, 600–602

GaAs, 601–602

gate capacitance charging time, 600, 609

glossary of terms, 609–610

HEMT, 602–609

high electron mobility transistor (HEMT), 602–609

ideal current-voltage relationship, 582–587

internal pinchoff voltage, 578–582

MESFET, 571, 576–578, 588–593

n-channel pn JFET, 578–580

nonideal effects, 593–598
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 Index 749

Metals

characteristics, 82

energy-band diagram, 82

work functions of, 333

Metal-semiconductor diode, 332

Metal-semiconductor fi eld-effect transistor (MESFET). 

See MESFET

Metal-semiconductor junction, 331–354

Metal-semiconductor ohmic contacts, 349–354

defi ned, 364

forming ohmic contacts, 353–354

ideal nonrectifying barriers, 349–351

specifi c constant resistance, 352–354

tunneling barrier, 351–352

Metal-semiconductor work function difference, 

383–385, 400, 431, 472

Microwave power devices. See Semiconductor/

microwave power devices

Midgap, 402

Midgap energy, 108–109, 117

Miller capacitance, 426, 543, 662

Miller effect, 543, 643, 662

Miller indices, 7–8, 21

Minimum capacitance, 396–397

Minority carrier concentration, 141, 282, 312, 316

Minority carrier diffusion current density, 295

Minority carrier diffusion length, 232, 492

Minority carrier distribution, 283–286, 501–509

Minority carrier electron concentration, 141

Minority carrier hole concentration, 141, 506

Minority carrier hole diffusion current 

density, 287

Minority carrier hole parameters, 205, 212

Minority carrier lifetime degradation, 430

Mobility, 157, 183

Mobility effects, 159–164

Mobility values, 158, 164, 168, 179

Mobility variation, 450–452

Moderate inversion, 397, 399

MODFET (modulation-doped fi eld-effect transistor), 

603–608

Modifi ed Planck’s constant, 30

Modulation-doped fi eld-effect transistor (MODFET), 

603–608

Molecular beam epitaxy (MBE), 19

Molybdenum (Mo), 333

MOS capacitor, 372–377

MOS gated thyristor, 700

MOS structure, two-terminal, 372–394

MOS system, 375, 382, 389

MOS turn-off thyristor, 700–701

Line dislocation, 15

Linearly graded junctions, 263–265, 268

Liquid-phase epitaxy, 19

Lithium (Li), 50–51

Load line, 499

Load resistance, 425

Localized free particle, 36

Long diode, 322

Long pn junction, 284

Long-channel MOSFET, 452

Low frequency, 399

Low injection, 203–206, 225–226

Low-frequency common-base current gain, 509–521, 546

Low-level injection, 196–197, 203, 232

Luminescence, 643, 649, 663

Luminescent effi ciency, 645–646

M
Magnetic quantum number (m), 48

Majority carrier concentration, 182

Majority carrier current, 291

Majority carrier device, 348

Majority carrier electron concentration, 141

Majority carrier hole concentration, 140

Majority carrier mobility, 167, 182

Matter waves, 28

Maximum electric fi eld, 470

Maximum induced space charge width, 473

Maximum power dissipation, 679, 687

Maximum rated collector current, 679

Maximum rated current, 702

Maximum rated power, 680, 702

Maximum rated power dissipation, 701

Maximum rated voltage, 679, 702

Maximum resistive cutoff frequency, 672

Maxwell-Boltzmann approximation, 96, 99

Maxwell-Boltzmann probability function, 91

MBE (molecular beam epitaxy), 19

Melts, 17–18

MESFET (metal-semiconductor fi eld-effect transistor)

basic operation, 576–578

GaAs, 597, 601–603

high frequency, 596

JFET, 571, 588–593

Metal work function, 332, 340

Metallic bonding, 13–14

Metallurgical junction, 242, 268

Metal-oxide-semiconductor capacitor (MOS capacitor), 

372–377

Metal-oxide-semiconductor fi eld-effect transistor 

(MOSFET). See MOSFET
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750 Index

subthreshold current, 445–446, 478

summary, 430–431, 481

surface charge density, 380–381

threshold voltage, 388–394, 456–457, 472, 477

threshold voltage modifi cations, 457–464, 472–474, 482

transconductance, 418–419, 427, 432, 453

transductance, 432

two-terminal MOS structure, 372–394

velocity saturation, 452–453

work function differences, 382–385, 472

Multilayer HEMT, 608

Multilayer modulation-doped heterostructure, 604

N
Ni, 113–116

No equation, 109, 125

Nopo product, 127

N-AlGaAs emitter to p-GaAs base junction, 556–557

Narrow-channel effects, 461–464, 481

N-channel

MESFET, 576

MOSFET, 371, 423

pn JFET, 572–573, 578–580

N-channel depletion mode MOSFET, 403–404, 408, 416

N-channel enhancement mode

MESFET, 578

MOSFET, 403–404, 406, 412, 416

Near avalanche breakdown, 465–468, 470

Near punch-through effects, 468–470, 481

Negative differential mobility, 171, 702

Negative differential resistance, 702

Negative effective mass, 80

Negative energy, 48

Negative threshold voltage, 390

Neon (Ne), 50–51

Neutrons, 30

Newton’s laws of motion, 25

Nickel (Ni), 333

Nitrogen (N), 50

NN heterojunction, 355, 357, 362

Nondegenerate semiconductors, 130

Nonequilibrium excess carriers, 192–240

ambipolar transport, 198, 201–219, 231

ambipolar transport equation, 201–203, 206–214, 232

carrier generation and recombination, 193–198

characteristics, 198–201

continuity equations, 198–199

dielectric relaxation time constant, 214–216

excess carrier lifetime, 221–226

extrinsic doping, 203–206, 225–226

glossary of terms, 231–232

MOSFET (metal-oxide-semiconductor fi eld-effect 

transistor), 371–490

accumulation mode, 395

avalanche breakdown, 464–465, 467

ballistic transport, 453–455

basic operation, 403–422

breakdown voltage, 464–468

capacitance charging time, 425

capacitance-voltage (C-V) characteristics, 394–403

channel length modulation, 446–450

channel transit time, 425

charge distribution, 387–388

CMOS, 427–431

constant-fi eld scaling, 455–456

cutoff frequency, 426–427, 431, 453

depletion layer thickness, 376–379

depletion mode, 394–395, 403–405, 408–409, 415, 

431, 477

device types, 403

enhancement mode, 403–404, 406, 409, 412, 

416–418, 422, 428, 431, 477

equivalent circuit, 422–426, 689–691

fi xed oxide/interface charge effects, 400–403

fl at-band voltage, 385–388

frequency effects, 399–400

frequency limitations, 422–430

generalized scaling, 457

glossary of terms, 431–432

hot-electron charging effects, 480

inversion mode, 396

ion implantation, 472–474

I-V relationship/characteristics, 394–399, 

402–418, 449

lightly doped drain (LLD) transistor, 470–471, 481

long-channel, 452

mobility variation, 450–452

narrow-channel effects, 461–464, 481

nonideal effects, 444–455

oxide breakdown, 464

oxide thickness, 397, 419

p-channel, 371

power MOSFET, 684–689, 701

radiation effects, 475–480

reading list, 441–442, 489–490

review and problems, 432–441, 482–488, 735–736

scaling, 455–457

short-channel effects, 457–461, 481

small-signal equivalent circuit, 422–426

snapback breakdown, 465–468, 482

substrate bias effects, 419–422

subthreshold conduction, 444–446, 481–482
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One-sided junctions, 256–258, 268

One-sided MESFET, 578

Open-base confi guration, 534–535

Open-base phototransistor, 642

Open-circuit voltage, 625, 663

Open-emitter confi guration, 534–535

Optical absorption, 619–624

Optical cavity, 657–658

Optical density, 658

Optical devices, 618–669

electron-hole pair generation rate, 622–624

glossary of terms, 662–663

laser diode, 654–661, 663

LED, 648–654, 663

materials, 646–648

optical absorption, 619–624

photodetectors, 633–643, 662 (See also 

Photodetectors)

photoluminescence/electroluminescence, 643–648

photon absorption coeffi cient, 619–622

reading list, 668–669

review and problems, 663–668, 737

solar cells, 624–632

summary, 661–662

Optoelectronics, 618

Ordered region, 2

Oscillators, 670

Output conductance, 559

Output resistance, 610

Overlap capacitances, 423

Oxide breakdown, 464

Oxide capacitance, 387, 398, 431

Oxide charge, 475–478

Oxide thickness, 390, 397, 419, 472

Oxide-isolated npn bipolar transistor, 493

Oxygen (O), 16, 50

P
Pi, 113

Po equation, 109, 111, 125

P�n junction, 256–257, 265–266

P�-n-i-n�, 675

Palladium (Pd), 333

Parabolic relationship between energy and momentum, 

68, 88

Parallel-plate capacitor, 373

Parasitic bipolar transistor, 466–467, 470

Parasitic BJT, 689–691

Parasitic capacitances, 423, 426, 453

Partial ionization, 134, 139–140

Partially fi lled band, 82

Haynes-Shockley experiment, 216–219

low injection, 203–206, 225–226

notations/symbols, 194

quasi-Fermi energy levels, 219–221, 232

reading list, 240

review and problems, 232–240, 732–733

Shockley-Read-Hall theory of recombination, 221–225

summary, 231

surface effects, 226–231

time-dependent diffusion equations, 199–201

Nonideal effects

bipolar transistor, 522–536

JFET, 593–598

MOSFET, 444–455

Nonradiative recombination rate, 650

Nonuniform absorption effects, 628–629

Nonuniform base doping, 530–531

Nonuniform donor impurity concentrations, 176

Nonuniform doping profi le, 530

Nonuniform photon absorption, 628–629, 640

Nonuniformly doped junctions, 262–267

Notations/symbols

bipolar transistor, 502

excess carriers, 194

npn bipolar phototransistor, 642

npn Darlington pair confi guration, 682

pn junction, 245

pn junction current, 279

Np heterojunction, 355

NP heterojunction, 350, 355–356, 362

Npn bipolar phototransistor, 642

Npn bipolar transistor, 492

Npn Darlington pair confi guration, 682

Npn transistor, 429

N-type compensated semiconductor, 135

N-type semiconductor, 119, 124, 130

Nucleus, 46–47

N-well CMOS process, 428–429

O
Off state, 314

Ohmic contacts, 331, 364. See also Metal-semiconductor 

ohmic contacts

Ohm’s law, 214, 410, 583

On resistance, 685, 702

On state, 314

One-dimensional Kronig-Penney model, 63, 72, 99

One-electron atom, 46–51

(110) plane, 8

[111] direction, 9

(111) plane, 8
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basic structure, 242–243

built-in potential barrier, 243–246, 267–268

diode (See Pn junction diode)

electric fi eld, 246–249, 251–254, 267

equivalent circuit, 313–314

glossary of terms, 268

hyperabrupt junction, 265–268

junction breakdown, 258–262

junction capacitance, 254–256, 268

linearly graded junctions, 263–265 268

nonuniformly doped junction, 262–267

notation, 245

one-sided junctions, 256–258, 268

reading list, 275

reverse applied bias, 250–258

review and problems, 268–274, 733–734

space charge width, 249–254, 265, 268

summary, 267

zero applied bias, 243–250, 267

P�n junction, 260

Pn junction diode, 276–330

boundary conditions, 279–283

charge storage and diode transients, 314–317

diffusion resistance, 305–306, 322

forward-bias recombination current, 298–301

generation-combination currents, 295–302

glossary of terms, 322

high-level injection, 302–304, 322

ideal pn junction current, 286–290

ideal reverse-saturation current density, 288, 292, 298

I-V relationship/characteristics, 278–279

junction current, 277–295

minority carrier distribution, 283–286

reading list, 330

reverse-biased generation current, 296–298

review and problems, 322–330, 734

Schottky barrier diode, compared, 345–349

short diode, 293–295

small-signal admittance, 306–313

small-signal equivalent circuit, 313–314

small-signal model, 304–314

summary, 321–322

temperature effects, 292–293

terms/notation, 279

total forward-bias current, 300–302

tunnel diode, 318–321

turn-off transient, 315–317

turn-on transient, 315–317

Pn junction FET (pn JFET), 571–576

Pn junction solar cell, 624–627

Pn laser diode, 657

Passive device, 491

Pauli exclusion principle, 50–51, 60, 131

P-channel

JFET, 573

MOSFET, 371

pn JFET, 579–582

P-channel depletion mode MOSFET, 403–405

P-channel enhancement mode

MESFET, 578

MOSFET, 403, 405, 417

Penetration depth of particle, 43

Periodic table, 50–51, 719

Permittivity, 47, 120, 201, 215, 372, 606

Perpendicularity, 9

Phonon (lattice) scattering, 160–161

Phosphorus (P), 16–17, 118, 122

Photoconductivity, 634

Photoconductor, 633–635, 662

Photoconductor gain, 634–635

Photocurrent, 663

Photodetectors

avalanche photodiode, 641–642

photoconductor, 633–635, 662

phototransistor, 642–643

PIN photodiode, 640–641

pn photodiode, 635–640

Photodiode, 633–642, 662

Photoelectric effect, 26–27

Photoluminescence/electroluminescence, 643–648

Photon, 27, 30, 51

Photon absorption coeffi cient, 619–622

Photon energy, 27

Photon fl ux, 620, 645

Photon intensity, 620

Photon-semiconductor interaction mechanisms, 619

Phototransistor, 642–643

Physical constants, 716

Physics

crystal structure of solids, 1–24

quantum mechanics, 25–57

quantum theory of solids, 58–105

summary of, 290–292

PIN photodiode, 640–641

Pinchoff, 573–575, 610

Pinchoff current, 584

Pinchoff voltage, 579–580

Planck’s constant, 26, 30, 619

Platinum (Pt), 333

Pn heterojunction, 629

Pn JFET, 571–576

Pn junction, 241–275
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 Index 753

Quantization of particle energy, 38

Quantized energies, 51, 59

Quantum effi ciency, 645–646, 649–652

Quantum mechanics, 25–57

compared to classical mechanics, 33, 38, 43, 45, 80

electron in free space, 35–36

energy quanta, 26–27

glossary of terms, 51–52

infi nite potential well, 36–40

interaction between atoms, 12

one-electron atom, 46–51

periodic table, 50–51, 719

potential barrier, 44–46

probability functions, 31

reading list, 57

review and problems, 51–57, 730–731

Schrodinger’s wave equation, 31–36, 47, 51, 357, 

722–723

step potential function, 39–43

summary, 51

tunneling, 45, 51–52

uncertainty principle, 26, 30–31

wave-particle duality, 26–30

Quantum numbers, 37, 48, 50

Quantum states

density of, 85–90, 94, 98

Pauli exclusion principle, 60, 85

Quantum theory of solids, 58–105

allowed/forbidden energy bands, 60–61, 69–72, 

76–77, 79–82, 98–99

Boltzmann approximation, 96, 98

density of states function, 85–90, 98

distribution laws, 91

drift current, 74–75

electrical conduction in solids, 72–82

electron effective mass, 75–77, 80, 85, 98–99

energy band theory (single crystal), 61, 63, 

72, 80

Fermi energy, 93

Fermi-Dirac probability function, 91–93

glossary of terms, 98–99

hole, 78–80, 98–99, 107

Kronig-Penney model, 63–67, 72, 99

k-space diagram, 67–72, 83–84, 99

reading list, 104

review and problems, 99–104, 731

statistical mechanics, 91–98

summary, 98

three-dimensional crystals, 83–85

Quantum well structures, 603–604

Quasi-Fermi energy levels, 219–221, 232, 285

Pn photodiode, 635–640

P�n junction, 257

Pnp bipolar transistor, 492

Pnp Darlington pair, 683

Pnp transistor, 429

Pnpn structure, 430

Point contact diode, 332

Point defect, 14–15

Poisson’s equation

ambipolar transport, 201

dielectric relaxation time constant, 214

electric fi eld, 246

ideal junction properties, 334

linearly graded junctions, 263

threshold voltage, 447, 473

Polishing, 19

Polycrystalline, 2–3

Polysilicon emitter BJT, 552–554

Population inversion, 655, 663

Positive energy, 48

Potential, 247, 251

Potential barrier function, 44–46, 318

Potential function, 63–64, 72, 83

Potential well, 358

Power bipolar transistors, 677–684, 701

Power devices. See Semiconductor/microwave 

power devices

Power MOSFET, 684–689, 701

PP heterojunction, 362

Primitive cell, 4, 21

Principal quantum number (n), 48

Probability, 30

Probability density function

free particle, 36

incident particles, 41

isolated hydrogen atom, 46

Max Born, 33, 51

radial, 49, 59

refl ected, 42

Probability functions, 31

Problems to solve. See Review and problems

Process conduction parameter, 410, 418, 432

Prompt photocurrent, 636, 640, 663

P-type compensated semiconductor, 135

P-type semiconductor, 120, 124, 130

Punch-through, 468–470, 531–532

P-well CMOS structure, 428

Q
Q�ss, 431

Quanta, 26, 31, 51
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pn junction diode, 322–330, 734

quantum mechanics, 51–57, 730–731

quantum theory of solids, 99–104, 731

Schottky barrier diode, 364–369, 734–735

semiconductor in equilibrium, 148–154, 731–732

semiconductor/microwave power devices, 

703–706, 737

Richardson constant, 343–345, 364

S
Safe operating area (SOA), 680, 702. See also SOA

Safety margin, 464

Saturation, 432, 499–500

Saturation condition, 582

Saturation drain current, 585

Saturation mode, 499, 508

Saturation region

JFET, 587

MOSFET, 408

Saturation velocity, 453–454

Sc (simple cubic structure), 4–5, 7

Scaling, 455–457

Scattering, 160

Scattering events, 453–454

Schottky barrier, 333

Schottky barrier diode, 332–349

barrier height, 335–336, 338–341, 364

characteristics, 332–334

defi ned, 363

effective Richardson constant, 343–345

glossary of terms, 364

ideal junction properties, 334–338

interface states, 340

interfacial layer, 340–341, 367

I-V relationship/characteristics, 342–345

as majority carrier device, 348

pn junction diode, compared, 345–349

reading list, 370

review and problems, 364–369, 734–735

summary, 363–364

Schottky barrier height, 335–336, 338–341, 364

Schottky barrier junction, 334, 346, 363

Schottky barrier lowering, 338–341

Schottky barrier rectifying contact, 576

Schottky barrier rectifying junction, 588

Schottky clamped transistor, 348

Schottky diode, 337, 551

Schottky effect, 364

Schottky-clamped transistor, 551–552

Schrodinger, Erwin, 31

Schrodinger’s wave equation, 31–36, 47, 51, 357, 722–723

R
Rc resistance, 17

Rd, 423

Rds, 424

RL, 425

Rs, 423

R-f induction coil, 17

Radial probability density function, 49, 59

Radiation effects, 475–480

Radiation-induced interface states, 478–479

Radiation-induced oxide charge, 475–478

Radiative effi ciency, 645–646

Radiative recombination, 650, 663

Radiative recombination rate, 646

Random thermal velocity, 160

Recombination, 193

Recombination center, 221

Recombination current, 322

Recombination factor, 511, 515–516, 518

Recombination processes, 643–644, 648–649, 663

Recombination rate, 225, 232, 300

Recovery phase, 317

Refl ected probability density function, 42

Refl ected wave, 651

Refl ection coeffi cient, 43, 650

Refraction, 652, 660

Resistivity, 81–82, 164–166, 183

Resistor, 168

Reverse applied bias, 250–258

Reverse biased, 268

Reverse saturation current, 322

Reverse saturation current density, 288

Reverse-biased current density, 297

Reverse-biased generation current, 296–298

Reverse-biased voltage, 267

Reverse-biased photodiode, 636

Reverse-biased PIN photodiodes, 640

Reverse-biased pn junction, 277, 638

Reverse-saturation current density, 346

Review and problems

answers, 730–737

bipolar transistor, 559–569, 736

carrier transport phenomenon, 184–191, 732

crystal structure of solids, 21–24, 730

JFET (junction fi eld-effect transistor), 610–616, 

736–737

MOSFET (metal-oxide-semiconductor fi eld-effect 

transistor), 432–441, 482–488, 735–736

nonequilibrium excess carriers, 232–240, 732–733

optical devices, 663–668, 737

pn junction, 268–274, 733–734
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 Index 755

MOSFET (metal-oxide-semiconductor fi eld-effect 

transistor), 371–490

nonequilibrium excess carriers, 192–240

optical devices, 618–669

pn junction diodes, 276–330

pn junctions, 241–275

power devices (semiconductor/microwave), 670–706

Semiconductor/microwave power devices, 670–706

Darlington pair confi guration, 682–684

DMOS, 684–685, 702

glossary of terms, 702

GUNN diode, 672–675

HEXFET, 685, 702

IMPATT diode, 675–677

parasitic BJT, 689–691

power bipolar transistors, 677–684

power MOSFET, 684–689, 701

reading list, 706

review and problems, 703–706, 737

summary, 701–702

thyristor, 691–702

tunnel diode, 671–672

VMOS, 684–685

Semiconductors, physics of

crystal structure of solids, 1–24

quantum mechanics, 25–57

quantum theory of solids, 58–105

Separation-of-variables constant, 47n7, 48

Separation-of-variables technique, 47

Series resistances, 423

Shockley-Read-Hall recombination, 221–225, 640

Short channel modulation, 449

Short diode, 293–295, 322

Short-channel effects, 457–461, 481

Short-channel threshold voltage model, 459

Short-circuit current, 625, 663

Si-base transistor, 554

SiGe-base transistor, 552, 554–556

Silicon (Si)

bandgap narrowing factor compared to donor impurity 

concentration, 527

barrier height, 340

conduction energy band, 724

covalent bonding, 13, 72–73

diamond structure of, 11

drift velocity, 170–171

E versus k diagram for, 83–84

effective density of states function, 113

effective mass values, 113

electron affi nity, 333

electron and hole mobilities in, 162–163

SCR (semiconductor controlled rectifi er), 691, 702

SCR turn-off, 697

SDHT (selectively doped heterojunction fi eld-effect 

transistor), 603

Second breakdown, 680, 702

Seed, 17–18

Segregation coeffi cient, 17

Selectively doped heterojunction fi eld-effect transistor 

(SDHT), 603

Selenium (Se), 122–123

Semiconductor controlled rectifi er (SCR), 691, 702

Semiconductor doping, 472

Semiconductor heterojunction. See Heterojunctions

Semiconductor in equilibrium, 106–155

carrier generation and recombination, 193–194

charge carriers, 107–118, 148

charge neutrality, 135–148

compensated semiconductors, 135–136, 148

complete ionization, 133–134, 148

degenerate/nondegenerate semiconductors, 

130–131, 148

donor/acceptor statistics, 151–152

dopant atoms/energy levels, 118–123

electron and hole concentrations, 107, 113, 123–124, 

135–141

equilibrium distribution of electrons/holes, 107–109, 

123–127

equilibrium electrostatics, 358–362

extrinsic semiconductor, 120, 123–131, 148

Fermi energy level position, 141–147

Fermi-Dirac integral, 128–130

freeze-out, 133, 145, 148

glossary of terms, 148

group III-V semiconductors, 122

intrinsic carrier concentration, 113–116, 139, 147

intrinsic Fermi level position, 116–118

ionization energy, 120, 122–123

no equation, 109, 125

nopo product, 127

partial ionization, 134, 139–140

po equation, 109, 111, 125

reading list, 154

review and problems, 148–154, 731–732

summary, 147–148

Semiconductor materials, fabrication of, 17–20

Semiconductor materials and devices

bipolar transistor, 491–570

carrier transport phenomenon, 156–191

in equilibrium, 106–155

JFET (junction fi eld-effect transistor), 571–617

metal-semiconductor ohmic contacts, 349–354
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Snapback breakdown, 465–468, 482, 690

Snell’s law, 651

SOA

defi ned, 680, 702

power MOSFET, 687–688

power transistors, 680

Sodium (Na), 13–14

Sodium chloride (NaCl), 12

Solar cells, 624–632

amorphous silicon cells, 631–632

conversion effi ciency/solar concentration, 627–628

heterojunction solar cell, 629–630

nonuniform absorption effects, 628–629

pn junction solar cell, 624–627

Solar concentration, 627–628

Solar spectral radiation, 628

Solids

crystal structure of, 1–24

electrical conduction, 72–82

imperfections, 14–15

impurities, 16–17

quantum theory, 58–105

types, 2–3

Solid-state transistor, 572

Source resistance, 425

Source-to-drain saturation voltage, 418

Source-to-substrate pn junction, 419

Space charge density, 246, 257, 263

Space charge region, 242, 267–268. See also 

Depletion region

Space charge width, 249–254, 265, 268, 379

Space lattices, 3–9

Spatial dependence, 211

Specialized bipolar transistor structures, 552–559

Specifi c contact resistance, 352–354, 364

Sphalerite (zincblende) structure, 11

Spherically symmetric probability function, 49

Spin quantum number (s), 50

Splitting of energy bands, 60–62, 80

Spontaneous emission, 655

Spontaneous emission curve, 658

Spontaneous emission rate, 644

Staggered, 354–355

Statistical mechanics, 91–98

Steady-state diode photocurrent density, 639

Steady-state excess carrier concentration, 210, 228

Steady-state excess carrier hole concentration, 210

Steady-state excess electron concentration, 210

Steady-state excess hole concentration, 228

Steady-state excess majority carrier hole 

concentration, 210

Silicon (Si)—(Cont.)
as elemental semiconductor, 2, 20

energy bands, 724–725, 728

epitaxial growth, 19

as group IV element, 10

as ideal intrinsic semiconductor, 107

impurity concentrations, 16

intrinsic carrier concentration, 122–123

MESFET, 576

mobility/diffusion values, 158, 179

n-channel JFET, 586

popularity of, 10

properties, 717–718

resistivity, 165

schematic representation of, 61–62

Schottky barrier diode, 345

Schottky diode, 337

Si-base transistor, 554

SiGe-base transistor, 552

splitting of energy states in, 80

two-dimensional representation of intrinsic silicon 

lattice, 118–119

valence energy band, 725

visible spectrum, 622

Silicon controlled rectifi er, 691

Silicon tetrachloride, 19

Silicon valence electrons, 13

Silicon wafers, 18

Silicon-germanium (SiGe)-base transistor, 552, 554–556

Silicon-silicon dioxide (Si-SiO2) interface, 471, 476–480

Silver (Ag), 333

Simple cubic structure (sc), 4–5, 7

Simple SCR circuit, 696

Simplifi ed transistor current relation, 495–498

Single crystal, 2–3

Single-crystal regions, 2

Single-crystal silicon solar cells, 630

Sinusoidal common-base current gain, 500–501

Small-signal admittance, 306–313

Small-signal BJTs, 679

Small-signal common-base current gain, 511

Small-signal diffusion resistance, 305, 313

Small-signal equivalent circuit

JFET, 598–600

MOSFET, 422–426

pn junction, 313–314

Small-signal incremental resistance, 306

Small-signal input impedance, 672

Small-signal model of pn junction, 304–314

Smearing out, 403

Snapback, 467
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Thermal voltage, 245

Thermal-equilibrium concentration, 107, 

123–127, 129

Thermal-equilibrium density of electrons, 110

Thermal-equilibrium electron concentration, 109, 

135–139, 147

Thermal-equilibrium hole concentration, 111, 135, 

139–141, 147

Thermionic emission theory, 342, 365

Three-dimensional crystals, 83–85

Three-element (ternary) semiconductor, 2, 20–21

Three-terminal SCR, 694

Threshold, 577

Threshold adjustment, 482

Threshold current, 658–661

Threshold inversion point, 378, 388, 432

Threshold voltage

defi ned, 378, 388, 432

JFET, 579

MESFET, 589

MOSFET, 388–394, 456–457, 472, 477

negative, 390

pinchoff voltage, 579–580

short-channel effects, 457–461, 481

Thyristor, 691–702

avalanche breakdown, 693

bilateral, 697–698

characteristics, 691–694

device structures, 697–701

I-V characteristics, 695

MOS gated, 700

MOS turn-off, 700–701

SCR, 691, 702

SCR turn-off, 697

triac, 698–699, 702

triggering the SCR, 694–697

Time behavior, 206

Time dependence, 207, 211

Time-delay factors, 544–546

Time-dependent diffusion equations, 199–201

Time-independent Schrodinger’s wave equation, 

31, 35–36

Titanium (Ti), 333

Total channel current, 411

Total charge, 412

Total current density, 175–176, 287

Total forward-bias current, 300–302

Total forward-bias current density, 301–302

Total gate oxide capacitance, 398

Total reverse-biased current density, 297

Total space charge width, 252

Steady-state forward-bias minority carrier 

concentration, 316

Steady-state minority carrier concentration, 285

Step junction, 242, 473

Step potential function, 39–43

Stimulated emission, 655–657, 663

Storage time, 316, 322

Straddling, 354–355

Strong inversion, 397, 399, 432

Substitute impurity, 16

Substrate, 19, 21

Substrate bias effects, 419–422

Subthreshold conduction, 444–446, 481–482, 596

Subthreshold current, 445–446, 478

Subthreshold current/gate current effects, 596–598

Surface charge density, 380–381

Surface density of atoms, 9

Surface effects, 226–231, 516

Surface potential, 376, 381

Surface recombination velocity, 229–232, 516

Surface scattering, 450–451, 482

Surface states, 226–229, 232

Switching, 348, 364, 549–552, 558, 687, 

691, 697

Symbols. See Notations/symbols

Symbols, list of, 707–714

Symmetry effect, 96

T
Taylor expansion, 199, 505–506

TED (transferred-electron device), 672

TEGFET (two-dimensional electron gas fi eld-effect 

transistor), 603

Tellurium (Te), 122–123

Temperature effects

carrier concentration and conductivity, 167

current gain, 679

Fermi energy level, 133, 136, 145–146

Fermi probability function, 94, 96

high-power MOSFETs, 687

intrinsic carrier concentration, 114, 116, 139

ôalmostö intrinsic silicon, 162

optical output versus diode current, 661

pn junction current, 292–293

scattering, 161, 179, 452

threshold voltage, 686

Ternary semiconductor, 2, 21

Tetrahedral structure, 10–11, 13

Thermal annealing, 17

Thermal energy, 14, 119

Thermal equilibrium, 12, 106, 146
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758 Index

V
V�gs, 423

Vbi, 359

VDS, 406–409, 414

VDS(sat), 408, 582

VSD, 418

VSD(sat), 418

Vacancy defect, 14, 16

Vacancy-interstitial defect, 14

Van Allen radiation belts, 475

Van der Walls bond, 14

Varactor diode, 266, 268

Variable reactor, 266

Velocity saturation

carrier transport, 169–172, 183

JFET, 596

MOSFET, 452–453

Vertical pn power BJT, 677

Vertical power transistor structure, 677–678

Very large scale integrated (VLSI) circuits, 17

V-groove MOS gated thyrsistor, 700

V-groove MOSFET (VMOS), 684–685, 702

Visible spectrum, 622, 645

VLSI (very large scale integrated) circuits, 17

VMOS (V-groove MOSFET), 684–685, 702

Voltage amplifi er, 500

Voltage gain, 500

Volume charge density, 164n2

Volume density of atoms, 5

W
Wave equation, Schrodinger’s, 31–36, 357, 

722–723

Wave function, 32–33

Wave mechanics, 25, 31

Wave number, 35

Wavelength, 27, 621–622

Wave-particle duality, 26–30

Weak inversion, 432, 445

Work function differences, 382–385, 472

Work functions, 26–27, 333

Z
Zener breakdown, 258–259

Zener effect, 258

Zero applied bias, 243–250, 267

Zinc (Zn), 122–123

Zincblende lattice, 21, 83

Zincblende (sphalerite) structure, 11

Zone refi ning, 17

Transconductance

enhancement mode device, 593

ion implants, 472–474

JFET, 587–588, 596, 599–600

MESFET, 608

MODFET, 608

MOSFET, 418–419, 427, 432, 453

narrow-channel effects, 461–464, 481

Transferred-electron device (TED), 672

Transferred-electron effect, 702

Transistor, 371

Transistor currents, 509–521

Transistor cutoff frequency, 546–549

Transistor gain, 418

Transistor performance, 604–609

Transistor switching, 550

Transistor types, 371

Transit-time mode, 675

Translation, 3

Transmission coeffi cient, 45

Transmitted wave, 651

Transport, 156, 183. See also Ambipolar transport; 

Carrier transport phenomenon

Transverse electric fi eld, 451

Trap/trapping, 221–222, 476

Triac, 698–699, 702

Triggering the SCR, 694–697

Tungsten (W), 333, 345

Tunnel diode, 318–321, 671–672

Tunneling, 45, 51–52

Tunneling barrier, 351–352, 365

Turn-off transient, 315–317

Turn-off voltage, 579

Turn-on transient, 315–317

Twin-well CMOS process, 428–429

2-DEG (two-dimensional electron gas), 

356–358, 365

Two-dimensional electron gas (2-DEG), 

356–358, 365

Two-dimensional electron gas fi eld-effect transistor 

(TEGFET), 603

Two-dimensional lattice, 3

Two-element (binary) semiconductor, 2, 20

Two-terminal MOS structure, 372–394

U
Uncertainty principle, 26, 30–31

Unipolar transistor, 572

Unit cell, 3–4, 21

Units, international system of, 715
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